
Basics
Schedules

Experiments

Learning Parallel Portfolios of Algorithms

Marek Petrik

Comenius University

June 7, 2005

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Algorithm Portfolio
Problem Statement

Motivation and Principles

Diverse performance of algorithms on problem instances

The distribution of instances determines algorithm’s
performance – unknown during construction

Processor time is the bottleneck for calculation

Definition (Parallel Portfolio of Algorithms)

Available algorithms launched in parallel on a single processor

The share of processor available to each is controlled by a
schedule

Goal

Determine the optimal schedules from a training set of instances

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Algorithm Portfolio
Problem Statement

Motivation and Principles

Diverse performance of algorithms on problem instances

The distribution of instances determines algorithm’s
performance – unknown during construction

Processor time is the bottleneck for calculation

Definition (Parallel Portfolio of Algorithms)

Available algorithms launched in parallel on a single processor

The share of processor available to each is controlled by a
schedule

Goal

Determine the optimal schedules from a training set of instances

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Algorithm Portfolio
Problem Statement

Illustration

Example (Traveling Salesman Problem)

Single optimization problem

Multiple algorithms, each suitable for different subset of
problems

1. A Dynamic programming
2. B Local search
3. C Branch–and–Cut

Possible schedules

1. A 30% B 50% C 20% of processor time
2. B B C C A each running for 3 seconds

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Algorithm Portfolio
Problem Statement

Formal Definitions

Problems

Optimization – maximize solution quality in fixed time
Decision – minimize time, the solution quality is fixed

Measure of performance on instances

Mean Optimization – average performance
Limit Optimization – worst case performance
Bound Optimization – percentage of instances calculated
before a deadline

Schedules

Static Schedules – Resource allocation constant during the
computation

Dynamic Schedules – Resource allocation changes during the
computation in finite discrete intervals

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Static
Dynamic
Generalization

Static Schedules

Mean and Limit optimization

Formulation as a mathematical program – hard to solve
because it is not continuous

Classification–Maximization Algorithm (CMA)

Block–coordinate optimization, separation to schedule and
classification

Solvable for specific conditions

Reaches local minimums, with randomized start

Optimal CMA – enumerate all classification, high complexity

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Static
Dynamic
Generalization

Dynamic Schedules

Mean and Bound optimization

Decision problems only, the execution order does not matter
for performance on training

Formulation as a Markov Decision Process

Calculable by dynamic programming

Calculation time exponential in the number of algorithms and
switches in a schedule

ε–approximation algorithm – polynomial in the number of
switches and 1

ε , exponential in number of algorithms

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

Static
Dynamic
Generalization

Generalization

Assure good performance of a PPA on all instances

Framework motivated by Probably Approximately Correct
learning

Distribution free bounds number of samples to achieve
P [supS |P(S)− E [P(S)]| > ε] < δ with polynomial number
of samples in 1

ε and 1
δ

Theorem

The number of samples to learn static and dynamic schedules is
polynomial in closeness and certainty of generalization.

Bounds polynomial but too wide for practical application

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

SAT
Conclusion

Application: Satisfiability Problem

Satisfiability of a propositional logic formula

PPA simulated on 1200 instances using 23 algorithms

The best algorithm – zChaff

Static Schedules

Mean optimization – 3 fold speedup
Limit optimization – Solves all instances

Dynamic Schedules

Mean optimization – Narrowly outperformed static
Bound optimization – Increased the number of solved instance
by 20%

Generalization results – PPA trained on subsets of instance
outperforms zChaff on all

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

SAT
Conclusion

Static Schedule Results

Average run-time on I1

zChaff PPA

se
c.

0
50

10
0

20
0

30
0

Average run-time on I2

zChaff PPA
se

c.
0

50
10

0
15

0
20

0
25

0

Marek Petrik Learning Parallel Portfolios of Algorithms

Basics
Schedules

Experiments

SAT
Conclusion

Conclusion

PPA takes advantage of diverse algorithm performance on
various instances

Static schedules are simple to calculate using CMA

Dynamic schedules can be calculated for a small number of
algorithm

Application on SAT indicates PPA may significantly increase
the performance

Good theoretical and practical generalization properties

Marek Petrik Learning Parallel Portfolios of Algorithms

Schedules Static

General Mean Optimization Problem

maximize P(S) =
m∑

i=1

max
j=1,...,n

pj(rj , xi)

subject to
n∑

j=1

rj = 1,

rj ≥ 0 j = 1, . . . , n

(1)

Inner max operator makes the objective function discontinuous

Unsolvable by standard optimization methods

Marek Petrik Learning Parallel Portfolios of Algorithms

Schedules Static

Possible Reformulation

maximize P(S ,W) =
m∑

i=1

n∑
j=1

Wijpj(rj , xi)

subject to
n∑

j=1

rj = 1,

n∑
j=1

Wij = 1 i = 1, . . . ,m,

rj ≥ 0 j = 1, . . . , n,

Wij ∈ {0, 1} i = 1, . . . ,m j = 1, . . . , n
(2)

Marek Petrik Learning Parallel Portfolios of Algorithms

Schedules Static

CMA Approach for Mean Optimization

Classification Phase

maximize P(W) =
m∑

i=1

n∑
j=1

Wijpj(rj , xi)

subject to
n∑

j=1

Wij = 1 i = 1, . . . ,m,

rj ≥ 0 j = 1, . . . , n.

(3)

Marek Petrik Learning Parallel Portfolios of Algorithms

Schedules Static

CMA Approach for Mean Optimization

Maximization Phase

maximize P(S) =
1

m

n∑
j=1

νj(rj)dj

subject to
n∑

j=1

rj = 1

rj ≥ 0 j = 1, . . . , n

(4)

Marek Petrik Learning Parallel Portfolios of Algorithms

	Basics
	Algorithm Portfolio
	Problem Statement

	Schedules
	Static
	Dynamic
	Generalization

	Experiments
	SAT
	Conclusion

	Schedules
	Static

