
Biasing Approximate Dynamic Programming with a
Lower Discount Factor

Marek Petrik
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

petrik@cs.umass.edu

Bruno Scherrer
LORIA Campus Scientifique B.P. 239
54506 Vandoeuvre-les-Nancy, France
bruno.scherrer@loria.fr

Abstract

Most algorithms for solving Markov decision processes rely on a discount factor,
which ensures their convergence. It is generally assumed that using an artificially
low discount factor will improve the convergence rate, while sacrificing the solu-
tion quality. We however demonstrate that using an artificially low discount factor
may significantly improve the solution quality, when used in approximate dynamic
programming. We propose two explanations of this phenomenon. The first jus-
tification follows directly from the standard approximation error bounds: using
a lower discount factor may decrease the approximation error bounds. However,
we also show that these bounds are loose, thus their decrease does not entirely
justify the improved solution quality. We thus propose another justification: when
the rewards are received only sporadically (as in the case of Tetris), we can derive
tighter bounds, which support a significant improvement in the solution quality
with a decreased discount factor.

1 Introduction

Approximate dynamic programming methods often offer surprisingly good performance in practical
problems modeled as Markov Decision Processes (MDP) [6, 2]. To achieve this performance, the
parameters of the solution algorithms typically need to be carefully tuned. One such important pa-
rameter of MDPs is the discount factor γ. Discount factors are important in infinite-horizon MDPs,
in which they determine how the reward is counted. The motivation for the discount factor originally
comes from economic models, but has often no meaning in reinforcement learning problems. Nev-
ertheless, it is commonly used to ensure that the rewards are bounded and that the Bellman operator
is a contraction [8]. In this paper, we focus on the quality of the solutions obtained by approximate
dynamic programming algorithms. For simplicity, we disregard the computational time, and use
performance to refer to the quality of the solutions that are eventually obtained.

In addition to regularizing the rewards, using an artificially low discount factor sometimes has a
significant effect on the performance of the approximate algorithms. Specifically, we have observed
a significant improvement of approximate value iteration when applied to Tetris, a common rein-
forcement learning benchmark problem. The natural discount factor in Tetris is 1, since the received
rewards have the same importance, independently of when received. Currently, the best results
achieved with approximate dynamic programming algorithms are on average about 6000 lines re-
moved in a single game [4, 3]. Our results, depicted in Figure 1, with approximate value iteration
and standard features [1] show that setting the discount factor to γ ∈ (0.84, 0.88) gives the best
expected total number of removed lines, a bit more than 20000. That is five times the performance
with discount factor of γ = 1 (about 4000). The improved performance for γ ∈ (0.84, 0.88) is sur-
prising, since computing a policy for this discount factor dramatically improves the return calculated
with γ = 1.



 0

 5000

 10000

 15000

 20000

 25000

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 o
f 1

0 
ru

ns
 o

f a
ve

ra
ge

 s
co

re
s 

on
 1

00
 g

am
es

Iterations

0.8
0.84
0.88
0.92
0.96
1.0

Figure 1: Performance of approximate value iteration on Tetris with different discount factors. For
each value of γ, we ran the experiments 10 times and recorded the evolution of the score (the
evaluation of the policy with γ = 1) on the 100 games, and averaged over 10 learning runs.

In this paper, we study why using a lower discount factor improves the quality of the solution with
regard to a higher discount factor. First, in Section 2, we define the framework for our analysis.
In Section 3 we analyze the influence of the discount factor on the standard approximation error
bounds [2]. Then in Section 4 we argue that, in the context of this paper, the existing approximation
error bounds are loose. Though these bounds may be tightened by a lower discount factor, they are
not sufficient to explain the improved performance. Finally, to explain the improved performance,
we identify a specific property of Tetris in Section 5 that enables the improvement. In particular,
the rewards in Tetris are received sparsely, unlike the approximation error, which makes the value
function less sensitive to the discount factor than the approximation error.

2 Framework and Notations

In this section we formalize the problem of adjusting the discount factor in approximate dynamic
programming. We assume γ-discounted infinite horizon problems, with γ < 1. Tetris does not
directly fit in this class, since its natural discount factor is 1. It has been shown, however, that
undiscounted infinite horizon problems with a finite total reward can be treated as discounted prob-
lems [7]. Blackwell optimality implies that there exists γ∗ < 1 such that for all γ > γ∗ the
γ-discounted problem and the undiscounted problem have the same optimal policy. We therefore
treat Tetris as a discounted problem with a discount factor γ∗ < 1 near one. The analysis is based
on Markov decision processes, defined as follows.

Definition 1. A Markov Decision Process is a tuple (S,A, P, r). S is the set of states, A is the set of
actions, P : S × S ×A 7→ [0, 1] is the transition function (P (s′, s, a) is the probability of transiting
to state s′ from state s given action a), and r : S ×A 7→ R+ is a (non-negative) reward function.

We assume that the number of states and actions is finite, but possibly very large. For sake of sim-
plicity, we also assume that the rewards are non-negative; our analysis can be extended to arbitrary
rewards in a straight-forward way. We write ‖r‖∞ to denote the maximal reward for any action and
state.

Given a Markov decision process (S,A, P, r) and some discount factor γ, the objective is to find a
policy, i.e. a mapping π : S 7→ A, with the maximal value from any initial states s. The value vπ(s)
of π from state s is defined as the γ-discounted infinite horizon return:

vπ(s) := E

[ ∞∑
t=0

γtr(st, at) s0 = s, a0 = π(s0), . . . , at = π(st)

]
.

It is well known [7, 2] that this problem can be solved by computing the optimal value function v∗,
which is the fixed point of the Bellman operator Lv = maxπ rπ + γPπv. Here rπ is the vector on S
with components r(s, π(s)) and Pπ is the stochastic matrix associated with a policy π.



We consider in this paper that the MDP is solved with 1) an approximate dynamic programming
algorithm and 2) a different discount factor β < γ. In particular, our analysis applies to approximate
value and policy iteration with existing error bounds. These methods invariably generate a sequence
of approximate value functions, which we denote as ṽβ . Then, πβ is a policy greedy with regard to
the approximate value function ṽβ .

As we have two different discount factors, we use a subscript to denote the discount factor used in
calculating the value. Let δ be a discount factor and π any policy. We use vπδ to represent the value
of policy π calculated with the discount factor δ; when π is the optimal policy corresponding to the
discount δ, we will simply denote its value vδ . As mentioned above, our objective is to compare,
for the discount factor γ, the value vγ of the optimal policy and the value vπβγ . Here, πβ is the
policy derived from the approximate β-discount value. The following shows how this error may be
decomposed in order to simplify the analysis. Most of our analysis is in terms of L∞ mainly because
this is the most common measure used in the existing error bounds. Moreover, the results could be
extended to L2 norm in a rather straight-forward way without a qualitative difference in the results.

From the optimality of vγ , vγ ≥ v
πβ
γ and from the non-negativity of the rewards, it is easy to show

that the value function is monotonous with respect to the discount factor, and therefore: vπβγ ≥ vπββ .
Thus 0 ≤ vγ − v

πβ
γ ≤ vγ − v

πβ
β and consequently:

e(β) := ‖vγ − v
πβ
γ ‖∞ ≤ ‖vγ − v

πβ
β ‖∞ ≤ ‖vγ − vβ‖∞ + ‖vβ − v

πβ
β ‖∞ = ed(β) + ea(β).

where ed(β) := ‖vγ − vβ‖∞ denotes the discount error, and ea(β) := ‖vβ − v
πβ
β ‖∞ the approxi-

mation error. In other words, a bound of the loss due to using πβ instead of the optimal policy for
discount factor γ is the sum of the error on the optimal value function due to the change of discount
and the error due to the approximation for discount β. In the remainder of the paper, we analyze
each of these error terms.

3 Error Bounds

In this section, we develop a discount error bound and overview the existing approximation error
bounds. We also show how these bounds motivate decreasing the discount factor in the majority of
MDPs. First, we bound the discount error as follows.

Theorem 2. The discount error due to using a discount factor β instead of γ is:

ed(β) = ‖vγ − vβ‖∞ ≤
γ − β

(1− β)(1− γ)
‖r‖∞.

Proof. Let Lγ and Lβ be the Bellman operators for the corresponding discount factors. We have
now:

‖vγ − vβ‖∞ = ‖Lγvγ − Lβvβ‖∞ = ‖Lγvγ − Lβvγ + Lβvγ − Lβvβ‖∞
≤ ‖Lγvγ − Lβvγ‖∞ + ‖Lβvγ − Lβvβ‖∞ ≤ ‖Lγvγ − Lβvγ‖∞ + β‖vγ − vβ‖∞

Let Pγ , rγ and Pβ , rβ be the transition matrices and rewards of policies greedy with regard to vγ for
γ and β respectively. Then we have:

Lγvγ − Lβvγ = (γPγvγ + rγ)− (βPβvγ + rβ) ≤ (γ − β)Pγvγ
Lγvγ − Lβvγ = (γPγvγ + rγ)− (βPβvγ + rβ) ≥ (γ − β)Pβvγ .

Finally, the bound follows from above as:

‖vγ − vβ‖∞ ≤
1

1− β
max{‖(γ − β)Pγvγ‖∞, ‖(γ − β)Pβvγ‖∞} ≤

γ − β
(1− γ)(1− β)

‖r‖∞.

Remark 3. This bound is trivially tight, that is there exists a problem for which the bound reduces to
equality. It is however also straightforward to construct a problem in which the bound is not tight.



0 0.2 0.4 0.6 0.8 1
60

70

80

90

100

110

β

Figure 2: Example e(β) function in a
problem with γ = 0.9 and ε = 0.01
and ‖r‖∞ = 10.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

γ

ε

Figure 3: The dependence of ε on γ
needed for the improvement in Propo-
sition 6.

3.1 Approximation Error Bound

We now discuss the dependence of the approximation error ea(β) on the discount factor β. Approxi-
mate dynamic programming algorithms like approximate value and policy iteration build a sequence
of value functions (ṽkβ)k≥0 with πkβ being the policy greedy with respect to ṽkβ . These algorithms
are approximate because at each iteration the value ṽkβ is an approximation of some target value
vkβ , which is hard to compute. The analysis of [2] (see Section 6.5.3 and Proposition 6.1 for value
iteration, and Proposition 6.2 for policy iteration) bounds the loss of using the policies πkβ instead of
the optimal policy:

lim sup
k→∞

‖vβ − v
πkβ
β ‖∞ ≤

2β
(1− β)2

sup
k
‖ṽkβ − vkβ‖∞. (1)

To completely describe how Eq. (1) depends on the discount factor, we need to bound the one-step
approximation error ‖ṽkβ − vkβ‖ in terms of β. Though this specific error depends on the particu-
lar approximation framework used and is in general difficult to estimate, we propose to make the
following assumption.
Assumption 4. There exists ε ∈ (0, 1/2), such that for all k, the single-step approximation error is
bounded by:

‖ṽkβ − vkβ‖∞ ≤
ε

1− β
‖r‖∞.

We consider only ε ≤ 1/2 because the above assumption holds with ε = 1/2 and the trivial constant
approximation ṽkβ = ‖r‖∞/2.
Remark 5. Alternatively to Assumption 4, we could assume that the approximation error is constant
in the discount factor β, i.e. ‖ṽkβ − vkβ‖∞ ≤ ε = O(1) for some ε for all β. We believe that such a
bound is unlikely in practice. To show that, consider an MDP with two states s0 and s1, and a single
action. The transitions loop from each state to itself, and the rewards are r(s0) = 0 and r(s1) = 1.
Assume a linear least-squares approximation with basis M = [1/

√
2; 1/
√

2]. The approximation
error in terms of β is: 1/2(1− β) = O(1/(1− β)).

If Assumption 4 holds, we see from Eq. (1) that the approximation error ea is bounded as:

ea(β) ≤ 2β
(1− β)3

ε‖r‖∞.

3.2 Global Error Bound

Using the results above, and considering that Assumption 4 holds, the cumulative error bound when
using approximate dynamic programming with a discount factor β < γ is:

e(β) = ea(β) + ed(β) ≤ γ − β
(1− β)(1− γ)

‖r‖∞ +
2β

(1− β)3
ε‖r‖∞.

An example of this error bound is shown in Figure 2: the bound is minimized for β ' 0.8 < γ. This
is because the approximation error decreases rapidly in comparison with the increasing discount
error. More generally, the following proposition suggests how we should choose β.



Proposition 6. If the approximation factor ε introduced in Assumption 4 is sufficiently large, pre-
cisely if ε > (1 − γ)2/2(1 + 2γ), then the best error bound e(β) will be achieved for the discount
factor β = (2ε+ 1)−

√
(2ε+ 1)2 + (2ε− 1) < γ.

Figure 3 shows the approximation error fraction necessary to improve the performance. Notice that
the fraction decreases rapidly when γ → 1.

Proof. The minimum of β 7→ e(β) can be derived analytically by taking its derivative:

e′(β) = −(1− β)−2‖r‖∞ + (1− β)−32‖r‖∞ε+ (−3)2β(−1)(1− β)−4‖r‖∞ε

=
(1− β)2 + 2(1− β)ε+ 6βε

(1− β)4
‖r‖∞ =

−β2 + 2(2ε+ 1)β + 2ε− 1
(1− β)4

‖r‖∞.

So we want to know when β 7→ −1/2β2 + (2ε + 1)β + 1/2(2ε − 1) equals 0. The discriminant
∆ = (2ε+ 1)2 + (2ε− 1) = 2ε(2ε+ 3) is always positive. Therefore e′(β) equals 0 for the points
β− = (2ε + 1) −

√
∆ and β+ = (2ε + 1) +

√
∆ and is positive in between and negative outside.

This means that β− is a local minimum of e and β+ a local maximum.
It is clear that β+ > 1 > γ. From the definition of ∆ and the fact (cf Assumption 4) that ε ≤ 1/2,
we see that β− ≥ 0. Then, the condition β− < γ is satisfied if and only if:

β− < γ ⇔ (2ε+ 1)−
√

(2ε+ 1)2 + (2ε− 1) < γ ⇔ 1−

√
1 +

2ε− 1

(2ε+ 1)2
<

γ

2ε+ 1

⇔ 1− γ

2ε+ 1
<

√
1 +

2ε− 1

(2ε+ 1)2
⇔ 1− 2

γ

2ε+ 1
+

γ2

(2ε+ 1)2
< 1 +

2ε− 1

(2ε+ 1)2

⇔ −2γ(2ε+ 1) + γ2 < 2ε− 1⇔ (1− γ)2

1 + 2γ
< 2ε

where the inequality holds after squaring, since both sides are positive.

4 Bound Tightness

We show in this section that the bounds on the approximation error ea(β) are very loose for β → 1
and thus the analysis above does not fully explain the improved performance. In particular, there
exists a naive bound on the approximation error that is dramatically tighter than the standard bounds
when β is close to 1.
Lemma 7. There exists a constant c ∈ R+ such that for all β we have ‖vβ − ṽβ‖∞ ≤ c/(1− β).

Proof. Let P ∗, r∗ and P̂ , r̂ be the transition reward functions of the optimal approximate policies
respectively. The functions may depend on the discount factor, but we omit that to simplify the
notation. Then the approximation error is:

‖vβ − v̂β‖∞ = ‖(I − βP ∗)−1r∗ − (I − βP̂ )−1r̂‖∞ ≤
1

1− β (‖r∗‖∞ + ‖r̂‖∞) .

Thus setting c = 2 maxπ ‖rπ‖∞ proves the lemma.

Lemma 7 implies that for every MDP, there exists a discount factor β, such that Eq. (1) is not
tight. Consider even that the single-step approximation error is bounded by a constant, such that
lim supk→∞ ‖ṽkβ − vkβ‖∞ ≤ ε. This is impractical, as discussed in Remark 5, but it tightens the
bound. Such a bound implies that: ea(β) ≤ 2βε/(1 − β)2. From Lemma 7, this bound is loose
when 2β

(1−β)2 ε >
c

1−β . Thus we have that there exists β < 1 for which the standard approximation
error bounds are loose, whenever ε > 0. The looseness of the bound will be more apparent in
problems with high discount factors. For example in the MDP formulation of Blackjack [5] the
discount factor γ = 0.999, in which case the error bound may overestimate the true error by a factor
up to 1/(1− γ) = 1000.

The looseness of the approximation error bounds may seem to contradict Example 6.4 in [2], which
shows that Eq. (1) is tight. The discrepancy is because in our analysis we assume that the MDP has



0.8 0.85 0.9 0.95 1
0

50

100

150

200

γ

B
el

lm
an

 e
rr

or
 / 

tr
ue

 e
rr

or

Figure 4: Looseness of the
Bellman error bound.

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

β

B
el

lm
an

 e
rr

or

Figure 5: Bellman error
bound as a function of β for
a problem with γ = 0.9.

0 0.2 0.4 0.6 0.8

2

2.2

2.4

2.6

2.8

3

β

|| 
a 

−
 b

 ||
∞

Figure 6: The approximation
error with a = ṽβ and b =
vγ .

fixed rewards and number of states, while the example in [2] assumes that the reward depends on
the discount factor and the number of states is potentially infinite. Another way to put it is to say
that Example 6.4 shows that for any discount factor β there exists an MDP (which depends on β)
for which the bound Eq. (1) is tight. We, on the other hand, show that there does not exist a fixed
MDP such that for all discount factor β the bound Eq. (1) is tight.

Proposition 6 justifies the improved performance with a lower discount factor by a more rapid de-
crease in ea with β than the increase in ed. The naive bound from Lemma 7 however shows that ea
may scale with 1/(1− β), the same as ed. As a result, while the approximation error will decrease,
it may not be sufficient to offset the increase in the discount error.

Some of the standard approximation error bound may be tightened by using a lower discount factor.
For example consider the standard a-posteriori approximation error bound for the value function
ṽβ [7] :

‖vβ − vπ̃β‖∞ ≤
1

1− β
‖Lβ ṽβ − ṽβ‖∞,

where π̃β is greedy with respect to ṽβ . This bound is widely used and known as Bellman error
bound. The following example demonstrates that the Bellman error bound may also be loose for β
close to 1:

P1 =

(
1 0
0 1

)
P2 =

(
0 1
0 1

)
r1 =

(
1 2

)
r2 =

(
2 2

)
Assume that the current value function is the value of a policy with the transition matrix and reward
P1, r1, while the optimal policy has the transition matrix and reward P2, r2. The looseness of the
bound is depicted in Figure 4. The approximation error bound scales with 1

(1−γ)2 , while the true
error scales with 1

1−γ . As a result, for γ = 0.999, the bound is 1000 times the true error value in
this example. The intuitive reason for the looseness of the bound is that the bound treats each state
as recurrent, even when is it transient.

The global error bound may be also tightened by using a lower discount factor β as follows:

‖vγ − v
π̃β
γ ‖∞ ≤

1
1− β

‖Lβ ṽβ − ṽβ‖∞ +
γ − β

(1− β)(1− γ)
‖r‖∞.

Finding the discount factor β that minimizes this error is difficult, because the function may not
be convex or differentiable. Thus the most practical method is a sub-gradient optimization method.
The global error bound the MDP example above is depicted in Figure 5.

5 Sparse Rewards

In this section, we propose an alternative explanation for the performance improvement in Tetris
that does not rely on the loose approximation error bounds. A specific property of Tetris is that the
rewards are not received in every step, i.e. they are sparse. The value function, on the other hand,
is approximated in every step. As a result, the return should be less sensitive to the discount factor
than the approximation error. Decreasing the discount factor will thus reduce the approximation
error more significantly than it increases the discount error. The following assumption formalizes
this intuition.
Assumption 8 (Sparse rewards). There exists an integer q such that for all m ≥ 0 and all instantia-
tions ri with non-zero probability:

∑m
i=0 ri ≤ bm/qc and ri ∈ {0, 1}.



Now define uβ =
∑∞
i=0 β

iti, where ti = 1 when i ≡ 0 mod q. Then let Im = {i ri = 1, i ≤ m}
and Jm = {j tj = 1, j ≤ m} and let I = I∞ and J = J∞. From the definition, these two sets
satisfy that |Im| ≤ |Jm|. First we show the following lemma.
Lemma 9. Given sets Im and Jm, there exists an injective function f : I → J , such that f(i) ≤ i.

Proof. By induction on m. The base case m = 0 is trivial. For the inductive case, consider the
following two cases: 1) rm+1 = 0. From the inductive assumption, there exists a function that maps
Im to Jm. Now, this is also an injective function that maps Im+1 = Im to Jm+1. 2) rm+1 = 1. Let
j∗ = max Jm+1. Then if j∗ = m + 1 then the function f : Im → Jm can be extended by setting
f(m + 1) = j∗. If j∗ ≤ m then since |Jm+1| − 1 = |Jj∗−1| ≥ |Im|, such an injective function
exists from the inductive assumption.

In the following, let Ri be the random variable representing the reward received in step i. It is
possible to prove that the discount error scales with a coefficient that is lower than in Theorem 2:
Theorem 10. Let β ≤ γ − φ, let k = − log(1 − γ)/(log(γ) − log(γ − φ)), and let ρ =
E

[∑k
i=0 γ

iRi

]
. Then assuming the reward structure as defined in Assumption 8 we have that:

‖vγ − vβ‖∞ ≤ γk‖uγ − uβ‖∞ + ρ ≤ γk(γq − βq)
(1− γq)(1− βq)

+ ρ.

Proof. Consider π be the optimal policy for the discount factor γ. Then we have: 0 ≤ vγ − vβ ≤
vπγ − vπβ . In the remainder of the proof, we drop the superscript π for simplicity, that is vβ = vπβ ,
not the optimal value function. Intuitively, the proof is based on “moving” the rewards to earlier
steps to obtain a regular rewards structure. A small technical problem with this approach is that
moving the rewards that are close to the initial time step decreases the bound. Therefore, we treat
these rewards separately within the constant ρ. First, we show that for f(i) ≥ k, we have that
γi − βi ≤ γf(i) − βf(i). Let j = f(i) = i− k, for some k ≥ 0. Then:

γj − βj ≥ γj+k − βj+k

j ≥ max
β∈[0,γ−φ]

log(1− βk)− log(1− γk)
log(γ)− log(β)

≥ − log(1− γk)
log(γ)− log(γ − φ)

,

with the maximization used to get a sufficient condition independent of β. Since the function f
maps only at most bk/qc values of Im to j < k, there is such |Iz| = k, that ∀x ∈ Im \ Iz f(x) ≥ k
Then we have for j > k:

0 ≤ vγ − vβ = lim
m→∞

E

 ∑
i∈Im\Iz

(γi − βi)

 ≤ ρ+ lim
m→∞

E

 ∑
i=1...m∧f(i)≥k

(γf(i) − βf(i))tf(i)


≤ ρ+

∞∑
j=k

(γj − βj)tj = ρ+ γk(uγ − uβ).

Because the playing board in Tetris is 10 squares wide, and each piece has 4 squares, it takes on
average 2.5 moves to remove a line. Since Theorem 10 applies only to integer values of q, we use a
Tetris formulation in which dropping each piece requires two steps. A proper Tetris action is taken
in the first step, and there is no action in the second one. To make this model identical to the original
formulation, we change the discount factor to γ

1
2 . Then the upper bound from Theorem 10 on the

discount error is: ‖vγ − vβ‖∞ ≤ γk(γ2.5 − β2.5)/(1 − γ2.5)(1 − β2.5) + ρ, Notice that ρ is a
constant; it is independent of the new discount factor β.

The sparse rewards property can now be used to motivate the performance increase, even if the
approximation error is bounded by ε/(1 − β) instead of by ε/(1 − β)3 (as Lemma 7 suggests).
The approximation error bound will not, in most cases, satisfy the sparsity assumption, as the errors
are typically distributed almost uniformly over the state space and is received in every step as a
result. Therefore, for sparse rewards, the discount error increase will typically be offset by the larger
decrease in the approximation error.



The cumulative error bounds derived above predict it is beneficial to reduce the discount factor to β
when:

‖vγ − vβ‖∞ ≤ γk
(γ2.5 − β2.5)

(1− γ2.5)(1− β2.5)
+ ρ+

ε

1− β
<

ε

1− γ
.

The effective discount factor γ∗ in Tetris is not known, but consider for example that it is γ∗ =
0.99. Assuming φ = 0.1 we have that k = 48, which means that the first b48/2.5c rewards must
be excluded, and included in ρ. The bounds then predict that for ε ≥ 0.4 the performance of
approximate value iteration may be expected to improve using β ≤ γ − φ.

We end by empirically illustrating the influence of reward sparsity in a general context. Consider
a simple 1-policy, 7-state chain problem. Consider two reward instances, one with a single reward
of 1, and the other with randomly generated rewards. We show the comparison of the effects of a
lower discount factor of these two examples in Figure 6. The dotted line represents the global error
with sparse rewards, and the solid line represents the cumulative error with dense rewards. Sparsity
of rewards makes a decrease of the discount factor more interesting.

6 Conclusion and Future Work

We show in this paper that some common approximation error bounds may be tightened with a lower
discount factor. We also identified a class of problems in which a lower discount factor is likely to
increase the performance of approximate dynamic programming algorithms. In particular, these are
problems in which the rewards are received relatively sparsely. We concentrated on a theoretical
analysis of the influence of the discount factor, not on the specific methods which could be used to
determine a discount factor. The actual dependence of the performance on the discount factor may
be non-trivial, and therefore hard to predict based on simple bounds. Therefore, the most practical
approach is to first predict an improving discount factor based on the theoretical predictions, and
then use line search to find a discount factor that ensures good performance. This is possible since
the discount factor is a single-dimensional variable with a limited range.

The central point of our analysis is based on bounds that are in general quite loose. An important
future direction is to analyze the approximation error more carefully. We shall do experiments
in order to see if we can have some insight on the form (i.e. the distribution) of the error for
several settings (problems, approximation architecture). If such errors follow some law, it might be
interesting to see whether it helps to tighten the bounds.

Acknowledgements This work was supported in part by the Air Force Office of Scientific Research Grant
No. FA9550-08-1-0171 and by the National Science Foundation Grant No. 0535061. The first author was also
supported by a University of Massachusetts Graduate Fellowship.

References
[1] Dimitri P. Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration and applications in

neuro-dynamic programming. Technical Report LIDS-P-2349, LIDS, 1997.

[2] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

[3] V.F. Farias and B. Van Roy. Probabilistic and Randomized Methods for Design Under Uncertainty, chapter
6: Tetris: A Study of Randomized Constraint Sampling. Springer-Verlag, 2006.

[4] Sham Machandranath Kakade. A Natural Policy Gradient. In Advances in neural information processing
systems, pages 1531–1538. MIT Press, 2001.

[5] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L. Littman. An analysis
of linear models, linear value function approximation, and feature selection for reinforcement learning. In
International Conference on Machine Learning, 2008.

[6] Warren B. Powell. Approximate Dynamic Programming. Wiley-Interscience, 2007.

[7] Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John Wiley
& Sons, Inc., 2005.

[8] Richard S. Sutton and Andrew Barto. Reinforcement learning. MIT Press, 1998.


	Introduction
	Framework and Notations
	Error Bounds
	Approximation Error Bound
	Global Error Bound

	Bound Tightness
	Sparse Rewards
	Conclusion and Future Work

