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Abstract. Automatic specialization of algorithms to a limited domain
is an interesting and industrially applicable problem. We calculate the
optimal assignment of computational resources to several different solvers
that solve the same problem. Optimality is considered with regard to the
expected solution time on a set of problem instances from the domain
of interest. We present two approaches, a static and dynamic one. The
static approach leads to a simple analytically calculable solution. The
dynamic approach results in formulation of the problem as a Markov
Decision Process. Our tests on the SAT Problem show that the presented
methods are quite effective. Therefore, both methods are attractive for
applications and future research.

1 Introduction

In narrow domains, general algorithms offer only poor performance compared to
specialized ones. Clearly, it is because general algorithms cannot take advantage
of domain specific characteristics of the problem. For example, take the well-
known Traveling Salesman Problem. While the general problem is NPo complete,
a its specialization that fulfills triangle inequalities has a trivial APX algorithm.

Generality and good performance on specialized domains is a very useful and
practical property of algorithms. Such algorithms could be constructed once and
used many times in various domains. The increased applicability could dramati-
cally lower the development cost of high performance algorithms. Unfortunately,
since the information about the application domain is not available during the
construction of the algorithm, it cannot be utilized. However, the information
usually becomes available once the algorithm is deployed; at least by means of
solved problem instances. Then, an automatic adaptation of the algorithm to
this information could enhance its overall performance. The research field that
addresses the problem of automatic adaptation to a specific domain is Adaptive
Problem Solving[1,2].

Our approach is based on an adaptive combination of several decision algo-
rithms. Because we assume it is impossible to decide which algorithm is the best
one for any instance, all available algorithms are run in parallel. Available com-
putational resources are usually limited. Therefore, the main issue is to calculate
an assignment of computational resources to algorithms that minimizes the ex-
pected time to find a solution. The minimization is with regard to a training set
of weighted instances that represent the domain.
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First, we define a framework in which the algorithms are evaluated and com-
bined in the section 2. Then, we propose a computationally simple approach
to combination of the algorithms in the section 3. A more precise and flexible
approach follows in the section 4. Both approaches are evaluated on a an SAT
problem in the section 5.

2 General Framework

First, we formally define the model for the combination. The main goal of the
framework is not its generality, but a realistic representation of a problem solving
setup. The emphasis is on the limitation of available computational resources.
The basic assumptions of the model are:

A1 More than one algorithm can be executed in parallel.The switching overhead
is ignored.

A2 Algorithms are deterministic.
A3 All solutions of a problem instance are equally optimal;
A4 The complexity, including solvability, of an instance, given an algorithm is

unknown.

The model is a 4-tuple (A, Q, PQ, T s). A = {a1, a2, . . . , an} is a set of avail-
able algorithms. Although the individual algorithms are not necessarily com-
plete, each problem instance is solvable by at least one of them. Q = {q1, q2, . . .}
is a set of all instances of the problem. PQ is a probability density function
on Q defining probability of encountering each. Q denotes also the probability
space induced on the set Q by the function PQ. In the following, if not specified
otherwise, q ∈ Q denotes a problem instance and a ∈ A denotes an algorithm.
Complexity function Ts : A×Q → R∪{∞} maps an algorithm and an instance
to the time the algorithm needs to it. Ts(a, q) = ∞ for unsolvable instances.
Tsi(q) denotes Ts(ai, q).

In parallel execution, each algorithm runs with only a fraction of processor’s
power. Resource allocation function ri(t) : 〈0,∞) → 〈0, 1〉 defines the fraction
of processor power assigned to the algorithm in each moment of time t during
the calculation. By A1, the following is true for the time tm needed to solve a
problem instance by an algorithm with the resource allocation function ri(t):∫ tm

0

ri(x)dx = Ts(ai, q) (1)

Total resource allocation until time t is the value of the left side of (1). Thus,
the time a single alforithm needs to solve a problem instance is:

Z(a, q, r) := arg min
tm

{∫ tm

0

r(x)dx = Ts(a, q)
}

. (2)

We write Zi(q) instead of Z(ai, q, ri).



The objective is to find the optimal schedule. Schedule S = (r1(t), . . . , rn(t))
is an n-tuple of resource allocation functions, which are subject to the resource
constraint:

∀t
n∑

i=0

ri(t) ≤ 1 (3)

Time required to solve a given problem instance by any algorithm is G.
Optimality of a schedule is with regard to the solution time function T , what is
the expected time to solve any problem instance from Q distributed according
to PQ. The functions are:

G(q) = min
i
{Zi(q)}

T = E[G(Q)] = E
[
min

i
{Zi(Q)}

]
3 Simple Static Policy

In this section, we propose an algorithm that is optimal with regard to a some-
what simplified model from the section 2. We use this simplification to define an
optimal schedule for this model.

3.1 Static Model

The static model is identical to the one proposed in the section 2, only addition-
ally constrained by the following assumptions:

A5 Resource allocation functions ri(t) are constants.
A6 Each problem instance from Q can be solved by exactly one ai ∈ A.

By A6, Q is partitioned into disjunct sets Q1, . . . , Qn ⊆ Q, where Ts(ai, q) ∈
R∀q ∈ Qi and Ts(ai, q) = ∞∀q /∈ Qi. We also use Qi to denote the events
in the probability space Q. By A4, it is not possible to determine to which set
Qi an instance belongs. In case of algorithms that violate A6, the schedule is
optimal with regard to an upper bound of computation time.

3.2 Properties

The simplification of the static model leads to nice properties that allow the
analysis presented next.

Theorem 1. A schedule S = (c1, c2, . . . , cn), where c1, . . . , cn are constants, is
optimal if it fulfills the following constraint:

ci

cj
=

√
P[Qi] ∗E[Ts(ai, Qi)]
P[Qj ] ∗E[Ts(aj , Qj)]



Proof. By A5 and A6, the solution time function can be expressed as:

T = E
[
min

i

{
Ts(ai, Q)

ci

}]
A6=

n∑
k=0

P[Qk]
ck

∗E[Ts(ak, Qk)]

Because T is a convex function, it has only one global minimum on the simplex of
the algorithm combination coefficients[3,4]. Therefore, the method of Lagrange
multipliers leads directly to the result of the theorem. ut

By simple arithmetic manipulations from Theorem 1, we get the following the-
orem.

Theorem 2. The optimal expected solution time for a combination of algo-
rithms, using a static schedule, is:

T =

(
n∑

k=1

√
P[Qk] ∗E[Ts(ak, Qk)]

)2

.

4 Dynamic Policy

In comparison to the static model, the dynamic model drops the requirement of
constant resource allocation functions. Therefore, obtained schedules are faster
and more flexible, but also harder to calculate and implement. The main idea
of the dynamic policy is to use the algorithms to classify a problem instance
during the process of computation. The dynamic model can be formulated as
a Markov Decision Process (MDP). Therefore, many standard MDP algorithms
can be applied to find the optimal solution.

4.1 Dynamic Model

The dynamic model is basically identical to one defined in the section 2. A6 and
the following assumptions are added:

A7 Time is discretized into a sequence sequence t0, t1, t2 . . ., where ti+1−ti = ∆t.
Instance solved in an interval 〈ti, ti+1) is assumed to be solved in ti.

A8 Resource allocation functions are constant for each time interval 〈ti, ti+1).
A9 All resource allocation function are constant from an arbitrary time ts.

Identically as in the case of static policy, by A6 and A7, the total time is:

Z(a, q, r) := ∆t ∗ arg min
m

{
m∑

k=1

ri(tk)∆t ≥ Ts(a, q)

}
−∆t.



4.2 Properties

Finding an optimal schedule for the dynamic model by heuristically enumerating
all possible schedules would be a very time consuming task. A common method
for solving hard problems dynamic programming. One formulation that permits
the use of this technique is an MDP. As mentioned above, it is possible to
formulate the dynamic model as MDP, in which each policy corresponds to a
dynamic schedule. The definition of the MDP follows.

States are divided into two disjunct sets

S = {(m1,m2, . . . ,mn)|mi ∈ 〈0, tm〉}
F = {(m1,m2, . . . ,mn)|mi ∈ 〈0, tm〉}.

Actions for each state from S are from P(A1, A2, . . . , An), where ∀i Ai are
arbitrary diverse elements. There are no allowed actions in states from F . Given
a state s = (m1, . . . ,mn), and an action A = {Ai1 , Ai2 , . . . , Aic}, the subsequent
state are:

s′ = (m1,m2, . . . ,mi1 + ∆t/c, . . . ,mic + ∆t/c, . . . ,mn)
f ′ = (m1,m2, . . . ,mn).

The probability distribution of the subsequent states s′ and f ′, given a random
problem instance q ∈ Q chosen according to PQ, action A, and a state s, is:

P[f ′|s,A] = L′ = 1−
∏

k;Ak∈A

(1− P[Ts(ak, q) ≥ mk|q ∈ Qk] ∗P[q ∈ Qk]
1−

∑n
l=1 P[Ts(al, q) < ml|q ∈ Ql] ∗P[q ∈ Ql]

∗P[mk ≤ Zk(q) ≤ mk + ∆t/c|E, q ∈ Qi])
P[s′|s,A] = 1−P[f ]

The reward function R is:

R(f) = −
n∑

k=1

mi if f = (m1,m2, . . . mn) ∈ F

R(s) = 0 if s ∈ S and
n∑

k=1

mk < ts

R(s) = M if s ∈ S and
n∑

k=1

mk ≥ ts,

where M is the expected solution time of the optimal static schedule as defined
in Theorem 2. However, the changed probability distribution on the sets Qi must
be considered.

The idea of transforming a policy to a schedule is following. Each state rep-
resents an hypothetical time instant during an hypothetical solution process.
More specifically, the total resource allocations for each algorithm until the time
instant represented by this state. While problem instance have are not in states
of S, they are in states of F . The action {Ai1 , . . . , Aic

} is equivalent to running
the algorithms {ai1 , . . . , aic

} simultaneously with equal shares of resources.



Theorem 3. A schedule based on the optimal policy of the formulated MDP is
optimal for the dynamic model.

The probabilistic event when each algorithm ai fails to solve the instance q
within time mi is denoted as:

E ≡ G(q) ≥ (m1,m2 . . .mn) ≡
≡ Ts(a1, q) ≥ m1 ∧ Ts(a2, q) ≥ m2 ∧ . . . ∧ Ts(an, q) ≥ mn

mi refer to the specific values of the context.
The following lemma, which is proved by Bayes rule and A6, serves to prove

the theorem.

Lemma 1. Let q ∈ Q be a random problem instance chosen according to dis-
tribution PQ. If all algorithms a1, . . . , an failed to solve the instance for times
m1, . . . ,mn respectively then the instance belongs to Qi with the following prob-
ability:

P[q ∈ Qi|E] =
P[Ts(ai, q) ≥ mi|q ∈ Qi] ∗P[q ∈ Qi]

1−
∑n

k=1 P[Ts(ak, q) < mk|q ∈ Qk] ∗P[q ∈ Qk]
(4)

Note that the denominator of (4) does not need to be calculated, because it is
the same for all classes. Therefore, normalization of all numerators is sufficient.
Now we may proceed to prove the theorem.

Proof. To prove the theorem, we show that the expected reward R(0, . . . , 0) for
a policy Ai1 , Ai2 , Ai3 , . . . is equal to the expected solution time, given a schedule
ai1 , ai2 , ai3 , . . .. To show the equality, we prove that the the function T can be
formulated recursively in the same manner as the defined MDP.

The function M is defined as:

M(m1, . . . ,mn) =
n∑

i=1

E[Zi(Qi)|E] ∗P[Qi|E] (5)

Because P[E] = 1 for (m1, . . . ,mn) = (0, . . . , 0) and A6:

T =
n∑

i=1

E[Zi(Qi)] ∗P[Qi] = M(0, . . . , 0).

The recursive function R is defined as follows:

R(m1, . . . ,mn) =
{

L ∗ Tx + (1− L) ∗R ◦H(m1, . . . ,mn) if
∑n

k=1 mk < ts
M(m1, . . . ,mn) otherwise ,

(6)
where

H(m1,m2, . . . mn) = (m1 + r1(m1) ∗∆t, . . . , mn + rn(mn) ∗∆t),



L =

= 1−
n∏

k=1

(1−P[q ∈ Qk|E] ∗P[mk ≤ Zk(q) ≤ mk + rk(mk) ∗∆t|E, q ∈ Qk]) .

L is the probability of a problem instance being solved in the time interval
〈Tx, Tx + ∆t), and Tx =

∑n
k=1 mk. The equivalence of M = R can be proved

by a reverse induction on Tx, using the equality of L = L′ by Lemma 1 and
E[X] = E[X|F ]∗P[F ]+E[X|F̄ ]∗P[F̄ ]. The arguments of the function R precisely
define states of the specified MDP. Because the function R is calculated in the
same manner as the reward function of the MDP and have the same value for
the terminal states, they are equal for each state. Therefore, R(0, . . . , 0) = T , for
any policy and regarding schedule. Hence the optimal policy defines the optimal
schedule. ut

4.3 Scheduling Algorithm

The formulation according to Theorem 3 allows direct solution by any general
MDP solving algorithm. The standard method for solving MDP is the already
mentioned dynamic programming, sometimes called Bellman update. An ex-
cellent introduction to MDPs and solution methods is [5,6]. Algorithm 1, in
Figure 1, is very similar to generic Bellman update, only it is somewhat simpler
because the MDP does not contain any loops.

R(m1 . . . mn) = 0
t := ts

I := ∆t
while t ≥ 0 do

for all states (m1, . . . , mn) where
∑n

k=1
mk = t do

for all available actions do
Calculate R(m1, . . . , mn)

end for
Greedily choose best action for each state

end for
t := t− I

end while
Return schedule composed of best actions starting at state (0, . . . , 0)

Fig. 1. Algorithm 1

Theorem 4. Let k be the number of concurrently schedulable algorithms. Let
each algorithm be scheduled for at least one time interval. Algorithm 1 solves the
scheduling problem in time O

((
n
k

)
∗
(
k∗ts−1

n−1

)
∗ ts

)
.

Proof. Correctness of Algorithm 1 follows directly from Theorem 3. Regarding
the complexity, notice there are at most ts levels to be calculated. The number



of states per level increases up to the last level, which has
(
k∗ts−1

n−1

)
states. Since

there are O
((

n
k

))
possible actions per a single state, the theorem holds. ut

4.4 Approximation

Assume a fixed number of algorithms and only one algorithm being scheduled
at each time instance. Then, by Theorem 4, the worst-case complexity of Al-
gorithm 1 is polynomial in terms of ts. Because ts may be encoded in binary,
the complexity of the scheduling algorithms is exponential in terms of the input
length. However, the complexity can be reduced by giving up some precision.
Then, the optimal schedule can be found in time independent of ts, and only
polynomially increasing in the degree of precision.

Lemma 2. The following is true for the expected time of any of algorithm and
problem instance:

T ≥
n∑

k=1

E[Ts(ak, Qk)] ∗P[Qk]

In the following, task is calculation of an algorithm that is scheduled for a certain
time period.

Lemma 3. Let O and S be the optimal schedules for the dynamic model with
time difference ∆t and ∆t′ = c ∗∆t respectively, where c ∈ I. Expected solution
times of schedules O and S are υ(O) and υ(S) respectively. If only one task can
be scheduled at a time, then the following inequality holds:

υ(S) ≤ υ(O) + (c− 1) ∗ (n− 1) ∗∆t.

Proof. We prove the theorem by transforming the schedule O to a new schedule
O′ that is valid for ∆t′. Then we show that υ(O′) is bounded from above. The
basic idea to create O′ by swapping tasks from O in order ensure that switches
between any two algorithms take place only at times divisible by ∆t′. It is
possible to create a schedule with delay in expected time of at most (c − 1) ∗
(n− 1) ∗∆t. ut

Theorem 5. There is a ε-approximate algorithm that solves the scheduling prob-
lem for any

ε =
(n− 1) ∗ (c− 1)

ts
for all c ∈ I.

The approximation algorithm is polynomial in both 1/ε and the input length of the
instance, given a constant number of algorithms. The algorithm is very similar
to a FPTAS, except it allows approximations only for discrete values of ε.

Proof. The approximation algorithm is based on Algorithm 1, with three small
modifications. First, the length of the schedule is limited to ts ≤ k ∗ E, what is
possible by lemma 2. Second, the calculation interval is not ∆t, but

I :=
ε ∗ ts

k ∗∆t ∗ (n− 1)
+ 1,



Third, exactly one algorithm is scheduled for each instant. The proof of the
correct approximation and complexity is very similar to the proof of FPTAS for
knapsack.

ut

5 Experimental Results

We demonstrate the practical applicability of the presented approaches on the
Satisfiability (SAT) Problem. SAT is a problem of deciding whether a formula in
predicate logics is satisfiable. It was the first problem shown to be NP complete.

5.1 Setup

Due to the importance of SAT Problem, there has been a lot of effort devoted
to creating extremely fast algorithms. We did not try to combine these state-of-
the art algorithms because of their high implementation complexities. Instead,
we experimented with the following two basic algorithms Davis-Putnam and
WalkSAT, implemented according to [7].

Problem instances for the test were generated randomly. The instances were
both generated and solved in Conjunctive Normal Form(CNF). The experiment
included only instances of the 3-SAT Problem. Each literal was negated with
probability 1/2. Individual atoms for each clause were chosen randomly and
independently from the set of all available atoms. We performed several test
trials. Each test trial used a different number of possible atoms, while the number
of clauses was fixed. There were 1000 problem instances generated and solved
for each test trial.

5.2 Results

The Table 1 summarizes the results of experiments. They indicate significant
speed gains for both static and dynamic schedules compared to results of DP.
The difference between the dynamic and static schedule was not very significant.
However, the dynamic schedule has a more substantial effect, when many algo-
rithms are combined. The approximation algorithm presented in the section 4.4
was also tested on WalkSAT and DP data-sets. It was very useful for combi-
nation of algorithms with long run-times, when Algorithm 1 becomes too time
consuming.

6 Conclusion

We proposed a method for optimal combination of decision algorithms. The
combination assumes a single processing unit (or a greater number of them,
which can be arbitrarily distributed among algorithms) and ignores any over-
heads that may arise on real processing systems. Due to its high flexibility, the



Table 1. Expected calculation times of WalkSAT, DP, static combination, and
dynamic combination. Set of instances Qw is solvable by WalkSAT and Qd is
solvable by DP. P[Qw] and P[Qd] are determined experimentally.

Clauses Atoms P[Qw] Ts(Qw) P[Qd] Ts(Qd) Static Dynamic
140 30 0.25 26.56 0.75 700.0 648 606
140 31 0.32 29.21 0.68 1002 850 771
140 32 0.44 30.41 0.56 1576 1110 970
140 33 0.53 29.22 0.47 2302 1353 1159
140 35 0.68 26.79 0.32 4605 1806 1528
140 50 0.96 11.90 0.04 13.50 16.93 13.71

dynamic model can be adapted to various setups. For example, by simple mod-
ification of rewards it is possible to optimize not expected time, but also any
function of it. Moreover, the dynamic model can be further extended to include
also optimization algorithms, where each solution has a known cost.

Both dynamic and static approaches can be extended to a situation, when
the problem distribution is either unknown in advance or dynamically changing.
For the dynamic approach, MDP can be solved by reinforcement learning [6].

One important issue, we did not address, is variance minimization. In many
applications it is more important to achieve similar behavior on most instances
instead of minimizing expected calculation time. The maximal utility of a sched-
ule then corresponds to minimal variance of calculation time over all instances.
Unfortunately, the presented model assumes that utility of a subset of instances
Qi can be expressed independently from utilities of other classes, which is not
the case for variation on all instances.
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