
Anytime Coordination Using Separable Bilinear Programs

Marek Petrik and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{petrik, shlomo}@cs.umass.edu

Abstract

Developing scalable coordination algorithms for multi-agent
systems is a hard computational challenge. One useful ap-
proach, demonstrated by the Coverage Set Algorithm (CSA),
exploits structured interaction to produce significant compu-
tational gains. Empirically, CSA exhibits very good anytime
performance, but an error bound on the results has not been
established. We reformulate the algorithm and derive both
online and offline error bounds for approximate solutions.
Moreover, we propose an effective way to automatically re-
duce the complexity of the interaction. Our experiments show
that this is a promising approach to solve a broad class of de-
centralized decision problems. The general formulation used
by the algorithm makes it both easy to implement and widely
applicable to a variety of other AI problems.

Introduction
The success of Markov decision processes in modeling
stochastic decision problems motivated researchers to ex-
tend the model to cooperative multi-agent settings. In these
settings, several agents – each having different partial infor-
mation about the world – must cooperate with each other
in order to achieve some joint objective. Such problems
are common in practice, but despite recent progress in this
area, state-of-the-art algorithms are generally limited to very
small problems (Seuken & Zilberstein 2005). This has mo-
tivated the development of algorithms that either solve a
simplified class of problems (Kim et al. 2006) or pro-
vide approximate solutions (Emery-Montemerlo et al. 2004;
Seuken & Zilberstein 2007).

One promising approach – called the Coverage Set Al-
gorithm (CSA) (Becker et al. 2004) – was developed
for domains with limited interaction between the agents.
The problem is formalized as a decentralized Markov deci-
sion problem with transition and observation independence,
which we denote as DEC-MDP. The objective is to maxi-
mize the cumulative reward over some finite horizon with
no discounting. Essentially, the two agent case consists of
two MDPs with an overall reward function that depends on
both states. CSA works by first enumerating the policies of
one agent that are best responses to at least one policy of the
other agent, that is, policies that are not dominated. Then the

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithm searches over these policies to get the best joint
policy for all agents. CSA uses a compact representation
and avoids explicitly enumerating all possible policies.

Empirically, CSA was shown to be quite efficient, solving
relatively large problems. It also exhibits good anytime per-
formance (Becker et al. 2004). When solving a multi-rover
coordination problem, a solution value within 1% of optimal
is found within 1% of the total execution time on average.
Unfortunately, this is only known in hindsight once the op-
timal solution is found. Additionally, the algorithm has sev-
eral drawbacks. It is numerically unstable and its complex-
ity increases exponentially with the number of best-response
policies. Runtime varies widely over different problem in-
stances. Finally, the algorithm is limited to a relatively small
subclass of distributed coordination problems.

This paper makes several key contributions. First, we
present a reformulation of CSA – using separable bilinear
programs (Horst & Tuy 1996) – that is more general, more
efficient, and easier to implement. Then, we derive an er-
ror bound using the convexity of the best-response function,
without relying on the optimal solution. This generalizes
similar approximate methods for POMDPs (Lovejoy 1991;
Pineau et al. 2006). The new algorithm exhibits ex-
cellent anytime performance, making it suitable for time-
constrained situations. Finally, we derive offline bounds on
the approximation error and develop a general method for
automatic dimensionality reduction. For clarity, we limit the
discussion to cooperative two-agent problems, but the ap-
proach works for any number of agents and it requires only
a minor modification to work in competitive settings.

The paper is organized as follows. First, we describe how
to represent a DEC-MDP as a separable bilinear program.
Then we outline the algorithm and derive the online error
bound. A detailed description of the algorithm comes next,
followed by the derivation of an offline error bound based
on the number of iterations. We then present the automatic
dimensionality-reduction procedure. Finally, we compare
our algorithm to the original CSA and mixed-integer linear
programming on the original Mars rover problem.

Outline of the Algorithm
The algorithm we develop was originally designed for solv-
ing multi-agent coordination problems that arise in the Mars
rover domain (Becker et al. 2004). The domain involves two

autonomous rovers that visit several sites in a given order
and may decide to perform certain experiments. The overall
activity must be completed within a given time limit. The
uncertainty about the duration of each experiment is mod-
eled by a given discrete distribution. While the rovers op-
erate independently and receive local rewards for each com-
pleted experiment, the global reward function depends also
on some experiments completed by both rovers. The interac-
tion between the rovers is limited to a relatively small num-
ber of such overlapping tasks.

This problem was formulated as a transition- and
observation-independent decentralized Markov decision
process (DEC-MDP). The problem is composed of two
MDPs with state-sets S1, S2 and action sets D1, D2. The
functions r1 and r2 define local rewards for action-state
pairs. The initial state distributions are α1 and α2. The
MDPs are coupled through a global reward function defined
by the matrix R. Each entry R(i, j) represents the joint re-
ward for state-action i by one agent and j by the other.

Any DEC-MDP can be formulated as a bilinear mathe-
matical program as follows. Vector variables x and y rep-
resent the state-action probabilities for each agent, as used
in the dual linear formulation of MDPs. Given the transi-
tion and observation independence, the feasible regions may
be defined by linear equalities A1x = α1 and x ≥ 0, and
A2y = α2 and y ≥ 0. The matrices A1 and A2 are the same
as for dual formulation of finite-horizon MDPs (Puterman
2005). That is, they represent inequalities of the following
form:∑
a′∈D1

x(s′, a′)−
∑
s∈S1

∑
a∈D1

P [s′|s, a]x(s, a) = α1(s′),

for every s′ ∈ S1. This results in the following formulation
of the problem.

maximize rT1 x+ xTRy + rT2 y

subject to A1x = α1 x ≥ 0

A2y = α2 y ≥ 0

(1)

A policy may be extracted from a solution of Eq. (1) in the
same way as for the dual formulation of discounted infinite-
horizon MDPs (Puterman 2005). Briefly, in state s, the pol-
icy is to take action a if and only if x(s, a) > 0. This can be
further abstracted as the following mathematical program.

maximize f(x, y, ŷ) = rTx+ xTCy + sTy + tT ŷ

subject to Ax ≤ b B1y +B2ŷ ≤ c
(2)

This formulation – generally known as a (separable) bilin-
ear program – is used in our algorithm, making it both sim-
ple to present and more general. In addition to multi-agent
coordination, it can be used to solve a variety of problems
such as robotic manipulation (Pang et al. 1996), bilinear
separation (Bennett & Mangasarian 1992), and even general
linear complementarity problems (Mangasarian 1995).

For general C, the problem was shown to be NP com-
plete (Becker et al. 2004). The membership in NP follows
from that fact that there exists an optimal solution that cor-
responds to some vertex of the feasible region (Horst & Tuy
1996; Mangasarian 1995).

A large number of algorithms have been developed for
solving Eq. (2), modeling it as a linear complementar-
ity problem (Murty 1988) or a mixed integer linear pro-
gram (Petrik & Zilberstein 2007). An iterative algorithm,
which does not guarantee optimality, is described in (Ben-
nett & Mangasarian 1992). A good overview of other algo-
rithms can be found in (Horst & Tuy 1996). We focus here
mostly on improving CSA rather than on a comprehensive
comparison of these methods. Moreover, our approach fo-
cuses on problems in which the function C is constant in
most dimensions due to the limited interaction.

In Eq. (2), variable x is an m-dimensional vector and y is
n-dimensional. For simplicity, we denote the feasible sets as

X = {x Ax ≤ b} Y = {y B1y +B2ŷ ≤ c},
which represent the feasible solutions for variables x and y
respectively. We also implicitly assume that x ∈ X and
y ∈ Y . To develop the algorithm, we need the following
assumption.
Assumption 1. Feasible sets X and Y are bounded.

The assumption does not present a significant limitation,
since often in practice, the variables can be bounded by finite
intervals. As mentioned before, the main idea in CSA is to
compute a subset X̃ of X that contains only those elements
that satisfy necessary optimality conditions. Specifically, x
is optimal for at least one element of Y . The algorithm then
solves either of the two modified problems:

maximize f(x, y, ŷ)

subject to x ∈ X̃ B1y +B2ŷ ≤ c
(3)

The latter problem can be solved easily by enumerating
all x ∈ X̃ and solving for y using a linear program. It is
possible since the set X̃ is finite (Mangasarian 1995). In
some cases, such as when the agents are competitive, y ∈ Y
needs to be replaced by y ∈ Ỹ . As a result, the approx-
imation bounds we present later are doubled. The actual
procedure to obtain X̃ is described in the next section.

To quantify the approximation error when using X̃ , we
define the following best-response and approximate best-
response functions:
g(y) = max

x∈X
rTx+ xTCy, g̃(y) = max

x∈X̃
rTx+ xTCy

Both g(y) and g̃(y) are maximum of a set of linear func-
tion, and as a result they are convex. Clearly we have
g̃(y) ≤ g(y). This function defines the maximal objective
value for any fixed value of y and it is used to determine the
maximal bound on the current approximation error. We de-
scribe the properties of g(y) and how to approximate it in
the following sections. When the difference between g(y)
and g̃(y) is at most ε, then the difference between optimal
solutions of Eqs. (2) and (3) is also at most ε.

Let f(x∗, y∗, ŷ∗) be the optimal solution. The maximal
error when using Eq. (3) can be bounded as follows. As-
suming g̃(y) ≥ g(y)− ε, for all y ∈ Y , then

f(x∗, y∗, ŷ∗) = max
x∈X

f(x, y∗, ŷ∗) ≥

≥ max
x∈X̃,B1y+B2ŷ≤c

f(x, y, ŷ)− ε.

The difference g(y)− g̃(y) can be bounded using the con-
vexity of these functions. As we describe in more detail
later, we construct the set X̃ such that for some y ∈ Y we
actually have g(y) = g̃(y). As a result, we can get the max-
imal difference ε using the following upper bound based on
Jensen’s inequality.
Lemma 1. Let yi ∈ Y for i = 1, . . . , n + 1. Then
g
(∑n+1

i=1 ciyi

)
≤
∑n+1
i=1 cig(yi), when

∑n+1
i=1 ci = 1 and

ci ≥ 0 for all i.

Best-Response Calculation
We describe now in greater detail the algorithm to determine
X̃ . Some alternative approaches are discussed in the last
section. The algorithm grows X̃ by evaluating g(y) for mul-
tiple y ∈ Y and by adding the corresponding best-response
x into X̃ . The choice of y is organized in a hierarchical fash-
ion. The algorithm starts with evaluating y1 . . . yn+1, the
vertices of a polytope that contains Y , which exists based
on Assumption 1. Given Lemma 1, we can now find such
y0 where the approximation error is maximal. Next we
get n + 1 new polytopes by replacing one of the vertices
by y0, (y0, y2, . . .), (y1, y0, y3, . . .) . . . (y1, . . . , yn, y0). The
old polytope is discarded and the above procedure is then
repeatedly applied to the polytope with the maximal approx-
imation error.

This procedure differs from the original CSA mainly in
the choice of y0. CSA does not keep any upper bound and
evaluates g(y) on all intersection points of planes defined
by the current values in X̃ , leading eventually to g(y) =
g̃(y) (Becker et al. 2004). Consequently, the number of
these points rapidly increases with the increasing number of
elements in X̃ . In contrast, our approach is more selective
and focuses on rapidly reducing the error bound.

For clarity, we simplified the above pseudo-code and did
not address efficiency issues. In practice, g(yi) could be
cached, and the errors εi could be stored in a prioritized heap
or at least in a sorted array. In addition, a lower bound li
and an upper bound ui are calculated and stored for each
polytope Si = (y1 . . . yn+1). The function e(Si) calculates
their maximal difference on polytope Si and the point where
it is attained.

Let matrix Z have yi as columns, and let L =
{x1 . . . xn+1} be the set of the best responses for its ver-
tices. We can represent a lower bound l(y) for g̃(y) and an
upper bound u(y) for g(y) as

l(y) = max
x∈L

rTx+ xTCy

u(y) = [g(y1), g(y2), . . .]T (Z + En+1)−1y,

where En+1 is a zero matrix with (n + 1)-th row of ones.
The upper bound correctness follows from Lemma 1. Notice
that u(y) is a linear function. That enables us to use a linear
program to determine the maximal-error point.

Using all of X̃ instead of only L would lead to a tighter
bound. This is easy to show in three-dimensional exam-
ples. However, this would substantially increase the compu-
tational complexity. Now, the maximal error on a polytope

Algorithm 1 Best-response function approximation
S1 ← (y1 . . . yn+1), Y ⊆ S1

X̃ ← {arg maxx∈X f(x, yi, 0) i = 1, . . . , n}
(ε1, φ1)← e(S1)
j ← 1
while maxi=1,...,j εi ≥ ε0 do
i← arg maxk=1,...,j εk
y ← φi
X̃ ← X ∪ {arg maxx∈X f(x, y, 0)}
for k = 1, . . . , n+ 1 do
j ← j + 1
Sj ← (y, y1 . . . yi−1, yi+1, . . . yn+1)
(εj , φj)← e(Sj)
εj ← min{εi, εj}

end for
εi ← 0

end while
return X̃

S may be expressed as:
e(y) ≤ max

y∈S
u(y)−l(y) = max

y∈S
u(y)−max

x∈L
rTx+xTCy

= max
y∈S

min
x∈L

u(y)− rTx+ xTCy.

We also have
y ∈ S ⇔

(
y = Zz ∧ z ≥ 0 ∧ eT z = 1

)
.

As a result, the point with the maximal error may be deter-
mined using the following linear program:

maximize ε

subject to ε ≤ u(Zz)− rTx+ xTCZz ∀x ∈ L
eT z = 1 z ≥ 0

(4)

Here e is a vector of all ones. The formulation is correct be-
cause all feasible solutions are bounded below the maximal
error and any maximal-error solution is feasible.
Proposition 1. The optimal solution of Eq. (4) is equivalent
to maxy∈S |u(y)− l(y)|.

The maximal difference is actually achieved in points
where some of the planes meet, as suggested in (Becker et
al. 2004). However, it can be expected that checking these
intersections is in fact very similar to running the simplex
algorithm. In general, the simplex algorithm is preferable to
interior point methods for this program because of its small
size (Vanderbei 2001).

It remains to show that the iterative procedure of refining
the polytopes is valid. This trivially implies that the maxi-
mal error is just the maximum of all errors on all polytopes.
In addition, it shows that the polytopes do not overlap, and
therefore there is no additional inefficiency in this regard.
Proposition 2. In the proposed triangulation, the polytopes
do not overlap and they cover the whole region.

For lack of space, we do not provide the proof. Note that
the calculated bound is not necessarily tight and thus it may
actually increase rather than decrease. However, because
the true error does not increase over successive iterations,
the previous bound can be used when the new one is higher.

Offline Bound
In this section we develop an approximation bound that de-
pends only on the number of points for which g(y) is eval-
uated and the structure of the problem. In practice this is
needed to be able to provide performance assurance without
actually solving the problem. In addition the bound reveals
which parameters of the problem influence the algorithm’s
performance.

We assume that the feasible sets have bounded L2 norms.
Given Assumption 1, this can usually be achieved by scaling
the constraints.
Assumption 2. For all x ∈ X and y ∈ Y , their norms
satisfy ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1.

The bound is derived based on the maximal slope of g(y)
and the maximal distance among the points.
Theorem 1. To achieve an approximation error of at most ε,
the number of points to be evaluated in a regular grid with k
points in every dimension must satisfy: kn ≥

(
‖C‖2

√
nn

ε

)
.

The theorem follows using basic algebraic manipulations
from the following lemma.
Lemma 2. Assume that for each y1 ∈ Y there exists y2 ∈ Y
such that ‖y1 − y2‖2 ≤ δ and g̃(y2) = g(y2). Then the
maximal approximation error is:

e = maxy∈Y g(y)− g̃(y) ≤ ‖C‖2‖y1 − y2‖2.

Proof. Let y1 be a point where the maximal error is attained.
This point is in Y , because this set is compact. Now, let y2
be the closest point in L2 norm. Let x1 and x2 be the best
responses for y1 and y2 respectively. From the definition of
solution optimality we have:

rTx1 + sT y2 + xT1 Cy2 ≤ rTx2 + sT y2 + xT2 Cy2

rT (x1 − x2) ≤ −(x1 − x2)TCy2.

The error now may be expressed as:

e = rTx1 + sT y1 + xT1 Cy1 − rTx2 − sT y1 − xT2 Cy1
= rT (x1 − x2) + (x1 − x2)TCy1
≤ −(x1 − x2)TCy2 + (x1 − x2)TCy1
≤ (x1 − x2)TC(y1 − y2)

≤ ‖y1 − y2‖2
(x1 − x2)
‖(x1 − x2)‖2

T

C
(y1 − y2)
‖y1 − y2‖2

≤ ‖y1 − y2‖2 max
x ‖x‖2≤1

max
y ‖y‖2≤1

xTCy

≤ δ‖C‖2
The above derivation follows from Assumption 2, and the
bound reduces to the matrix norm using Cauchy-Schwartz
inequality.

Not surprisingly, the bound is independent of the local re-
wards given the transition structure of the agents. Thus the
complexity of achieving a fixed approximation is polyno-
mial in the problem size given a constant matrix C. How-
ever, the computation time is exponential in the size of C.
Note also that the bound is additive.

Dimensionality Reduction
Experimental results and the offline bound suggest that the
performance of the approach degrades significantly with the
increasing dimensionality of Y . Therefore, it is very impor-
tant to represent problems with very low dimensionality of
Y in Eq. (2). While this is straightforward in some cases, it
is not trivial in general. Thus, to make the algorithm more
useful, we derive a procedure for automatic dimensionality
reduction.

Intuitively, the dimensionality reduction removes those
dimensions where g(y) is constant, or almost constant. In-
terestingly, these dimensions may be recovered based on the
eigenvectors and eigenvalues of CTC.

Given a problem represented using Eq. (2), let F be a
matrix whose columns are all the eigenvectors of CTC with
eigenvalues greater than λ. Let G be a matrix with all the
remaining eigenvectors as columns. Notice that together, the
matrices span the whole space and are real, since CTC is a
symmetric matrix. Assume without loss of generality that
the eigenvectors are unitary. Let the number of columns of
F be f . The original problem may now be compressed as
follows.

maximize f̃(x, y1, y2, ŷ) = xTCFy1+
+rTx+ sT [F,G][y1; y2] + tT ŷ

subject to Ax ≤ b B1[F,G][y1; y2] +B2ŷ ≤ c
(5)

The following theorem quantifies the maximal error when
using the compressed program.

Theorem 2. Let f∗ and f̃∗ be optimal solutions of Eqs. (2)
and (5) respectively. Then:

ε = |f∗ − f̃∗| ≤
√
λ.

Moreover, this is the maximal linear dimensionality reduc-
tion possible with this error without considering the con-
straint structure.

Proof. We first show that indeed the error is at most
√
λ and

that any linearly compressed problem with the given error
has at least f dimensions. Using a mapping that preserves
the feasibility of both programs, the error is bounded by:

ε ≤ |f(x, [F,G][y1; y2], ŷ)− f̃(x, y1, y2, ŷ)| =
∣∣xTCGy2∣∣ .

Denote the feasible region of y2 as Y2. From the orthogo-
nality of [F,G], we have that ‖y2‖2 ≤ 1. Now we have:

ε ≤ max
y2∈Y2

max
x∈X

∣∣xTCGy2∣∣ ≤ max
y2∈Y2

‖CGy2‖2

≤ max
y2∈Y2

√
yT2 G

TCTCGy2 ≤ max
y2∈Y2

√
yT2 Ly2 ≤

√
λ

The result follows from Cauchy-Schwartz inequality, the
fact that CTC is symmetric, and Assumption 2. Matrix
L denotes diagonal matrix of eigenvalues corresponding to
eigenvectors of G.

Now, letH be an arbitrary matrix that satisfies the preced-
ing error inequality for G. Clearly, H ∩ F = ∅, otherwise
there exists y, such that ‖CHy‖2 > ε. Therefore, we have
|H| ≤ n − |F | ≤ |G|, because |H| + |F | = |Y |. Here | · |
denotes the number of columns of the matrix.

In these bounds we use L2-norm; an extension to a dif-
ferent norm is not straightforward. Note also that this
dimensionality reduction technique ignores the constraint
structure. When the constraints have some special struc-
ture, it might be possible to obtain an even tighter bound.
As described in the next section, the dimensionality reduc-
tion technique generalizes the reduction implicitly used in
(Becker et al. 2004).

Experimental Results
We now turn to an empirical analysis of the performance of
the algorithm. For this purpose we use the Mars rover prob-
lem described earlier. We compare the presented algorithm
with the original CSA and with a mixed integer linear pro-
gram (MILP), derived for Eq. (2) as in (Petrik & Zilberstein
2007). Though, Eq. (2) can also be modeled as a linear com-
plementarity problem (LCP) (Murty 1988), we do not eval-
uate that option experimentally because LCPs are closely
related to MILPs (Rosen 1986). We expect these two formu-
lations to exhibit similar performance. We also do not com-
pare to any of the methods described in (Horst & Tuy 1996;
Bennett & Mangasarian 1992) due to their very different na-
ture and high complexity, and because some of these algo-
rithms do not provide any optimality guarantees.

In our initial experiments, we applied the algorithm to
problem instances with similar parameters to those used in
(Becker et al. 2004). Each problem instance includes 6 sites.
The time limit is 15 time units. The local reward for per-
forming an experiment is selected uniformly from the inter-
val [0.1,1.0] for each site and it is identical for both rovers.
The global reward, received when both rovers perform an
experiment on a shared site, is 0.5 of the local reward. The
time required to perform an experiment is drawn from a dis-
cretized normal distribution with the mean uniformly chosen
from 4.0-6.0. The variance is 0.4 of the mean. The experi-
ments were performed with the following variants of shared
sites: {2, 3}, {2, 3, 4}, {1, 2, 3, 4},{1, 2, 3, 4, 5}.

In these experiments, the dimensionality of Y in Eq. (1)
is 6 ∗ 15 ∗ 2 = 180. This dimensionality may be reduced to
be one per each shared site using the automatic dimensional-
ity reduction procedure. Each dimension then represents the
probability that an experiment on a shared site is performed
regardless of the time. Therefore, the dimension represents
the sum of the individual probabilities. The same compres-
sion was achieved in (Becker et al. 2004) using compound
events. That is, each compound event represents the fact
that an experiment is performed on some site regardless of
the specific time.

Although the dimensionality reduction is intuitive in the
rover problem, it is less obvious in other domains such as the
multi-agent broadcast channel (Petrik & Zilberstein 2007).
That problem involves two agents that share a communica-
tion channel. Each agent could have several messages to
transmit stored in a buffer, but only one message can be
transmitted at a time. In this case, the dimensionality can
still be reduced to 3 regardless of the buffer length. Intu-
itively, the dimensions in this problem roughly approximate
the sum of the probabilities that a message is sent, ignoring
the number of messages in the buffer.

0 500 1000
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Iteration

O
pt

im
al

ity
 F

ra
ct

io
n

0 100 1000
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Iteration (log)

O
pt

im
al

ity
 F

ra
ct

io
n

2 sites
3 sites
4 sites
5 sites

Figure 1: Mean approximation error across 200 problems
for various numbers of shared sites.

Figure 1 shows the average error bound (ratio of the op-
timal value) achieved as a function of the number of itera-
tions, that is, points for which g(y) is evaluated. While it
is possible that even the first iteration discovers the optimal
solution, it still takes time to get a tight bound. The figure
shows that within 1000 iterations, the solution quality is, on
average, within 99.2% of the optimal reward. Calculating
these 1000 iterations took about 20 seconds for the prob-
lems with 5 shared sites and about 12 seconds for problems
with 2 shared sites.

In a very similar problem setup with at most 4 shared sites,
CSA solved only 76% of the problems, and the longest so-
lution took approximately 4 hours (Becker et al. 2004). In
our case, all 200 problems with 4 shared sites were solved
with 98.8% of the optimal solution in less than 20 seconds.
And while CSA also offers very good anytime performance,
it does not provide any guarantees of solution quality before
it finds the optimal solution.

We also performed experiments with CPLEX – a state-of-
the-art MILP solver. CPLEX was not able to solve any of the
problems within 30 minutes, no matter how many of the sites
were shared. The main reason for this is that it does not take
any advantage of the limited interaction. Nevertheless, it is
possible that some specialized MILP solvers may perform
better.

To explore the scalability of the algorithm, we ran it on
a large problem with 30 sites, 40 times steps, and 9 shared
sites. Thus this problem had a total of 2402 states and 9
dimensions of Y . The problem was handcrafted to be diffi-
cult, because even some large problems may be trivial with
only few best-responses. In 500 iterations, which took about
30 minutes, the algorithm found a solution provably within
84% of the optimal. We are not aware of any algorithm that
can solve a decentralized MDP problem of this size opti-
mally. In addition, note that the computation time depends
only linearly on the number of states, but the error reduc-
tion degrades significantly with the increased dimensional-
ity. As a result, the same problem with few interactions
(shared sites) would be very easy to solve.

Interestingly, solving the same problem with more time
steps, say 90, is much easier. In that case the optimal pol-
icy visits almost all the states, and therefore is the best re-
sponse no matter what the other agent does. In addition, it
is likely that significant performance gains can be achieved

by further tuning of the algorithm. Our experiments also
showed that the algorithm’s performance significantly de-
pends on the implementation. For example, almost 3-fold
speedup may be achieved using simplex instead of an inte-
rior point algorithm to solve program (4). We used linear
programming algorithms from MOSEK.

Conclusion
We introduce a general algorithm for solving bilinear pro-
grams, especially ones that model decentralized stochastic
planning problems. The algorithm is inspired by CSA. But
unlike CSA, it provides error bounds. This is important be-
cause the algorithm is able to return near optimal results very
rapidly, but it takes a long time to actually verify that a so-
lution is optimal. In addition, we present a general proce-
dure that reduces the dimensionality of the space. Reducing
the dimensionality is crucial as it makes the algorithm much
more useful in practice. The results we obtain represent a
very significant improvement over the performance of CSA.

Applying the approach to more than two agents requires
some modification. With three agents, for example, the
mathematical program (2) must be modified to a multi-linear
program with variables x ∈ X, y ∈ Y, z ∈ Z. Then, the
best-response function g(y, z) is not necessarily convex and
therefore the method does not apply. This can be remedied
by setting Ŷ = Y ⊗ Z, and ŷ = y ⊗ z. This transforma-
tion increases the dimensionality, but achieves the required
piece-wise linearity. As a result, the algorithm is extensible
to problems with multiple agents. In addition, (Becker et al.
2004) describes an extension of CSA to event-driven DEC-
MDPs. Applying the presented algorithm to event-driven
DEC-MDPs is also straightforward. However, the large di-
mensionality of the space limits the applicability of the al-
gorithm. It is possible, however, that this may be remedied
using the dimensionality reduction technique we introduced.

There are multiple ways in which the algorithm we pre-
sented can be improved. For example, it is possible to con-
sider the actual shape of Y when approximating g(y). Since
in most cases the initial polytope does not exactly corre-
spond to Y , it may be useful to restrict the search for the
point with the largest error to only those that are in Y . This
can be done by augmenting Eq. (4) with Zz ∈ Y . In addi-
tion, polytopes that do not overlap with Y can be discarded.

In future work, we will evaluate further ways to improve
the performance of the algorithm and explore additional
problems that can be modeled as bilinear programs. This
includes many multi-agent coordination scenarios as well as
other problems. It would be also interesting to further eval-
uate the performance of alternative methods for solving bi-
linear programs (Horst & Tuy 1996).

Acknowledgments
This work was supported in part by the Air Force Office of
Scientific Research under Award No. FA9550-05-1-0254
and by the National Science Foundation under Grants No.
IIS-0328601 and IIS-0535061. The findings and views ex-
pressed in this paper are those of the authors and do not nec-
essarily reflect the positions of the sponsors.

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman,
C. V. 2004. Solving transition independent decentralized
Markov decision processes. Journal of Artificial Intelli-
gence Research 22:423–455.
Bennett, K. P., and Mangasarian, O. L. 1992. Bilinear sep-
aration of two sets in n-space. Technical report, Computer
Science Department, University of Wisconsin.
Emery-Montemerlo, R.; Gordon, G.; Schneider, J.; and
Thrun, S. 2004. Approximate solutions for partially ob-
servable stochastic games with common payoffs. In Au-
tonomous Agents and Multiagent Systems.
Horst, R., and Tuy, H. 1996. Global optimization: Deter-
ministic approaches. Springer.
Kim, Y.; Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo,
M. 2006. Exploiting locality of interaction in networked
distributed POMDPs. In AAAI Spring Symposium on Dis-
tributed Planning and Scheduling.
Lovejoy, W. S. 1991. Computationally feasible bounds for
partially observed Markov decision processes. Operations
Research 39:162–175.
Mangasarian, O. L. 1995. The linear complementarity
problem as a separable bilinear program. Journal of Global
Optimization 12:1–7.
Murty, K. G. 1988. Linear complementarity, linear and
nonlinear programming. Helderman-Verlag.
Pang, J.-S.; Trinkle, J. C.; and Lo, G. 1996. A complemen-
tarity approach to a quasistatic rigid body motion problem.
Journal of Computational Optimization and Applications
5(2):139–154.
Petrik, M., and Zilberstein, S. 2007. Average reward de-
centralized Markov decision processes. In International
Joint Conference on Artificial Intelligence.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Point-based
approximations for fast POMDP solving. Jornal of Artifi-
cial Intelligence Research 27(SOCS-TR-2005.4):335–380.
Puterman, M. L. 2005. Markov decision processes: Dis-
crete stochastic dynamic programming. John Wiley &
Sons, Inc.
Rosen, J. B. 1986. Solution of general LCP by 0-1 mixed
integer programming. Technical Report Computer Science
Tech. Report 8623, University of Minnesota, Minneapolis.
Seuken, S., and Zilberstein, S. 2005. Formal mod-
els and algorithms for decentralized control of multiple
agents. Technical Report 2005-068, Computer Science De-
partment, University of Massachusetts.
Seuken, S., and Zilberstein, S. 2007. Memory bounded dy-
namic programming for DEC-POMDPs. In International
Joint Conference on Artificial Intelligence.
Vanderbei, R. J. 2001. Linear Programming: Foundations
and Extensions. Second edition. Springer.

