Basics Schedules Experiments

Learning Parallel Portfolios of Algorithms

Marek Petrik

Comenius University

June 7, 2005

Marek Petrik Learning Parallel Portfolios of Algorithms

Motivation and Principles

- Diverse performance of algorithms on problem instances
- The distribution of instances determines algorithm's performance unknown during construction
- Processor time is the bottleneck for calculation

Definition (Parallel Portfolio of Algorithms)

- Available algorithms launched in parallel on a single processor
- The share of processor available to each is controlled by a schedule

Goal

Determine the optimal schedules from a training set of instances

Motivation and Principles

- Diverse performance of algorithms on problem instances
- The distribution of instances determines algorithm's performance unknown during construction
- Processor time is the bottleneck for calculation

Definition (Parallel Portfolio of Algorithms)

- Available algorithms launched in parallel on a single processor
- The share of processor available to each is controlled by a schedule

Goal

Determine the optimal schedules from a training set of instances

Illustration

Example (Traveling Salesman Problem)

- Single optimization problem
- Multiple algorithms, each suitable for different subset of problems
 - 1. \mathcal{A} Dynamic programming
 - 2. \mathcal{B} Local search
 - 3. \mathcal{C} Branch–and–Cut
- Possible schedules
 - 1. ${\cal A}$ 30% ${\cal B}$ 50% ${\cal C}$ 20% of processor time
 - 2. $\mathcal{B} \mathcal{B} \mathcal{C} \mathcal{C} \mathcal{A}$ each running for 3 seconds

Formal Definitions

- Problems
 - Optimization maximize solution quality in fixed time
 - Decision minimize time, the solution quality is fixed
- Measure of performance on instances
 - Mean Optimization average performance
 - Limit Optimization worst case performance
 - Bound Optimization percentage of instances calculated before a deadline

Schedules

- Static Schedules Resource allocation constant during the computation
- Dynamic Schedules Resource allocation changes during the computation in finite discrete intervals

Static Dynamic Generalization

Static Schedules

- Mean and Limit optimization
- Formulation as a mathematical program hard to solve because it is not continuous

Classification-Maximization Algorithm (CMA)

- Block-coordinate optimization, separation to schedule and classification
- Solvable for specific conditions
- Reaches local minimums, with randomized start
- Optimal CMA enumerate all classification, high complexity

Static Dynamic Generalization

Dynamic Schedules

- Mean and Bound optimization
- Decision problems only, the execution order does not matter for performance on training

Formulation as a Markov Decision Process

- Calculable by dynamic programming
- Calculation time exponential in the number of algorithms and switches in a schedule
- ϵ -approximation algorithm polynomial in the number of switches and $\frac{1}{\epsilon}$, exponential in number of algorithms

Generalization

- Assure good performance of a PPA on all instances
- Framework motivated by *Probably Approximately Correct* learning
- Distribution free bounds number of samples to achieve $\mathbf{P}[\sup_{S} |P(S) - \mathbf{E}[P(S)]| > \epsilon] < \delta$ with polynomial number of samples in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$

Theorem

The number of samples to learn static and dynamic schedules is polynomial in closeness and certainty of generalization.

• Bounds polynomial but too wide for practical application

SAT Conclusion

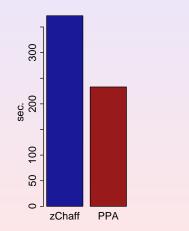
Application: Satisfiability Problem

- Satisfiability of a propositional logic formula
- PPA simulated on 1200 instances using 23 algorithms
- The best algorithm zChaff
- Static Schedules
 - Mean optimization 3 fold speedup
 - Limit optimization Solves all instances
- Dynamic Schedules
 - Mean optimization Narrowly outperformed static
 - $\bullet\,$ Bound optimization Increased the number of solved instance by 20%
- Generalization results PPA trained on subsets of instance outperforms zChaff on all

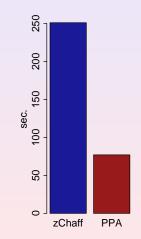
SAT Conclusion

Static Schedule Results

Average run-time on I_1



Average run-time on I_2



Conclusion

- PPA takes advantage of diverse algorithm performance on various instances
- Static schedules are simple to calculate using CMA
- Dynamic schedules can be calculated for a small number of algorithm
- Application on SAT indicates PPA may significantly increase the performance
- Good theoretical and practical generalization properties

General Mean Optimization Problem

maximize
$$P(S) = \sum_{i=1}^{m} \max_{j=1,\dots,n} p_j(r_j, x_i)$$

subject to $\sum_{j=1}^{n} r_j = 1,$
 $r_j \ge 0 \quad j = 1,\dots,n$ (1)

- Inner max operator makes the objective function discontinuous
- Unsolvable by standard optimization methods

Possible Reformulation

maximize
$$P(S, W) = \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} p_j(r_j, x_i)$$

subject to $\sum_{\substack{j=1 \ n}}^{n} r_j = 1,$
 $\sum_{j=1}^{n} W_{ij} = 1 \quad i = 1, ..., m,$
 $r_j \ge 0 \quad j = 1, ..., n,$
 $W_{ij} \in \{0, 1\} \quad i = 1, ..., m \quad j = 1, ..., n$
(2)

CMA Approach for Mean Optimization

Classification Phase

maximize
$$P(W) = \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} p_j(r_j, x_i)$$

subject to $\sum_{j=1}^{n} W_{ij} = 1 \quad i = 1, \dots, m,$
 $r_j \geq 0 \quad j = 1, \dots, n.$ (3)

CMA Approach for Mean Optimization

Maximization Phase

maximize
$$P(S) = \frac{1}{m} \sum_{j=1}^{n} \nu_j(r_j) d_j$$

subject to $\sum_{j=1}^{n} r_j = 1$
 $r_j \ge 0 \quad j = 1, \dots, n$ (4)