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This paper compares two different frameworks recently introduced in the literature for measuring risk in a
multi-period setting. The first corresponds to applying a single coherent risk measure to the cumulative future
costs, while the second involves applying a composition of one-step coherent risk mappings. We summarize
the relative strengths of the two methods, characterize several necessary and sufficient conditions under
which one of the measurements always dominates the other, and introduce a metric to quantify how close
the two risk measures are.

Using this notion, we address the question of how tightly a given coherent measure can be approximated
by lower or upper-bounding compositional measures. We exhibit an interesting asymmetry between the
two cases: the tightest possible upper-bound can be exactly characterized, and corresponds to a popular
construction in the literature, while the tightest-possible lower bound is not readily available. We show
that testing domination and computing the approximation factors is generally NP-hard, even when the risk
measures in question are comonotonic and law-invariant. However, we characterize conditions and discuss
several examples where polynomial-time algorithms are possible. One such case is the well-known Conditional
Value-at-Risk measure, which is further explored in our companion paper Huang et al. [32].

Our theoretical and algorithmic constructions exploit interesting connections between the study of risk
measures and the theory of submodularity and combinatorial optimization, which may be of independent
interest.
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1. Introduction. Measuring the intrinsic risk in a particular unknown outcome and compar-
ing multiple risky alternatives has been a topic of central concern in a wide range of academic
disciplines, resulting in the development of numerous frameworks, such as expected utility, stochas-
tic ordering, and, in recent years, convex and coherent risk measures.

The latter class has emerged as an axiomatically justified and computationally tractable alter-
native to several classical approaches, and has provided a strong bridge across a variety of parallel
streams of research, including ambiguous representations of preferences in economics (e.g., Gilboa
and Schmeidler [28], Schmeidler [51], Epstein and Schneider [22], Maccheroni et al. [37]), axiomatic
treatments of market risk in financial mathematics (Artzner et al. [5], Föllmer and Schied [24]),
actuarial science (Wirch and Hardy [58], Wang [57], Acerbi [2], Kusuoka [36], Tsanakas [56]), oper-
ations research (Ben-Tal and Teboulle [11]) and statistics (Huber [33]). As such, our goal in the
present paper is not to motivate the use of risk measures – rather, we take the framework as given,
and investigate two distinct ways of using it to ascribe risk in dynamic decision settings.

A first approach, prevalent among practitioners, entails applying a static risk measure to the
total future costs accumulated over the remaining problem horizon, and conditioned on the avail-
able information. More formally, a decision maker faced with a future sequence of random costs
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Xt, . . . ,XT , respectively dispensed over a finite horizon t, t` 1, . . . , T , would measure the risk at
time t by µtpXt`¨ ¨ ¨`XT |Ftq, where Ft denotes the filtration containing all information at time t,
and µt is a static risk measure. In practice, the same µt “ µ is often used at every time t, resulting
in a risk preference that is easy to specify and calibrate. Apart from simplicity, the approach also
has one other key advantage: when the risk measure used is convex, static decisions can be effi-
ciently computed by combining simulation procedures with convex optimization (e.g., Rockafellar
and Uryasev [43], Ruszczynski and Shapiro [49]). This has lead to a wide adoption of the method-
ology in practice, as well as in several academic papers (see, e.g., Basak and Shapiro [9], Cuoco
et al. [20] and references therein).

The paradigm above, however, is known to suffer from several serious shortcomings. It can result
in inconsistent preferences over risk profiles in time, whereby a decision maker faced with two
alternative cumulative costs Y and Z can deem Y riskier than Z in every state of the world
at some time t ` 1, but nonetheless deem Z riskier than Y at time t. This dynamic or time
inconsistency has been criticized from an axiomatic perspective, as it is a staple of irrational
behavior [22, 45, 6]. Furthermore, time inconsistent objectives couple risk preferences over time,
which is very undesirable from a dynamic optimization viewpoint, since it prevents applying the
principles of Dynamic Programming to decompose the problem in stages (Epstein and Schneider
[22], Ruszczynski and Shapiro [48], Nilim and El Ghaoui [38], Iyengar [34]).

In order to correct such undesirable effects, additional conditions must be imposed on the risk
measurement process at distinct time periods. Such requirements have been discussed extensively
in the literature, and it has been shown that any risk measure that is time consistent is obtained
by composing one-step conditional risk mappings. More formally, a time consistent decision maker
faced with costs X1, . . . ,XT would assess the risk at time t by µt

`

µt`1p. . . µT pXt`¨ ¨ ¨`XT |Ftq . . . q
˘

,
for a set of suitable mappings tµτuτPtt,...,T u (see, e.g., Epstein and Schneider [22], Riedel [40], Cherid-
ito et al. [15], Artzner et al. [6], Roorda et al. [45], Föllmer and Penner [23], Ruszczyński [47]).
Apart from yielding consistent preferences, this compositional form also allows a recursive estima-
tion of the risk, and an application of the Bellman principle in optimization problems involving
dynamic risk measures [38, 34, 48].

From a pragmatic perspective, however, the compositional form entails a significantly more
complicated risk assessment than the näıve inconsistent approach. A risk manager would need to
specify single-period conditional risk mappings for every future time-point; furthermore, even if
these corresponded to the same risk measure µ, the exact result of the composition would no longer
be easily interpretable, and would bear no immediate relation to the original µ. Our conversations
with managers also revealed a certain feeling that such a measurement could result in “overly
conservative” assessments, since risks are compounded in time – for instance, by composing VaR,
one would obtain extreme quantiles of quantities that are already extreme quantiles. This has been
recognized informally in the literature by Roorda and Schumacher [46, 44], who proposed new
notions of time consistency that avoided the issue, but without establishing formally if or to what
degree the conservatism is actually true. Furthermore, it is not obvious how “close” a particular
compositional measure is to a given inconsistent one, and how one could go about constructing
the latter in a way that tightly approximates the former. This issue should be very relevant when
considering dynamic decision problems under risk, but it seems to have been largely ignored by the
literature (most papers examining operational problems under dynamic risk typically start with a
set of given dynamic risk measures, e.g., Ahmed et al. [4], Shapiro [54], Choi et al. [17]).

With this motivation in mind, the goal of the present paper is to better understand the relation
and exact tradeoffs between the two measurement processes outlined above, and to provide guide-
lines for constructing and/or estimating safe counterparts of one from the other. Our contributions
are as follows.
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• We provide several equivalent necessary and sufficient conditions guaranteeing when a time
consistent risk measure µC always over (or under) estimates risk as compared with an inconsistent
measure µI . We argue that iterating the same µI does not necessarily over (or under) estimate risk
as compared to a single static application of µI , and this is true even in the case considered by
Roorda and Schumacher [46, 44]. We show that composition with conditional expectation operators
at any stage of the measurement process results in valid, time consistent lower bounds. By contrast,
upper bounds are obtained only when composing with worst-case operators in the last stage of the
measurement process.
• We formalize the problem of characterizing and computing the smallest αµC ,µI and αµI ,µC

such that µC ď µI ď αµC ,µI ¨ µC and µI ď µC ď αµI ,µC , respectively. The smallest such factors,
α‹µC ,µI and α‹µI ,µC , provide a compact notion of how closely a given µI can be multiplicatively
approximated through lower (respectively, upper) bounding consistent measures µC , respectively.
Since, in practice, µI may be far easier to elicit from observed preferences or to estimate from
empirical data, characterizing and computing α‹µC ,µI and α‹µI ,µC can be seen as the first step towards
constructing the time-consistent risk measure µC that is “closest” to a given µI .
• Using results from the theory of submodularity and matroids, we particularize our results to

the case when µI and µC are both comonotonic risk measures. We show that computing α‹µC ,µI and
α‹µI ,µC is generally NP-hard, even when the risk measures in question are law-invariant. However,
we provide several conditions under which the computation becomes simpler. Using these results,
we compare the strength of approximating a given µI by time-consistent measures obtained through
composition with conditional expectation or worst-case operators.
• We characterize the tightest possible time-consistent and coherent upper bound for a given

µI , and show that it corresponds to a construction suggested in several papers in the literature
[22, 45, 6, 54], which involves “rectangularizing” the set of probability measures corresponding to
µI . This yields not only the smallest possible α‹µI ,µC , but also the uniformly tightest upper bound
among all coherent upper bounds.
• We summarize results from our companion paper [32], which applies the ideas derived here to

the specific case when both µI and µC are given by Average Value at Risk, a popular measure in
financial mathematics. In this case, the results take a considerably simpler form: analytical expres-
sions are available for two-period problems, and polynomial-time algorithms are available for some
multi-period problems. We give an exact analytical characterization for the tightest uniform upper
bound to µI , and show that it corresponds to a compositional AVaR risk measure that is increas-
ingly conservative in time. For the case of lower bounds, we give an analytical characterization
for two-period problems. Interestingly, we find that the best lower-bounds always provide tighter
approximations than the best upper bounds in two-period models, but are also considerably harder
to compute than the latter in multi-period models.

The rest of the paper is organized as follows. Section 2 provides the necessary background in static
and dynamic risk measures, and introduces the precise mathematical formulation for the questions
addressed in the paper. Section 3 discusses the case of determining upper or lower bounding
relations between two arbitrary consistent and inconsistent risk measures, and characterizes the
resulting factors α‹µC ,µI and α‹µI ,µC . Section 4 discussed our results in detail, touching on the
computational complexity, and introducing several examples of how the methodology can be used
in practice. Section 5 concludes the paper and suggests directions for future research.

1.1. Notation. With iă j, we use ri, js to denote the index set ti, . . . , ju. For a vector x PRn
and i P t1, . . . , nu, we use xi to denote the i-th component of x. For a set S Ď t1, . . . , nu, we let

xpSq
def
“

ř

iPS xi. Also, we use xS P Rn to denote the vector with components xi for i P S and 0
otherwise (e.g., 1S is the characteristic vector of the set S), and x|S PR|S| to denote the projection
of the vector x on the coordinates i P S. When no confusion can arise, we denote by 1 the vector
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with all components equal to 1. We use xT for the transpose of x, and xTy
def
“

řn

i“1 xi yi for the
scalar product in Rn.

For a set or an array S, we denote by ΠpSq the set of all permutations on the elements of S. πpSq
or σpSq designate one particular such permutation, with πpiq denoting the element of S appearing
in the i-th position under permutation π.

We use ∆n to denote the probability simplex in Rn, i.e., ∆n def
“ tp P Rn` : 1Tp “ 1 u. For a set

P ĎRn, we use extpP q to denote the set of its extreme points.
Throughout the exposition, we adopt the convention that 0

0
“ 0.

2. Consistent and Inconsistent Risk Measures. As discussed in the introduction, the
goal of the present paper is to analyze two paradigms for assessing risk in a dynamic setting: a
“näıve” one, obtained by applying a static risk measure to the conditional cumulative future costs,
and a “sophisticated”, time-consistent method, obtained by composing one-period risk mappings.

In the present section, we briefly review the relevant background material in risk theory, describe
the two approaches formally, and then introduce the main questions addressed in the paper.

2.1. Probabilistic Model. We begin by describing the probabilistic model. Our notation
and framework are closely in line with that of [55], to which we direct the reader for more details.

For simplicity, we consider a scenario tree representation of the uncertainty space, where t P r0, T s
denotes the time, Ωt is the set of nodes at stage t P r0, T s, and Ci is the set of children1 of node i PΩt.
We also use Di to denote the set of all leaves descending from node i, i.e., with Di “ tiu, @ i PΩT , we

recursively define Di
def
“ YjPCiDj, @ i PY

T´1
t“0 Ωt. Similarly, we define DU

def
“ YiPUDi for any set U ĎΩt.

With the set ΩT of elementary outcomes, we associate the σ-algebra FT “ 2ΩT of all its subsets,
and we consider the filtration F0 Ď F1 Ď ¨ ¨ ¨ Ď FT , where Ft is the sub-algebra of Ft`1 that is
generated by the sets tCiuiPΩt , for any t P r0, T ´ 1s.

We construct a probability space pΩT ,FT ,Pq by introducing a reference measure P P ∆|ΩT |,
assumed to satisfy2 Pą 0. On the space pΩT ,FT ,Pq, we use XT to denote the space of all functions
XT : ΩT Ñ R that are FT -measurable. Since XT is isomorphic with R|ΩT |, we denote by XT the
random variable, and by XT the vector in R|ΩT | of induced scenario-values, and we identify the
expectation of XT with respect to a measure q P∆|ΩT | as the scalar product qTXT . In a similar
fashion, we introduce the sequence Xt, t P r0, T ´ 1s, where Xt is the sub-space of XT containing
functions which are Ft-measurable. Note that any function Xt PXt is constant on every set Ci, i P
Ωt, so that Xt can also be identified with the vector Xt P R|Ωt|. To this end, in order to simplify
the notation, we identify any function f : Xt`1 Ñ Xt with a set of |Ωt| functions, and we write
f ” pfiqiPΩt , where fi :R|Ωt`1|ÑR. Furthermore, since all the functions of this form that we consider
correspond to conditional evaluations on the nodes of the tree, we slightly abuse the notation and
write f ” pfiqiPΩt , where fi :R|Ci|ÑR.

2.2. Static Risk Measures. Consider a discrete probability space pΩ,F ,Pq, and let X be
a linear space of random variables on Ω. In this setup, we are interested in appropriate ways of
assessing the riskiness of a random cost (or loss) X PX . The standard approach in the literature
[5, 25] is to use a functional µ :X ÑR such that µpXq represents the minimal reduction making a
cost X acceptable to the risk manager. The following axiomatic requirements are typically imposed.
[P1] Monotonicity. For any X,Y PX such that X ě Y , µpXq ě µpY q.
[P2] Translation invariance. For any X PX and any m PR, µpX `mq “ µpXq`m.

1 In other words, tCi, i PΩtu is a partition of the nodes in Ωt`1, @ t P t0, . . . , T ´ 1u.

2 This is without loss of generality - otherwise, all arguments can be repeated on a tree where leaves with zero
probability are removed.
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[P3] Convexity. For any X,Y PX , and any λ P r0,1s, µ
`

λX`p1´λqY
˘

ď λµpXq`p1´λqµpY q.
[P4] Positive homogeneity. For any X PX , and any λě 0, µpλXq “ λµpXq.
[P5] Comonotonicity. µpX ` Y q “ µpXq ` µpY q for any X,Y P X that are comonotone, i.e.,

“

Xpωq´Xpω1q
‰ “

Y pωq´Y pω1q
‰

ě 0, for any ω,ω1 PΩ.
[P6] Law-invariance. µpXq “ µpY q for any X,Y PX such that FXp¨q “ FY p¨q.
Monotonicity requires that a larger cost should always be deemed riskier. Translation (or cash)

invariance gives µ an interpretation as capital requirement: typically, a cost X is deemed acceptable
if µpXq ď 0, so cash invariance implies that µ

`

X ´µpXq
˘

“ 0, i.e., µpXq is the smallest amount of
cost reduction making X acceptable. Convexity suggests that diversification of costs should never
increase the risk (or, conversely, that a convex combination of two acceptable costs X and Y should
also be acceptable), while positive homogeneity implies that risk should scale linearly with the size
of the cost. Comonotonicity implies that the risk in costs that move together (i.e., are comonotone)
cannot be diversified by mixtures, while law-invariance requires the risk measures to only depend
on the probability distribution of the random costs. For an in-depth discussion and critique of these
axioms, we direct the reader to [5, 25] and references therein.

Following the common terminology in the literature, we call any functional satisfying [P1-2] a
risk measure. Any risk measure satisfying [P3] is said to be convex, and any convex risk measure
that satisfies [P4] is said to be coherent. The main focus of the present paper are functionals that
satisfy3 [P1-5], which are called comonotonic risk measures. Some of our results take a simpler
form when further restricting attention to the class of distortion risk measures, which are all
comonotonic risk measures additionally satisfying [P6]. Such measures have been examined in
economics, actuarial science, and financial mathematics, and form a well-established class of risk
metrics (see, e.g., [50, 57, 56, 19, 36, 2, 3, 25] for more references and details).

One of the main results in the literature is a universal representation theorem for any coherent
risk measure, which takes a specialized form in the comonotonic case [50, 25].

Theorem 1. A risk measure µ is coherent if and only if it can be represented as

µpXq “max
QPQ

EQ rXs , (1)

for some QĎ∆|Ω|. Furthermore, if µ is comonotonic, then Q“
 

Q P∆|Ω| : QpSq ď cpSq, @S PF
(

,
where c is a Choquet capacity.

The result essentially states that any coherent risk measure is an expectation with respect to
a worst-case probability measure, chosen adversarially from a suitable set of test measures (or
generalized scenarios) Q. For comonotonic risk measures, this set is uniquely determined by a
particular function c, known as a Choquet capacity.
Definition 1. A set function c : 2Ω Ñ r0,1s is said to be a Choquet capacity if it satisfies the

following properties:
• nondecreasing: cpAq ď cpBq, @AĎB ĎΩ
• normalized: cpHq“ 0 and cpΩq “ 1
• submodular: cpAXBq` cpAYBq ď cpAq` cpBq, @A, B ĎΩ.
When a comonotonic risk measure is additionally law-invariant (i.e., it is a distortion measure),

the Choquet capacities are uniquely determining by a concave distortion function, i.e.,

cpSq “ΨpPpSqq, @S PF , (2)

3 It is known that comonotonicity actually implies positive homogeneity [25], so the we can define comonotonic
risk measures as those satisfying [P1-3] and [P5] (the reverse is not true, i.e., not all coherent risk measures are
comonotonic [3]).
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where Ψ : r0,1sÑ r0,1s is a concave, nondecreasing function satisfying Ψp0q “ 0 and Ψp1q “ 1.
A popular example of comonotonic (in fact, distortion) risk measure, studied extensively in the

literature, is Average Value-at-Risk at level ε P r0,1s (AVaRε), also known as Conditional Value-
at-Risk, Tail Value-at-Risk or Expected Shortfall. It is defined as

AVaRεpXq
def
“

1

ε

ż 1

1´ε

VaR1´tpXqdt. (3a)

where VaRεpXq
def
“ inftm PR : PrX´mą 0s ď ε u is the Value at Risk at level ε. As the name sug-

gests, AVaRε represents an average of all VaR measures with level at most ε. When the underlying
reference measure P is non-atomic, it can be shown [25] that AVaRεpXq “ EP rX |X ěVaRεpXqs,
which motivates the second and third names that the latter measure bears. While AVaR is a
distortion measure, VaR is not even convex, since it fails requirement [P3].

2.3. Dynamic Risk Measures. As stated in the introduction, the main focus of the present
paper are dynamic risk measures, i.e., risk measures defined for cash streams that are received or
dispensed across several time-periods. More precisely, a dynamic risk measure entails the specifi-
cation of an entire sequence of risk measures tµrt,T su

T´1
t“0 , such that µrt,T s maps a future stream of

random costs Xrt,T s
def
“ pXt, . . . ,XT q into risk assessments at t.

Following a large body of literature [40, 6, 21, 45, 15, 23, 48, 47, 16], we furthermore restrict
the risk measurements at time t to only depend on the cumulative costs in the future, i.e., we
take µrt,T s :XT ÑXt, and the risk of Xrt,T s is µrt,T spXt`¨ ¨ ¨`XT q. While such measures have been
criticized for ignoring the timing when future cashflows are received, they are consistent with the
assumptions in many academic papers focusing on portfolio management under risk [10, 20], as
well as with current risk management practice [35], and provide a natural, simpler first step in our
analysis.

In this framework, we introduce the first way of measuring dynamic risk, whereby µrt,T s is
obtained by applying a static risk measure, conditioned on information available at time t. In the
context of the probabilistic space of Section 2.1, this can be formalized as follows.
Definition 2. A time inconsistent (dynamic) risk measure is any set of mappings tµrt,T su

T
t“1

of the form µrt,T s “ pµ
iqiPΩt ,@ t P r0, T s, where µi :XT ÑR is a risk measure, for any node i PΩt.

In other words, conditional on reaching node i PΩt at time t, the risk of a future cashflow Xrt,T s
is given by µip

řT

τ“tXτ q, where every µi is a static risk measure, which can be furthermore required
to satisfy additional axiomatic properties, as per Section 2.2.

The choice above is eminently sensible - the specification of risk can be done in a unified fashion,
by means of a single risk measure at every node and time. This makes for a compact representation
of risk preferences, which can be more easily calibrated from empirical data, more readily compre-
hended and adopted by practitioners, and more uniformly applied across a variety of businesses
and products. For instance, it is by far the most common paradigm in financial risk management,
where a 10-day VaR is typically calculated at level ε“ 1%, assuming the trading portfolio remains
fixed during the assessment period [35].

However, as the name suggests, such risk measures readily result in time inconsistent behavior.
To see this, consider the following example, adapted from Roorda et al. [45].
Example 1. Consider the tree in Figure 1, with the elementary events Ω“ tUU,UD,DU,DDu.

Consider the risk measure given by

µipXq “max
PPP

EPrX|is, @ i P tR,U,Du,

where P contains two probability measures, one corresponding to p“ 0.4, and the other to p“ 0.6.
Clearly, all tµiuiPtR,U,Du correspond to coherent risk measures. For the random cost X such that
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XpUUq “XpDDq “ 0, and XpUDq “XpDUq “ 100, we have µUpXq “ µDpXq “ 60, and µRpXq “
48. Therefore, X is deemed strictly riskier than a deterministic cost Y “ 50 in all states of nature
at time t“ 1, but nonetheless Y is deemed riskier than X at time t“ 0.

R
UD

DU

DD

UU

D

U

p

1− p

p

1− p

p

1− p

Figure 1. Example showing time inconsistency of a static risk measure. The random costX withXpUUq “XpDDq “
0, XpUDq “XpDUq “ 100 is deemed strictly riskier in all states of nature at time t “ 1 than a deterministic cost
Y “ 50, but nonetheless Y is deemed riskier than X at time t“ 0.

We note that there is nothing peculiar in the choices above, in that similar counterexamples can
be constructed for any risk measures µi, even when the latter are comonotonic. Rather, the issue at
play is the key feature distinguishing dynamic from static risk assessment, namely the consistency
in the risk preference profile over time. This is summarized in the axiom4 of time (or dynamic)

consistency, which asks that a dynamic risk measure
 

µt,T
(T´1

t“0
should satisfy, for all t P r0, T ´ 1s

and all X,Y PXT ,

µt`1,T pXq ě µt`1,T pY q implies µt,T pXq ě µt,T pY q.

This is a requirement on the particular functional forms that can be considered for µrt,T s, which
is typically violated by the näıve dynamic measures of Definition 2. A central result in the literature
[40, 6, 21, 45, 15, 46, 39, 23, 47] is the following theorem, stating that any consistent measure has
a compositional representation in terms of one-period risk mappings.

Theorem 2. Any dynamic risk measure
 

µt,T
(T´1

t“0
that is time consistent can be written as

µt,T pXt` ¨ ¨ ¨`XT q “ µt`1

´

µt`2

`

. . . pµT pXt` ¨ ¨ ¨`XT qq . . .
˘

¯

. (4)

where µt :XtÑXt´1, t P r1, T s are a set of single-period conditional risk mappings.

This leads us to define the second way of measuring dynamic risk on the scenario tree of Sec-
tion 2.1, by means of composing risk measures.
Definition 3. A set of mappings tµrt,T su

T´1
t“0 is said to be a time consistent (dynamic) risk

measure if µrt,T s “ µt`1 ˝µt`2 ˝ ¨ ¨ ¨ ˝µT for any t P r0, T ´1s, where µt`1 ” pµ
iqiPΩt , and µi :R|Ci|ÑR

are risk measures, for any i PΩt.
We say that tµrt,T su

T´1
t“0 is a time-consistent, coherent (comonotonic) risk measure if every µi is

coherent (respectively, comonotonic), for any i PΩt and t P r0, T ´ 1s.
Apart from being axiomatically justified, this compositional form has the advantage of allowing

a recursive estimation of the risk, and an application of the Bellman optimality principle in opti-
mization problems involving dynamic risk measures [38, 34, 48, 47]. This has lead to its adoption in

4 We note that there are several notions of time consistency in the literature (see Penner [39], Acciaio and Penner
[1], Roorda and Schumacher [46] for an in-depth discussion and comparison). The one we adopt here is closest in
spirit to strong dynamic consistency, and seems to be the most widely accepted notion in the literature.
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actuarial science [30, 14], as well as in several recent papers that re-examine operational problems
under coherent measures of risk [4, 17].

The main downside of the compositional form is that it requires a specification of all the mappings
µi, which furthermore no longer lends itself to an easy interpretation, particularly as seen from the
perspective of time t“ 0. In particular, even if µi corresponded to the same primitive risk measure
µ, the overall compositional measure5 µr0,T s “ µ ˝ µ ˝ ¨ ¨ ¨ ˝ µ would bear no immediate relation
to µ. As an example, when µi “ AVaRε, the overall µr0,T s corresponds to the so-called “iterated
CTE” [30, 14, 46], which does not lend itself to the same simple interpretation as a single AVaR.
Furthermore, practitioners often feel that the overall risk measure µr0,T s is overly conservative,
since it composes what are already potentially conservative risk evaluations backwards in time –
for instance, for the iterated TCE, one is taking tail conditional expectations of tail conditional
expectations. This has been recognized informally in the literature by Roorda and Schumacher
[46, 44], who propose new notions of time consistency that avoid the issue, but without establishing
precisely whether or to what extent the conservatism is actually true. From a different perspective,
it is not obvious how “close” a particular compositional measure is to a given inconsistent one, and
how one could go about constructing the latter in a way that tightly approximates the former.

2.4. Main Problem Statement. In this context, the goal of the present paper is to take
the first step towards better understanding the tradeoffs between the two ways of measuring risk.
More precisely, we consider dynamic risk as viewed from the perspective of time t“ 0, and examine
two potential metrics: a time-inconsistent (comonotonic) risk measure µI : XT Ñ R, and a time-
consistent (comonotonic) risk measure µC :XT ÑR. For two such metrics, we seek to address the
following related problems.
Problem 1. Given µI and µC , test whether

µCpY q ď µIpY q, @Y PXT or µIpY q ď µCpY q, @Y PXT .

Problem 2. Given µI , µC , find the smallest αµC ,µI ą 0 and αµI ,µC ą 0 such that

if µCpY q ď µIpY q, @Y µIpY q ď αµC ,µI ¨µCpY q, @Y PXT , Y ě 0 (5a)
if µIpY q ď µCpY q, @Y µCpY q ď αµI ,µC ¨µIpY q, @Y PXT , Y ě 0. (5b)

A satisfactory answer to Problem 1 would provide a test for whether one of the formulations is
always over or under estimating risk as compared to the other. As we show, consistent measures
obtained by iterating the same primitive measure µ do not necessarily over (or under) estimate
risk as compared to µ, and this is true even when µ “ AVaRε, the case considered in [46, 44].
However, by composing µ with conditional expectation operators, one always obtains lower bounds
to the static risk measurement under µ. For instance, µ ˝E and E ˝µ are both lower bounds to a
given static evaluation by µ. By contrast, upper bounds are obtained only when composing with
worst-case operators in the final periods of the horizon: e.g., µ˝max is necessarily an upper bound
for µ, but max˝µ is not.

To understand the relevance of Problem 2, note that the minimal factors α‹µC ,µI and α‹µI ,µC satis-
fying (5a) and (5b), respectively, provide a compact notion of how closely µI can be approximated
through lower or upper bounding consistent measures µC , respectively. Since, in practice, it may be
far easier to elicit or estimate a single static risk measure µI , characterizing and computing α‹µC ,µI
and α‹µI ,µC constitutes the first step towards constructing the time-consistent risk measure µC that
is “closest” to a given µI . We note that a similar concept of inner and outer approximations by

5 Here and throughout the paper, we use the shorthand notation µ ˝ µ with the understanding that the elementary
risk measure µ is applied in stages tě 1 in a conditional fashion.



Iancu, Petrik and Subramanian: Tight Approximations of Dynamic Risk Measures
9

means of distortion risk measures appears in [12]. However, the goal and analysis there are quite
different, since the question is to approximate a static risk measure by means of another static
distortion risk measure.

In a different sense, the smallest α‹µI ,µC could be used to scale up risk measurements according
to µI in order to turn them into “safe” (i.e., conservative) estimates of measurements according
to µC . Scaling risk assessments by particular factors is actually common practice in financial risk
management: according to the rules set forth by the Basel Committee for banking regulation,
banks are required to report the 10-day VaR calculated at 1% level, which is then multiplied by a
factor of 3 to provide the minimum capital requirement for regulatory purposes; the factor of 3 is
meant to account for losses occurring beyond VaR, and also for potential model misspecification
(see Chapter 5 of [35]). Therefore, this usage of α‹µI ,µC could integrate well with practice.

We conclude the section by a remark pertinent to the two problems and our analysis henceforth.

Remark 1. On first sight, the requirement of non-negative Y in the text of Problem 2 might
seem overly restrictive. However, note that, if we insisted on µCpY q ď µIpY q holding for any cost
Y , and if µC , µI were allowed to take both positive and negative values, then the questions in
Problem 2 would be meaningless, in that no feasible α¨,¨ values would exist satisfying (5a) or (5b).
To this end, we are occasionally forced to make the assumption that the stochastic losses Y are
non-negative. This is not too restrictive whenever a lower bound YL is available for Y . By using the
cash-invariance property ([P2]) of the risk measures involved, one could reformulate the original
question with regards to the random loss Y ´ YL, which would be nonnegative. Furthermore, in
specific applications (e.g., multi-period inventory management [4]), Y is the sum of intra-period
costs Xt that are always non-negative, so requiring Y to be nonnegative is quite sensible.

3. Bounds for Coherent and Comonotonic Risk Measures. In this section, we seek
appropriate answers to Problem 1 and Problem 2, with the end-goal of characterizing the tightest
multiplicative approximation of a given inconsistent risk measure by means of lower (or upper)
bounding consistent risk measures.

To keep the discussion compact and avoid repetitive arguments, we first treat an abstract setting
of comparing two coherent measures on the same space of outcomes. The conditions that we derive
will be quite general, since no further structure will be imposed on the two measures. Section 3.2
will then discuss in detail the comparison between a time-inconsistent, comonotonic risk measure
µI and a consistent, comonotonic risk measure µC , deriving particular forms for the results and
conditions. In Section 3.3, we derive the main technical result needed to obtain multiplicative
bounds on inconsistent, comonotonic risk measures, which we then use in Section 3.2 to address
the main problems of interest.

Consider a discrete probability space pΩ,F ,Pq, and let X be the space of all random variables on
Ω (isomorphic with R|Ω|). On this space, we are interested in comparing two coherent risk measures
µ1,2 :X ÑR given by polyhedral sets of measures, i.e.,

µipY q “max
qPQi

qTY , @Y PX , @ i P t1,2u,

where Q1,2 Ď∆|Ω| are (bounded) polyhedra6. Our main focus is on (1) characterizing conditions
such that µ1pY q ď µ2pY q, @Y PX , and (2) finding the smallest factor α such that

µ1pY q ď µ2pY q ď αµ1pY q, @Y PX pY ě 0q.

6 Several of the results discussed here readily extend to arbitrary closed, convex sets of representing measures. We
restrict attention to the polyhedral case since it captures the entire class of comonotonic risk measures, it is simpler
to describe, and computationally advantageous, since evaluating the risk measure entails solving a linear program.



Iancu, Petrik and Subramanian: Tight Approximations of Dynamic Risk Measures
10

In this context, the risk measure µipY q can be identified as the support function of the convex
set Qi, so that the following standard result in convex analysis (see, e.g., [42, Corollary 13.1.1])
can be invoked to test whether one risk measure dominates the other.

Proposition 1. The inequality µ1pY q ď µ2pY q, @Y PX holds if and only if Q1 ĎQ2.

The usefulness of the latter condition critically depends on the representation of the sets of measures
Qi. For instance, if Qi are polytopes, the containment problem Q1 ĎQ2 is co-NP-complete when
Q1 is given by linear inequalities and Q2 is given by its extreme points, but it can be solved in
polynomial time, by linear programming (LP), for all the other three possible cases [26].

Proposition 1 also sheds light on the second question of interest, through the following corollary.

Corollary 1. There does not exist any α‰ 1 such that µ2pY q ď αµ1pY q, @Y PX .

Proof. For any αą 0, the condition tµ2pY q ď αµ1pY q, @Y PX u is equivalent to Q2 Ď αQ1. Since
Q1,2 Ď∆|Ω|, the containment cannot hold for any α‰ 1. ˝

This result prompts the need to restrict the space of random losses considered. As suggested in
Section 2.4, an eminently sensible choice is to take Y ě 0, which is always reasonable when a lower
bound on the losses is available. This allows us to characterize the desired conditions by examining
inclusions of down-monotone closures of the sets Qi. To this end, we introduce the following two
definitions (see Section A of the Appendix for more details and references).
Definition 4. A non-empty set QĎRn` is said to be down-monotone if for any x PQ and any

y such that 0ď yďx, we also have y PQ.
Definition 5. The down-monotone closure of a set QĎRn`, denoted by subpQq, is the smallest

down-monotone set containing Q, i.e.,

subpQq
def
“
 

x PRn` : Dq PQ, xď q
(

.

When restricting attention to nonnegative losses, one can readily show that a coherent risk
measure can be obtained by evaluating the worst case over an extended set of generalized scenar-
ios, given by the down-monotone closure of the original set. This is summarized in the following
extension of representation Theorem 1.

Proposition 2. Let µpY q “maxqPQ q
TY be a coherent risk measure. Then,

µpY q “ max
qPsubpQq

qTY , @Y ě 0. (6)

Proof. The inequality maxqPQ q
TY ďmaxqPsubpQq q

TY follows simply because QĎ subpQq. To
prove the reverse, consider any Y ě 0 and let q1 be the maximizer of maxqPsubpQq q

TY . By Defini-
tion 5, there exists q2 PQ such that q2 ě q1 ě 0. Then:

max
qPQ

qTY ě qT2 Y ě q
T
1 Y “ max

qPsubpQq
qTY . ˝

In view of this result, one can readily show that testing whether a risk measurement dominates
another can be done equivalently in terms of the down-monotone closures of the representing sets
of measures, as stated in the next result.

Lemma 1. The inequality µ1pY q ď µ2pY q, @Y PX holds if and only if subpQ1q Ď subpQ2q.

Proof. By Proposition 1, the above is equivalent to showing

Q1 ĎQ2ô subpQ1q Ď subpQ2q .
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pñq Consider q1 P subpQ1q. Then, by Definition 5, there exists q11 PQ1 such that q11 ě q1. Since
Q1 ĎQ2, we have q11 PQ2, and therefore q1 P subpQ2q.
pðq Note that Qi “ subpQiqX∆|Ω| for i“ 1,2. Then:

subpQ1q Ď subpQ2q ñ

subpQ1qX∆|Ω| Ď subpQ2qX∆|Ω| ô

Q1 ĎQ2 . ˝

Figure 2 depicts examples of the sets Q1,Q2 and their down-monotone closures subpQ1q and
subpQ2q, respectively. Note that the conditions provided by Lemma 1 hold for any cost Y , i.e.,
non-negativity is not needed; they may also be more efficient in practice than directly checking
Q1 ĎQ2, in cases when a suitable representation is available for subpQ1,2q, but not for Q1,2 [26].

By considering down-monotone closures and restricting to nonnegative losses, we can also address
the second question of interest, namely retrieving the smallest scaling factor α such that µ2pY q ď
α ¨µ1pY q. The following result characterizes any such feasible α.

Figure 2. Inclusion relation between Q1, Q2 (and the corresponding down-monotone closures, subpQ1q and subpQ2q,
respectively) that is equivalent to µ1pY q ď µ2pY q, @Y PX2.

Proposition 3. The inequality µ2pY q ď α ¨µ1pY q holds for all Y ě 0 if and only if subpQ2q Ď

α ¨ subpQ1q.

Proof. By Proposition 2, µipY q “maxqPsubpQiq q
TY for i“ 1,2. The claim then follows directly

from Lemma 1 in [29] (also see Theorem 11 in the Appendix). ˝

In view of this result, the minimal α exactly corresponds to the smallest inflation of the down-
monotone polytope subpQ1q that contains the down-monotone polytope subpQ2q. This identifica-
tion leads to the following characterization of the optimal scaling factor.

Theorem 3. Let α‹µ1,µ2
denote the smallest value of α such that µ2pY q ď α ¨µ1pY q, @Y ě 0.

1. If subpQ1q “
 

q PRn` : aTi qď bi, @ i P I
(

, where ai ě 0, bi ě 0, then

α‹µ1,µ2
“max

iPI

maxqPsubpQ2q
aTi q

bi
“max

iPI

maxqPQ2
aTi q

bi
“max

iPI

µ2paiq

bi
. (7)
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2. If Q1 “
 

q PRn : Aq ď b
(

, then α‹µ1,µ2
is the smallest value t such that the optimal value of

the following bilinear program is at most zero:

max
q,µ

pAq´ tbqTµ

q PQ2

µě 0
ATµě 0

(8)

Proof. The first claim is a known result in combinatorial optimization – see Theorem 11 in the
Appendix and Theorem 2 in [29] for a complete proof.

To argue the second claim, note that the smallest α can be obtained, by definition, as follows:

min
!

t : max
Y ě0

”

max
qPQ2

Y Tq´ t ¨max
qPQ1

Y Tq
ı

ď 0
)

“min
!

t : max
Y ě0

”

max
qPQ2

Y Tq´ t ¨ min
ATµ“Y
µě0

bTµ
ı

ď 0
)

“min
!

t : max
qPQ2
µě0

ATµě0

pAq´ tbqTµď 0
)

.

The first equality follows by strong LP duality applied to the maximization over q P Q1, which
always has a finite optimum since Q1 is bounded. The second equality follows by replacing the inner
minimization with a maximization, switching the order of the maximizations, and eliminating the
variables Y . ˝

The results in Theorem 3 give a direct connection between the problem of computing α‹µ1,µ2
and

the representations available for the sets Qi and subpQiq. More precisely,
• If a polynomially-sized inequality description is available for subpQ1q, then α‹µ1,µ2

can be
obtained by solving the small number of LPs in (7). Every such LP essentially entails an evaluation
of the risk measure µ2, leading to an efficient overall procedure.
• If a compact inequality representation is available for Q1, then α‹µ1,µ2

can be found by bisection
search over tě 0, where in each step the bilinear program in (8) is solved. Since bilinear programs
can be reformulated as integer programs [31], for which powerful commercial solvers are available,
this approach may lead to a scalable procedure, albeit not one with polynomial-time complexity.

Our observations concerning the complexity of testing subpQ2q Ď α ¨ subpQ1q are summarized in
Table 1 below. When Q2 or subpQ2q have polynomially-sized vertex descriptions, the test simply
requires checking containment for a finite set of points, and when subpQ2q has a polynomially-
sized description, the results of Theorem 3 apply. We conjecture that all the remaining cases are
NP-complete, but do not pursue a formal analysis in the present paper. Section 4.1 revisits the
question of computational complexity in the context of comonotonic risk measures, and argues that
the general containment problem is NP-hard.

Poly extpQ1q Poly facepQ1q Poly extpsubpQ1qq Poly facepsubpQ1qq

Poly extpQ2q P P P P
Poly facepQ2q P
Poly extpsubpQ2qq P P P P
Poly facepsubpQ2qq P

Table 1. Computational complexity for determining whether µ2pY q ď α ¨ µ1pY q, @Y ě 0 for a given α ą 0. “Poly
ext” and “Poly face” denote a polynomially-sized vertex and inequality description, respectively. “P” denotes a
polynomial-time algorithm is available.

We conclude our general discussion by noting that the tightest scaling factor α‹µ1,µ2
can also be

used to directly re-examine the first question of interest, namely testing when a given coherent
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risk measure upper bounds another. This is formalized in the following corollary, which is a direct
result of Lemma 1 and Proposition 3.

Corollary 2. The inequality µ2pY q ď µ1pY q, @Y PX holds if and only if α‹µ1,µ2
ď 1.

The latter result suggests that characterizing and computing the tightest scaling factor is instru-
mental in answering all questions relating to the approximation of a coherent risk measure by
means of another. In particular, given µ1 and µ2, by determining the scaling factors α‹µ1,µ2

and
α‹µ2,µ1

, we can readily test domination and also approximate one measure by the other, as follows:
• If α‹µ2,µ1

ď 1, then µ1pY q P
“

1
α‹µ1,µ2

, 1
‰

¨µ2pY q, @Y ě 0.

• If α‹µ1,µ2
ď 1, then µ1pY q P

“

1, α‹µ2,µ1

‰

¨µ2pY q, @Y ě 0.

3.1. Tightest Time Consistent and Coherent Upper Bound. The results and exposi-
tion in the prior section made no reference to the way in which the coherent risk measures µ1,2

were obtained, as long as the sets of representing measures Q1,Q2 were polyhedral. In this section,
we discuss some of these results in the context of Section 2.4 – more precisely, we take µ1 as the
time-inconsistent risk measure µI , while µ2 denotes the compositional measure µC .

Our goal is to show that, when µI is coherent, a complete characterization of the tightest possible
uniform upper bound to µI is readily available, and is given by a popular construction in the liter-
ature [22, 45, 6, 54]. This not only yields the tightest possible factor α‹µI ,µC , but also considerably
simplifies the test µIpY q ď µCpY q, @Y , for any coherent µC .

The next proposition introduces this construction for an arbitrary coherent measure µ.

Proposition 4. Consider a risk measure µpY q “ supqPQ q
TY , @Y P XT , and define the risk

measure µ̂pY q
def
“ pµ̂1 ˝ µ̂2 ˝ ¨ ¨ ¨ ˝ µ̂T qpY q, where the mappings µ̂t ”

`

µ̂i
˘

iPΩt´1
:XtÑXt´1 are given by

@ t P r1, T s, @ i PΩt´1, µ̂ipY q
def
“ sup
qPQ̂iµ

qTY , @Y PR|Ci|, (9)

pQiµ
def
“

!

q P∆|Ci| : Dp PQ : qj “
ppDjq

ppDiq
, @ j PCi

)

. (10)

Then, µ̂ is a time-consistent, coherent risk measure, and µpY q ď µ̂pY q, @Y PXT .

As mentioned, this construction has already been considered in several papers in the literature,
and several authors have recognized that it provides an upper bound to µ. It is known that µ̂ is
time-consistent, and has a representation of the form µ̂pY q “ supqP pQµ q

TY , @Y P XT , where the

set pQµ has a product or rectangular structure. Note that it is obtained by computing products of
the sets pQiµ of single-step conditional probabilities obtained by marginalization at each node in the

tree. Furthermore, QĎ pQµ, and therefore µpY q ď µ̂pY q, @Y PXT [22, 45, 54].

Example 1 Revisited. To understand the construction, consider again Example 1. The set
Q yielding the inconsistent measure µ at the root node R is given by two probabilities, corresponding
to p“ 0.4 and p“ 0.6, i.e.,

Q“ tp0.16, 0.24, 0.24, 0.36q, p0.36, 0.24, 0.24, 0.16q u.

The sets of conditional one-step probabilities corresponding to nodes U, D, and R are then:

pQUµ “ pQDµ “ pQRµ “ tp0.4, 0.6q, p0.6, 0.4qu.

This yields a set pQµ containing eight different probability measures, for all possible products of
one-step measures chosen from pQUµ , pQDµ , pQRµ . More precisely,

pQµ “
 

p0.16, 0.24, 0.24, 0.36q, p0.16, 0.24, 0.36, 0.24q, p0.24, 0.16, 0.24, 0.36q, p0.24, 0.16, 0.36, 0.24q,
p0.24, 0.36, 0.16, 0.24q, p0.24, 0.36, 0.24, 0.16q, p0.36, 0.24, 0.16, 0.24q, p0.36, 0.24, 0.24, 0.16q

(

.
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In this context, we claim that xµI actually represents the tightest upper bound for µI , among all
possible coherent and time-consistent upper bounds. This is formalized in the following result.

Lemma 2. Consider any risk measure µIpY q “ supqPQI q
TY , @Y P XT , and let xµI be the cor-

responding risk measure obtained by the construction in Proposition 4. Also, consider any time-
consistent, coherent risk measure µCpY q

def
“ pρ1 ˝ ρ2 ¨ ¨ ¨ ˝ ρT qpY q, where ρt ”

`

ρit
˘

iPΩt´1
: XtÑ Xt´1

are given by

ρitpY q “max
qPQiρ

qTY , @Y PR|Ci|,

for some closed and convex sets Qiρ Ď∆|Ci|. Then, the following results hold:
1. If µCpY q ě µIpY q, @Y PXT , then

µCpY q ěxµIpY q, @Y PXT and α‹µI ,pµ ď α
‹
µI ,µC

. (11)

2. µCpY q ě µIpY q, @Y PXT holds if and only if

pQiµI ĎQ
i
ρ, @ i PΩt´1, @ t P r1, T s. (12)

Proof. [1] Since µC is a coherent risk measure, it can always be written as µCpY q “maxqPQC q
TY .

Furthermore, it is known that the set of representing measures QC is obtained by taking products
of the sets Qiρ (see, e.g., Roorda et al. [45] or Föllmer and Schied [25]). Due to this property, QC
is closed under the operation of taking marginals and computing the product of the resulting sets
of conditional one-step measures [22, 45, 6], i.e.,

Qiρ “
!

q P∆|Ci| : Dp PQC : qj “
ppDjq

ppDiq
, @ j PCi

)

. (13)

Since µCpY q ě µIpY q, we must have QI Ď QC . But then, from (10) and (13), we obtain that
Q̂i
µI
ĎQiρ, @ i PΩt´1, @ t. This readily implies that pQµI ĎQC , and hence xµIpY q ď µCpY q, @Y . The

inequality for the multiplicative factors α‹µI ,¨ follows from the definition.
[2] For the second result, note that the “ñ” implication has already been proved in the first

part. The reverse direction follows trivially since pQiµI Ď Qiρ implies that pQµI Ď QC , and, since
µIpY q ďxµIpY q, we have µIpY q ď µCpY q, @Y . ˝

The result above is useful in several ways. First, it suggests that the tightest time-consistent,
coherent upper bound for a given µI is xµI . This not only yields the smallest possible multiplicative
factor α‹µI ,¨, but the upper-bound is uniform, i.e., for any loss Y . Also, α‹µI ,xµI is a lower bound
on the best possible α‹µI ,µC when the consistent measures µC are further constrained, e.g., to be
comonotonic.

The conditions (13) also prescribe a different way of testing µI ď µC , by examining several
smaller-dimensional tests involving the sets pQiµI ,Qiρ Ď∆|Ci|. This will also prove relevant in our
subsequent analysis of the case of comonotonic risk measures.

3.2. The Comonotonic Case. The results introduced in Section 3 and Section 3.1 become
more specific when the risk measures QI and QC are further restricted to be comonotonic. We
discuss a model with T “ 2, but the approach and results readily extend to a finite number of time
periods, a case which we revisit in Section 3.4.

We start by characterizing µI , with its set of representing measures QI and its down closure
subpQIq. The central result here, formalized in the next proposition, is the identification of QI
with the base polytope corresponding to a particular Choquet capacity c. This analogy proves
very useful in our analysis, since it allows stating all properties of QI by employing known results
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for base polytopes of polymatroid rank functions7, a concept studied extensively in combinatorial
optimization (see Section B of the Appendix for all the results relevant to our treatment, and
[27, 53] for a comprehensive review).

Proposition 5. Consider a näıve dynamic comonotonic risk measure µI : X2 Ñ R, with
µIpY q

def
“maxqPQI q

TY , @Y PX2. Then, there exists a Choquet capacity c : 2|Ω2|ÑR such that
1. The set of measures QI is given by the base polytope corresponding to c, i.e.,

QI ”Bc def
“
 

q PR|Ω2| : qpSq ď cpSq, @S ĎΩ2, qpΩ2q “ cpΩ2q
(

. (14)

2. The down-monotone closure of QI is given by the polymatroid corresponding to c, i.e.,

subpQIq ”Pc def
“
 

q PR|Ω2|

` : qpSq ď cpSq, @S ĎΩ2

(

. (15)

Proof. By Theorem 1 for comonotonic risk measures, there exists a Choquet capacity c such that
QI “

 

q P∆|Ω2| : qpSq ď cpSq, @S ĎΩ2

(

. Since cpΩ2q “ 1, this set can be rewritten equivalently as
the base polytope corresponding to c (also refer to Corollary 7 of the Appendix for the argument
that Bc ĂR|Ω2|

` ). For the second claim, we can invoke a classical result in combinatorial optimization,
that the downward monotone closure of the base polytope Bc is exactly given by the polymatroid
corresponding to the rank function c, i.e., Pc (see Theorem 12 in Section B). ˝

In particular, both sets QI and subpQIq are polytopes contained in the non-negative orthant,
and generally described by exponentially many inequalities, one for each subset of the ground set
Ω2. However, evaluating the risk measure µI for a given Y PX2 can be done in time polynomial in
|Ω2|, by a simple Greedy procedure (see Theorem 13 in the Appendix or Lemma 4.92 in [25]).

In view of the results in Section 3.1, one may also seek a characterization of the tightest upper
bound to µI , i.e., xµI , or of its set of representing measures pQµI . Unfortunately, this seems quite
difficult for general Choquet capacities c – a particular case when it is possible is when µI is given
by AVaRε, a case discussed in our companion paper Huang et al. [32]. However, the result in
Lemma 2 nonetheless proves useful for several of the results in this section.

The following result provides a characterization for the time-consistent and comonotonic risk
measure µC “ µ1 ˝µ2 as a coherent risk measure, by describing its set of representing measures QC
and its down-monotone closure subpQCq.

Proposition 6. Consider a two-period consistent, comonotonic risk measure µCpY q “ µ1 ˝µ2,
where µt :XtÑXt´1. Then,

1. There exists QC Ď∆|Ω2| such that µCpY q
def
“maxqPQC q

TY , @Y PX2.
2. The set of measures QC is given by

QC def
“

"

q P∆|Ω2| : Dp P∆|Ω1|,
ppSq ď c1pSq, @S ĎΩ1

qpUq ď pi ¨ c2|ipUq, @U ĎCi, @ i PΩ1

*

”

!

q P∆|Ω2| : Dp PBc1 : q|Ci PBpi¨c2|i , @ i PΩ1

)

,

where c1 : 2|Ω1|Ñ R and c2|i : 2|Ci|Ñ R, @ i P Ω1 are Choquet capacities, and Bc1 ,Bc2|i are the base
polytopes corresponding to c1 and c2|i, respectively.

3. The downward monotone closure of QC is given by

subpQCq def
“

"

q PR|Ω2|

` : Dp PR|Ω1|

` ,
ppSq ď c1pSq, @S ĎΩ1,
qpUq ď pi ¨ c2|ipUq, @U ĎCi, @ i PΩ1

*

“

!

q PR|Ω2|

` : Dp PPc1 : q|Ci PPpi¨c2|i , @ i PΩ1

)

where Pc1 and Ppic2|i are the polymatroids associated with c1 and pic2|i, respectively.

7 We note that, with the exception of the normalization requirement cpΩq “ 1 that is unimportant for analyzing
fundamental structural properties, the definition of a Choquet capacity is identical to that of a rank function of a
polymatroid [27, Chapter 2]. Therefore, we use the two names interchangeably throughout the current paper.
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Proof. The proof is technical, and involves a repeated application of ideas similar to those in the
proof of Proposition 5. Therefore, we relegate it to Section C of the Appendix. ˝

As expected, the set of product measures QC and its down-monotone closure subpQCq have a
more complicated structure than QI and subpQIq, respectively. However, they remain polyhedral
sets, characterized by the base polytopes and polymatroids associated with particular Choquet
capacities c1 and c2|i. The inequality descriptions of QC and subpQCq involve exponentially many
constraints, but evaluating µCpY q at a given Y PX2 can still be done in time polynomial in |Ω2|,
by using the Greedy procedure suggested in Theorem 13 in a recursive manner.

Because QI and QC are polytopes, they can also be described in terms of their extreme points.
The description of the vertices of polymatroids and base polytopes has been studied extensively in
combinatorial optimization (see Theorem 14 in the Appendix or [53] for details). Here, we apply
the result for the case of QI , and extend it to the special structure of the set QC .

Proposition 7. Consider two risk measures µI and µC, as given by Proposition 5 and Propo-
sition 6. Then,

1. The extreme points of QI are given by

qσpiq “ c
`

Yik“1σpkq
˘

´ c
`

Yi´1
k“1σpkq

˘

, i P r1, |Ω2|s,

where σ PΠpΩ2q is any permutation of the elements of Ω2.
2. The extreme points of QC are given by

qσ`piq “
”

c1

`

Y`k“1πpkq
˘

´ c1

`

Y`´1
k“1πpkq

˘

ı

¨

”

c2|`

`

Yik“1σ`pkq
˘

´ c2|`

`

Yi´1
k“1σ`pkq

˘

ı

, @ i P r1, |C`|s,@ ` PΩ1,

where π PΠpΩ1q is any permutation of the elements of Ω1, and σ` PΠpC`q is any permutation of
the elements of C` (for each ` PΩ1).

Proof. Part (1) follows directly from the well-known characterization of the extreme points of
an extended polymatroid, summarized in Theorem 14.

Part (2) follows by a repeated application of Theorem 14 to both p and q in the description of
QC of Proposition 6. In particular, any value of p can be expressed as a convex combination of the
extreme points pπ of Bc1 such that p“

ř

πPΠpΩ1q
λπp

π for appropriate tλπuπPΠpΩ1q
. Now, for each

` P Ω1 the value q|C` P Pp`¨c2|` can be similarly expressed as a convex combination of the extreme
points qσ` for an appropriate set of convex weights tξσuσPΠpC`q, such that

q|C` “ p` ¨
ÿ

σPΠpC`q

ξσq
σ
` “

ÿ

πPΠpΩ1q

ÿ

σPΠpClq

λπξσp
π
` q

σ
` “

ÿ

πPΠpΩ1q

ÿ

σPΠpC`q

χπ,σp
π
` q

σ
` .

The proposition then follows directly from the fact that χπ,σ are themselves convex combination
coefficients, and pπ` q` are extreme points. ˝

3.3. Computing the Optimal Bounds α‹µC ,µI and α‹µI ,µC . With the representations pro-
vided above, we now derive our main technical result, establishing a method for computing the
tightest multiplicative bounds for a pair of consistent and inconsistent comonotonic risk measures.
The following theorem summarizes the result.

Theorem 4. For any pair of risk measures µI and µC as introduced in Section 3.2,

α‹µC ,µI “ max
qPsubpQI q

max
SĎΩ1

ř

iPS maxUĎCi
qpUq

c2|ipUq

c1pSq
(16)

α‹µI ,µC “ max
qPsubpQCq

max
SĎΩ2

qpSq

cpSq
. (17)

Furthermore, the value for α‹µC ,µI remains the same if the outer maximization over q is done over
QI , extpQIq or extpsubpQIqq, and corresponding statements hold for α‹µI ,µC .
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Proof. To prove the first result, recall from Proposition 3 that for any Y ě 0,

µIpY q ď α ¨µCpY q ô subpQIq Ď α ¨ subpQCq .

Consider an arbitrary q P subpQIq. Any feasible scaling α ą 0 must satisfy that 1
α
q P subpQCq.

Using the representation for subpQCq in Proposition 6, this condition yields

1

α
q P subpQCqô Dp PR|Ω1|

` :

#

ppSq ď c1pSq, @S ĎΩ1

1

α
qpUq ď pi ¨ c2|ipUq, @U ĎCi, @ i PΩ1.

The second set of constraints implies that any feasible p satisfies pi ě
1
α

maxUĎCi
qpUq

c2|ipUq
, @ i P Ω1.

Corroborated with the first set of constraints, this yields

1

α

ÿ

iPS

max
UĎCi

qpUq

c2|ipUq
ď
ÿ

iPS

pi ď c1pSq, @S ĎΩ1 ô

αěmax
SĎΩ1

ř

iPS maxUĎCi
qpUq

c2|ipUq

c1pSq
.

Since this must be true for any q P subpQIq, the smallest possible α is given by maximizing the
expression above over q P subpQIq, which leads to the result (16).

The expression for α‹µI ,µC is a direct application of the second part of Theorem 3, by identifying
subpQ1q with subpQIq and using the compact representation for subpQIq from Proposition 5.

The claim concerning the alternative sets follows by recognizing that the function maximized is
always nondecreasing in the components of q, so that subpQq can be replaced with Q, and it is
also convex in q, hence reaching its maximum at the extreme points of the feasible set. ˝

From Theorem 4, it can readily seen that, when µC ď µI , the optimal α‹µC ,µI will always be at
least 1, and can be `8 whenever the dimension of the polytope QC is strictly smaller than that
of QI . Similarly, when µI ď µC , the optimal α‹µI ,µC is always at least 1, and can be `8 when the
dimension of the polytope QI is smaller than QC . To avoid the cases of unbounded optimal scaling
factors, one can make the following assumption about the Choquet capacities.

Assumption 1 (Relevance). The Choquet capacities c, c1, c2|i appearing in the representa-
tions for µI and µC (Proposition 5 and Proposition 6) satisfy the properties

cptkuq ą 0, @k PΩ2

c1ptiuq ą 0, @ i PΩ1

c2|iptjuq ą 0, @ i PΩ1, @ j PCi.

This ensures that both risk measures consider all possible outcomes in the scenario tree, and is in
line with the original requirement of relevance in [5], which states that, for any random cost Y such
that Y ě 0 and Y ‰ 0, any risk measure µ should satisfy µpY q ą 0. In this case, the polytopes QI
and QC are both full-dimensional (see [8] and Appendix A), which leads to finite minimal scalings.

As suggested in our general exposition at the beginning of Section 3, determining the optimal
scaling factors α‹µC ,µI and α‹µI ,µC also leads to direct conditions for determining whether µC lower
bounds µI or viceversa. The following corollary states these in terms of optimization problems.

Corollary 3. For any pair of risk measures µI and µC as introduced in Section 3.2,
1. The inequality µCpY q ď µIpY q, @Y PX2 holds if and only if

max
qPextpQCq

max
SĎΩ2

“

qpSq´ cpSq
‰

ď 0.



Iancu, Petrik and Subramanian: Tight Approximations of Dynamic Risk Measures
18

2. The inequality µIpY q ď µCpY q, @Y PX2 holds if and only if

max
qPextpQI q

max
SĎΩ1

„

ÿ

iPS

max
UĎCi

qpUq

c2|ipUq
´ c1pSq



ď 0.

Proof. The proof follows from Corollary 2, by recognizing that the condition µC ď µI is equiv-
alent to setting α‹µI ,µC ď 1 (and similarly for the reverse inequality and α‹µC ,µI ). The formulas in
Theorem 4 then immediately yield the desired conclusions. ˝

The results in Corollary 3 are stated in terms of non-trivial optimization problems. It is also
possible to write out the conditions in a combinatorial fashion, using the analytical description of
the extreme points of QC and QI , as summarized in the following corollary.

Corollary 4. For any pair of risk measures µI and µC as introduced in Section 3.2,
1. The inequality µCpY q ď µIpY q, @Y PX2 holds if and only if

|Ω1|
ÿ

j“1

”

c1

`

Y
j
k“1sk

˘

´ c1

`

Y
j´1
k“1sk

˘

ı

¨ c2|sj pUsj q ď c
`

YiPΩ1
Ui
˘

,

where ps1, . . . , s|Ω1|
q denotes any permutation of the elements of Ω1, and Ui ĎCi for any i PΩ1.

2. The inequality µIpY q ď µCpY q, @Y PX2 holds if and only if

c
`

YiPSCi
˘

ď c1pSq, @S ĎΩ1,
cpUq

cpUq` 1´ cpΩ2zCiYUq
ď c2,ipUq, @U ĎCi, @ i PΩ1.

Proof. The proof is slightly technical, so we defer it to Section C of the Appendix. ˝

The above conditions are explicit, and can always be checked when oracles are available for
evaluating the relevant Choquet capacities. The main shortcoming of that approach is that the
number of conditions to test is generally exponential in the size of the problem, even for a fixed
T : O

`

p|Ω1|!q ¨ 2|Ω2|
˘

for µC ď µI , and Op|A| ¨ 2maxiPA |Ci|q for µI ď µC , respectively, where A
def
“

YtPr0,T´1sΩt. However, under additional assumptions on the Choquet capacities or the risk mea-
sures, it is possible to derive particularly simple polynomially-sized tests. We refer the interested
reader to the discussion in Section 4.1 and the example in Section 4.3.

We note that the reason the conditions for µI ď µC take a decoupled form and result in a smaller
overall number of inequalities is directly related to the results of Lemma 2, which argues that
testing µI ď µC can be done by separately examining conditions at each node of the scenario tree.

3.4. Multi-stage Extensions. Although we focused our discussion thus far on a setting with
T “ 2, the ideas can be readily extended to an arbitrary, finite number of periods. We briefly
outline the most relevant results in this section, but omit including the proofs, which are completely
analogous to those for T “ 2.

In a setting with general T , our goal is to compare a comonotonic µI with a time-consistent,
comonotonic µC

def
“ µ1 ˝µ2 ˝ ¨ ¨ ¨ ˝µT . The former is exactly characterized by Proposition 5, while the

representation for the latter can be summarized in the following extension of Proposition 6.

Proposition 8. Consider a time-consistent, comonotonic risk measure µC. Then,
1. There exists QC Ď∆|ΩT | such that µCpY q

def
“maxqPQC q

TY , @Y PX2.
2. The set of measures QC is given by

QC def
“
 

pT P∆|ΩT | : Dtpt P∆|Ωt|utPr1,T´1s, ptpUq ď pt´1ptiuq ¨ ct|ipUq, @U ĎCi, @ i PΩt´1, @ t P r1, T s
(

”
 

pT P∆|ΩT | : Dtpt P∆|Ωt|utPr1,T´1s, pt|Ci PBpt´1ptiuq¨ct|i
, @ i PΩt´1, @ t P r1, T s

(

, (18)

where ct|i : 2|Ci|Ñ R are Choquet capacities with corresponding base polytopes Bct|i, for every t P
r1, T s and for every i PΩt´1.
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3. The downward monotone closure subpQCq of QC is obtained by replacing ∆|Ωt| with R|Ωt|` and
Bpt´1ptiuq¨ct|i

with the polymatroid Ppt´1ptiuq¨ct|i
in equation (18).

The proof exactly parallels that of Proposition 6, and is omitted due to space considerations.
With this result, we can now extend our main characterization in Theorem 4 for the optimal
multiplicative factors to a multi-period setting, as follows.

Theorem 5. For any comonotonic measure µI and time-consistent comonotonic measure µC,

α‹µC ,µI “ max
qPsubpQI q

max
SĎΩ1

ř

iPS z1pi,qq

c1pSq
, (19)

where zT pi,qq
def
“ qi, @ i PΩT , and ztpi,qq

def
“maxUĎCi

ř

iPU zt`1pi,qq

ct`1|ipUq
, @ t P r1, T ´ 1s, @ i PΩt. Also,

α‹µI ,µC “ max
qPsubpQCq

max
SĎΩT

qpSq

cpSq
. (20)

Furthermore, the value for α‹µC ,µI would remain the same if the outer maximization were taken
over QI , extpQIq or extpsubpQIqq. Corresponding statements hold for α‹µI ,µC .

The proof follows analogously to that of Theorem 4, by using the expressions for subpQIq and
subpQCq provided by Proposition 5 and Proposition 8, respectively, to analyze the conditions
subpQIq Ď α ¨ subpQCq or vice-versa. We omit it for brevity.

By comparing (22) and (20) with their two-period analogues in (16) and (17), respectively, it
is interesting to note that the complexity of the formulation for α‹µI ,µC remains the same, while
the optimization problems yielding α‹µC ,µI get considerably more intricate. Section 4 contains a
detailed analysis of the computational complexity surrounding these problems.

For completeness, we remark that direct multi-period counterparts for Corollary 3 and Corol-
lary 4 can be obtained, by recognizing that µCpY q ď µIpY q, @Y is equivalent to α‹µI ,µC ď 1, and by
using the results in Theorem 5 and Lemma 2 to simplify the latter conditions. We do not include
these extensions due to space considerations.

4. Discussion of the Results. In view of the results in the previous section, several nat-
ural questions emerge. What is the computational complexity of determining the optimal scaling
factors α‹µI ,µC and α‹µC ,µI for coherent/comonotonic risk measures? If this is generally hard, are
there special cases that are easy, i.e., admitting polynomial-time algorithms? What examples of
time-consistent risk measures can be derived starting with a given µI , and how closely do they
approximate the original measure?

The goal of the present section is to address these questions in detail. As we argue in Section 4.1,
computing the scaling factors is hard even when restricting attention to distortion risk measures
– a proper subclass of comonotonic measures. However, several relevant cases are nonetheless
tractable. Section 4.2 introduces examples obtained by composing µI with the conditional expecta-
tion operator “E” or conditional worst-case operator “max”, and compares them in terms of their
approximation strength. Section 4.3 then summarizes the case when µI and µC correspond to the
AVaR risk measure, and shows how many of the results drastically simplify.

4.1. Computational Complexity. As argued in Section 3, computing the optimal scaling
factors α‹µI ,µC and α‹µC ,µI entails solving the optimization problems in (16) and (17). We now show
that this is NP hard even for a problem with T “ 1, and even when only examining distortion
risk measures. We use a reduction from the SUBSET-SUM problem, which is NP hard [18] and is
defined as follows.



Iancu, Petrik and Subramanian: Tight Approximations of Dynamic Risk Measures
20

Definition 6 (SUBSET-SUM). Given a set of integers tk1, k2, . . . , kmu, is there a subset that
sums to s?

This following result is instrumental in showing the complexity of computing the optimal scalings
α‹µI ,µC and α‹µC ,µI .

Theorem 6. Consider two arbitrary distortion risk measures µ1,2 : X1 Ñ R. Then, it is NP-
hard to decide if α‹µ2,µ1

ě γ, for any γ ě 0. The problem remains NP-hard even when µ2pY q ď µ1pY q,
for all Y PX1 pY ě 0q.

Proof. We use the representation of distortion risk measures to show the reduction from the
SUBSET-SUM problem. By the representation Theorem 1 written for the specific case of distortion
measures yields, µipY q “maxqPQi q

TY , where

Qi “
!

q P∆|Ω2| : qpSq ď cipSq, @S ĎΩ1

)

, @ i P t1,2u,

and cipSq “Ψi

`

PpSq
˘

, where Ψi : r0,1sÑ r0,1s are concave, increasing functions satisfying Ψip0q “
0, Ψip1q “ 1. Because both subpQ1q and subpQ2q are polymatroids and downward monotone, the
second result in Theorem 4 can be further simplified to:

α‹µ2,µ1
“max

SĎΩ1

c1pSq

c2pSq
. (21)

Now, consider a SUBSET-SUM problem with values k1, k2 . . . km and a value s such that 1ď săK,
where K “

řm

j“1 kj. Construct the functions c1 and c2 as follows:

Ppsiq “ ki{K c1pSq “min
!

`

PpSq ¨K
˘

{s,1
)

c2pSq “min
!

c1pSq,
a

PpSq
)

Since both c1, c2 satisfy the conditions of distortion risk measures, any SUBSET-SUM problem
can be reduced to the problem of computing the optimal scale of two distortion risk measures.

Now, the optimal value of (21) is upper bounded as:

max
SĎΩ1

c1pSq

c2pSq
ď

c

K

s
.

The maximum is achieved when there exists S such that PpSq “ s{K. To show this, consider
c1pSq{c2pSq as a function of PpSq. This function is: (1) non-decreasing on the interval r0, s{Kq
and non-increasing on the interval ps{K,1s, (2) strictly greater than one for PpSq “ s{K, (3) equal
to 1 for PpSq P t0,1u, and (4) continuous. Therefore, the SUBSET-SUM problem has a subset
that sums to s if and only if the optimal value of (21) is

a

K{s. Finally, the result also holds
when µ2pY q ď µ1pY q, since our choice already has c2pSq ď c1pSq for all S Ď Ω1, which implies
µ2pY q ď µ1pY q. ˝

The complexity of computing the optimal scalings α‹µI ,µC and α‹µC ,µI readily follows as a direct
corollary of Theorem 6.

Corollary 5. Under a fixed T ě 1 and for any given γ ě 0, it is NP-complete to decide
whether α‹µC ,µI ě γ for an arbitrary inconsistent distortion measure µI and a consistent distortion
measure µC. The result remains true even when µC and µI are such that µCpY q ď µIpY q for all
Y PXT pY ě 0q. Similarly, it is NP-complete to decide whether α‹µI ,µC ě γ, and the result remains
true even when µIpY q ď µCpY q, @Y PXT pY ě 0q.

Proof. First, note that finding the scaling factors for any T ą 1 is at least as hard as for T “ 1.
This can be seen by setting |Ωt| “ 1 for all t P r2, T ´ 1s. The NP-hardness then follows from The-
orem 6 by setting µ2 “ µC and µ1 “ µI . The membership in NP follows by checking the inequality
(16) for every extreme point q, subset S, and the appropriate subsets U . The second result follows
analogously. ˝
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Corollary 5 argues that computing the optimal scaling factors for arbitrary distortion risk mea-
sures cannot be done in polynomial time. While the NP-hardness may be somewhat disappointing,
solving the two optimization problems in Theorem 4 is nonetheless clearly preferable to simply
examining all possible values of Y .

While the problem of computing the scaling factors is hard for general distortion measures,
polynomial-time algorithms are possible when the representations of QI ,QC or subpQIq, subpQCq
fall in the tractable cases discussed in Table 1 of Section 3.

In fact, some of the results of Table 1 can even be strengthened - one such case is when a vertex
description for the polytope QI is available, and problem (22) can be solved in time polynomial in
|ΩT |, under oracle access to the Choquet capacities ct|i yielding the measure µC .

Lemma 3. If the polytope QI is specified by a polynomial number of extreme points, then α‹µC ,µI
can be computed in time polynomial in |ΩT |.

Proof. Consider the specialization of (22) for a fixed q PQI :

α‹µC ,µI “ max
qPsubpQI q

max
SĎΩ1

z1pU,qq

c1pSq
, (22)

where zT pi,qq
def
“ qi, @ i PΩT , and ztpi,qq

def
“maxUĎCi

zt`1pU,qq

ct`1|ipUq
, @ t P r1, T ´ 1s, @ i PΩt.

Note that each value ztpi,qq and also α‹µC ,µI can be written as:

ztpi,qq “max
UĎCi

zt`1pU,qq

ct`1|ipUq
“min

!

l PR : l ¨ ct`1|ipUq´zt`1pU,qq ě 0, @U ĎCi
)

.

For any l, the constraint l ¨ ct`1|ipUq´ zt`1pU,qq ě 0, @U ĎCi can be checked in polynomial time,
since the set function on the left-hand side is submodular in U , and can be minimized with a
polynomial number of function evaluations [53]. ˝

The result above is slightly stronger than what Table 1 suggests, since the representation of
QC ”Q1 can still be exponential both in terms of extreme points and vertices, as long as oracle
access to ct|i is available.

4.2. Examples. To see how our results can be used to examine the tightness of particular
dynamically consistent risk measures, we now consider several constructions suggested in the lit-
erature. The starting point is typically a single distortion risk measure µI :X2 ÑR, denoting the
inconsistent evaluation. This is then composed with other suitable measures (for instance, with
itself, with the conditional expectation and/or the conditional worst-case operator), to obtain time-
consistent risk measures that are derived from µI . The questions we would like to address here is
which of these measures lower-bound or upper-bound the inconsistent evaluation µI , and what can
be said about the relative tightness of the various formulations.

In order to construct dynamically-consistent measures by composing µI , we must first specify
the conditional one-step risk mappings corresponding to µI , formally denoted by µ1

I :X1 ÑR and
µ2
I : X2 Ñ X1. When µI is a distortion risk measure, this can be done in a natural way in terms

of the corresponding concave distortion function. To this end, recall that, by the representation
Theorem 1, any distortion measure µI is uniquely specified by the concave function Ψ yielding its set
of representing measures, through the Choquet capacity cpSq “ΨpPpSqq, @S ĎΩ2. The conditional
one-step risk mappings µ1

I and µ2
I ” pµ

2|i
I qiPΩ1

are then obtained by applying the same distortion

function Ψ to suitable conditional probabilities. More precisely, µ1
I and µ

2|i
I are the distortion risk

measures corresponding to the Choquet capacities:

c1 : 2Ω1 ÑR, c1pSq “Ψ
´

ÿ

iPS

PpCiq
¯

, @S ĎΩ1
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c2|i : 2CiÑR, c2|ipUiq “Ψ
´PpUiq
PpCiq

¯

, @Ui ĎCi, @ i PΩ1.

The conditional risk mappings µ1
I and µ2

I can be used to define dynamic time-consistent risk
measures, either alone or by composition with other conditional risk mappings. In particular, all
of the following dynamic time-consistent risk measures have been considered in the literature:

E ˝µ2
I µ1

I ˝E µ1
I ˝µ

2
I µ1

I ˝max max˝µ2
I ,

where E denotes the conditional expectation operator, and max is the conditional worst-case oper-
ator. Whenever the meaning is clear from context, we sometimes omit the time-subscript, and
use shorthand notation such as E ˝ µI , µI ˝E, µI ˝ µI , etc., although we are formally referring to
compositions with µ1

I and/or µ2
I .

4.2.1. Time-Consistent Lower Bounds Derived From a Given µI. We begin by dis-
cussing two choices for lower-bounding consistent risk measures derived from µI . The following
proposition formally establishes the first relevant result.

Proposition 9. Consider any distortion risk measure µI : X2 Ñ R, and the time-consistent,
comonotonic measures µI ˝E and E ˝µI . Then, for any cost Y PX2,

pµI ˝EqpY q ď µIpY q and pE ˝µIqpY q ď µIpY q.

Proof. The proof entails directly checking the conditions in Corollary 4. A complete derivation
is included in Section C of the Appendix.

This is not a surprising result, since the E operator is known to be a uniform lower bound for
any static coherent risk measure [25]. We confirm that the same remains true in dynamic settings,
provided that the risk measure µI is applied in a single time step, and conditional expectation
operators are applied in other stages.

Since both µI ˝E and E ˝µI are lower bounds for µI , a natural question is whether one provides
a “better” approximation than the other. More precisely, the following are questions of interest:

1. For a given µI , is it true that pµI ˝EqpY q ď pE ˝µIqpY q, @Y PX2 (or vice-versa)?
2. Is it true that α‹µI˝E,µI ě α

‹
E˝µI ,µI for any distortion measure µI (or vice-versa)?

Clearly, a positive answer to the first question would provide a very strong sense of tightness of
approximation. However, as the following example shows, neither inequality holds in general.
Example 2. Consider a scenario tree with T “ 2, |Ω1| “ 2, |Ci| “ 2, @ i P Ω1, under uniform

reference measure. Introduce the following two random costs X,Y (specified as vectors in R|Ω2|):

X|C1
“M ¨1, X|C2

“ 0
Y |C1

“ Y |C2
“ rM, 0sT .

With M ą 0, and µI ”AVaR1{2, it can be checked that pµI ˝EqpXq “M ą pE ˝µIqpXq “ M
2

, while
pµI ˝EqpY q “ M

2
ă pE ˝µIqpY q “M .

Insofar as the second question is concerned, we note that it can always be answered for a specific
distortion measure QI , by calculating the optimal scalings, so that it really makes sense when posed
for all risk measures. Unfortunately, our computational experiments show that counterexamples
can be constructed for this claim, as well, and that any one of the scaling factors can be better than
the other. However, it would be very interesting to characterize conditions (on the risk measures,
the underlying probability space, or otherwise) under which a particular compositional form always
results in a smaller scaling factor. The following result, which we prove in the Appendix, is a
potential first step in this direction, suggesting that the two lower bounds can result in equal
tightness of approximation in certain cases of interest.
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Theorem 7. Consider a uniform scenario tree, i.e., |Ω1| “N, |Ci| “N, @ i PΩ1, under a uni-
form reference measure. Then, for any distortion risk measure µI , we have

α‹µI˝E,µI “ α
‹
E˝µI ,µI “N ¨max

!Ψp1{N 2q

Ψp1{Nq
,

Ψp2{N 2q

Ψp2{Nq
, . . . ,Ψp1{Nq

)

.

4.2.2. Time-Consistent Upper Bounds Derived From a Given µI. In an analogous
fashion to the previous discussion, one can ask what time-consistent upper bounds can be derived
from a distortion measure µI . In particular, a natural supposition, analogous to the results of
Section 4.2.1, may be that µI ˝max and max˝µI are upper bounds to µI , since max is the most
conservative risk mapping possible [25]. The following result shows that, unlike in the lower bound
setting, only one of the two composed measures is a valid upper bound.

Proposition 10. Consider any distortion risk measure µI , and the time-consistent, comono-
tonic measures µI ˝ max and max˝µI , where max denotes the conditional worst-case operator.
Then:

(i) For any cost Y PX2, µIpY q ď pµI ˝maxqpY q.
(ii) There exists a choice of µI and of random costs Y1,2 PX2 such that pmax˝µIqpY1q ă µIpY1q

and pmax˝µIqpY2q ą µIpY2q.

Proof. The proof for Part (i) entails checking the conditions of Corollary 4. Since it is rather
technical in nature, we leave it for Section C of the Appendix of the paper.

To show Part (ii), consider a uniform scenario tree with |Ω1| “ |Ci| “ 2, @ i P Ω1, and let the
reference measure be P“ r0.1, 0.5, 0.2, 0.3sT . For simplicity, assume the first two components of
P correspond to nodes in the same child. Then, for the risk measure µI “AVaR1{2, and the costs
Y 1 “ r1, 0, 0, 0.4sT and Y 2 “ r0, 0, 0, 1sT , it can be checked that µIpY1q “ 0.44ą pmax˝µIqpY1q “

0.4, but µIpY2q “ 0.3ă pmax˝µIqpY2q “ 1. ˝

The result in Proposition 10 also suggests that upper bounds to µI can be derived by composing
µI with more conservative mappings in later time periods. This intuition is sharpened in Section 4.3
and our companion paper [32], which show that, when µI “AVaRε, all upper bounds of the form
AVaRε ˝ AVaRγ must have γ ď ε, and, in many practical settings, γ “ 0, i.e., worst-case as the
second-stage evaluation.

Since µI ˝max is an upper bound for a given µI , one can also turn to the question of comparing
the resulting scaling factor α‹µI ,µI˝max with the factors of the previous section, namely α‹µI˝E,µI or
α‹E˝µI ,µI . Our computational tests show that there is no general relation between these, even when
the scenario tree and the reference measure are uniform, a claim due to the following result, whose
proof is included in the paper’s Appendix.

Proposition 11. Consider a uniform scenario tree, i.e., |Ω1| “N, |Ci| “N, @ i PΩ1, under a
uniform reference measure. Then, for any distortion risk measure µI , we have

α‹µI ,µI˝max “max
! Ψp1{Nq

Ψp1{N 2q
,

Ψp2{Nq

Ψp2{N 2q
, . . . ,

1

Ψp1{Nq

)

.

Corroborating this result with the expression in Theorem 7 for α‹µI˝E,µI , one can readily find simple
examples of distortions Ψ such that either the latter or the former scaling factor is smaller.

An opinion often held among practitioners, and informally argued in the literature [46, 44] is that
composing a risk measure with itself would compound the losses, resulting in a larger evaluation
of risk, i.e., that µI ˝ µI should over-bound µI . For instance, if µI “ AVaR – the case considered
in [46] – the compositional measure corresponds to the so-called “iterated tail-CTE”, which takes
tail conditional expectations of quantities that are already tail conditional expectations. We show
by means of an example that this informal belief is actually not true, even in the case of AVaR.
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Example 3 (Iterated AVaR). Consider a uniform scenario tree (i.e., |Ω1| “ |Ci| “ 4, @ i P
Ω1), and a uniform reference measure. Furthermore, consider the risk measure µI ”AVaR3{4, and
the following two costs (specified as real vectors in R|Ω2|, with components split in the four sub-trees
of stage T “ 2):

X|C1
“X|C2

“ 1, X|C3
“X|C4

“ r1, 1, ´M, ´M sT

Y |C1
“ Y |C2

“ Y |C3
“ r1, 1, 1, ´M sT , Y |C4

“´M ¨1.

WhenM ą´1, it can be readily checked8 that µIpXq “ 1ą pµI ˝µIqpXq “
8´M

9
, while pµI ˝µIqpY q “

1ą µIpY q “
3´M

4
.

The example shows that the iterated AVaR is neither an upper nor a lower bound to the static
AVaR. We direct the interested reader to our companion paper [32], which is focused specifically
on the AVaR case, and discusses the exact necessary and sufficient conditions for when one of the
two dominates the other.

4.2.3. The Tightest Possible Time-Consistent Upper-bound. A natural time-
consistent upper bound to a given µI is the measure xµI , obtained by the rectangularization pro-
cedure in Proposition 4. It is the tightest possible coherent upper bound to µI , both in a uniform
and multiplicative-alpha sense. The main potential drawback in using xµI is that it may not sat-
isfy additional axiomatic properties, and it typically bears no interpretation in terms of µI . For
instance, starting with a comonotonic µI does not generally result in a comonotonic xµI , and xµI is
usually not given by compositions of one-step risk measures that correspond to µI . Determining
conditions that guarantee the latter two properties is an interesting question, which we do not
pursue further in the present paper. However, we note that this is possible in at least one case of
practical interest: when µI “AVaRε, one can show that xµI always corresponds to a composition of
one-step AVaR measures, at appropriate levels – see our discussion in Section 4.3 and the detailed
treatment in our companion paper [32].

For completeness, we also note that the ordering relation between the scaling factor α‹µI ,µ̂I and
scalings α‹µC ,µI derived from lower-bounding measures µC is generally not obvious: our computa-
tional experiments suggest that either one could dominate the other. However, more can be said
in particular settings, such as the case of AVaR, which we discuss next.

4.3. The Case of AVaR. In this section, we discuss how several of the results introduced
throughout the paper can be considerably simplified when the risk measures in question corre-
spond to AVaR. In particular, analytical expressions or polynomial-time procedures can be derived
for computing α‹µC ,µI and α‹µI ,µC and for testing µIpY q ď µCpY q or viceversa. Furthermore, one
can consider designing the risk measures µC that provide the tightest possible lower or upper
approximations to a given µI .

The case is discussed at length in our companion paper [32], to which we direct the interested
reader for any technical details and proofs. Our goal for the remainder of the section is to outline
the main results, and briefly discuss the implications.

To start, we consider a uniform scenario tree under uniform reference measure (|Ci| “N, @ i P
YT´1
t“0 Ωt, and P“ 1

NT
), and the following choice of risk measures:

µI “AVaRε, ε P r1{NT , 1s (23a)
µC “AVaRε1 ˝AVaRε2 ˝ ¨ ¨ ¨ ˝AVaRεT , εt P r1{N, 1s, @ t P r1, T s. (23b)

8 For the case of discrete probability measures, one has to be careful in defining AVaRε, since it is no longer exactly
given by the conditional expectation of the loss exceeding VaRε. The precise concepts are presented and discussed at
length in [41], which we follow here.
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Note that the restriction on ε and εt is without loss of generality, since AVaRε with ε ď 1
NT

is
identical to the worst-case risk measure, rendering the case ε P r0, 1

NT
q analogous to ε“ 1

NT
.

In this setup, we can revisit our main results in Theorem 4, and provide the following expressions
for the tightest factors α‹µC ,µI and α‹µI ,µC for the case T “ 2.

Theorem 8. Consider a case T “ 2, and the pair of risk measures in (23a) and (23b). Then,

α‹µC ,µI “

#

max
 

Nε1,
ε1ε2
ε
,Nε2

(

, εď 1
N

max
 

ε1
ε
, fpN,ε, ε2q

(

, εą 1
N
,

(24a)

α‹µI ,µC “max
!

1,
ε

ε1 ε2

)

, (24b)

where fpN,ε, ε2q is an explicit analytical function. Furthermore, the result for α‹µI ,µC remains true
under an arbitrary scenario tree and reference measure P.

Note that the above result has several immediate implications. First, it readily allows checking
whether µCpY q ď µIpY q, @Y (or vice-versa), since the latter conditions are equivalent to α‹µI ,µC ď 1
(respectively, α‹µC ,µI ď 1). This leads to the following simple tests.

Corollary 6. Consider the pair of risk measures in (23a) and (23b). Then,
1. the inequality µCpY q ď µIpY q, @Y PX2 holds if and only if

ε1 ε2 ě ε, (25)

2. the inequality µIpY q ď µCpY q, @Y PX2 holds if and only if

ε1 ďmax
´ 1

N
,ε
¯

and ε2 ďmax
´ 1

N
,Nε´N ` 1

¯

. (26)

Furthermore, (25) remains true under an arbitrary scenario tree and reference measure P.

The latter result confirms the observation in Example 3 that the iterated AVaR, i.e., µC “
AVaRε ˝AVaRε, is generally neither an upper nor a lower bound to the inconsistent choice µI “
AVaRε. By (26), ε1 “ ε is always a feasible option, but one must take ε2 ďmaxp1{N, Nε´N ` 1q.
In fact, as argued in [32], most relevant choices of ε would actually lead to taking ε2 “ 1{N , i.e.,
the worst-case operator in the second stage.

The analytical results above can also be used to optimally design the compositional risk measure
µC that is the tightest approximation to a given µI “AVaRε. More precisely, one can characterize
the choice of µC (i.e., levels εLB

1,2) that results in the smallest possible factor α‹µC ,µI among all
compositional AVaR that are lower bounds for AVaRε, and, similarly, the values εUB

1,2 yielding the
smallest possible α‹µI ,µC among all upper-bounding compositional AVaRs. The optimal choices
satisfy several interesting properties:
• for values of ε that are common in financial applications, i.e., satisfying ε ď 1{N [35], the

optimal α‹µC ,µI is obtained by taking εLB
1 “ εLB

2 “
?
ε, corresponding to an iterated AVaR measure.

• the optimal α‹µI ,µC requires choosing εUB
1 “ ε and εUB

2 “maxp1{N, Nε´N `1q. Typical values
of ε used in practice would entail εUB

2 “ 1{N , i.e., the worst-case scenario in the second stage.
• the optimally designed α‹µC ,µI is always smaller than α‹µI ,µC , i.e., for every ε and N , which

suggests that starting with an under-estimating AVaRε results in tighter dynamically consistent
approximations for AVaR.

The results discussed in Theorem 8 for T “ 2 can also be (partially) extended to a case of an
arbitrary T , which is summarized in the following claim.

Theorem 9. Consider an arbitrary T , and the pair of risk measures in (23a) and (23b). Then,
1. There is an algorithm that computes α‹µC ,µI in time OpNT2

q.
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2. α‹µI ,µC “max
!

1, ε
śT
t“1 εt

)

, and the expression remains valid for an arbitrary scenario tree and

reference measure.

It is interesting to note that computing α‹µI ,µC , and hence also testing µC ď µI , remains as easy
for general T as for T “ 2: an analytical expression is available, which actually holds in considerably
more general settings (arbitrary tree and reference measure). By contrast, computing α‹µC ,µI and
testing µI ď µC now requires an algorithm that is polynomial only for a fixed T . In light of our
earlier result, this suggests that, although starting with lower-bounds for µI may lead to a tighter
approximating µC , the gain does not come for free, as the computation of the resulting α‹µC ,µI is
typically harder than that for α‹µI ,µC .

In a multiperiod setting, the question of designing the tightest possible lower-bounding approx-
imation µC to a given µI becomes harder – even computing one scaling factor α‹µC ,µI requires a
polynomial-time algorithm. By contrast, a complete characterization of the tightest upper-bound
µC is available! Quite surprisingly, it turns out that this choice exactly corresponds to the risk
measure µ̂I introduced by the construction in Proposition 4, by expanding the set of measures of
µI . This is summarized in the following result (for a proof, see [32]).

Theorem 10. Consider the risk measure µI “ AVaRε, under an arbitrary reference measure
P, and the construction for the risk measure µ̂I characterized in Proposition 4. Then, µ̂I “AVaR1 ˝

AVaR2 ˝ ¨ ¨ ¨ ˝AVaRT , where AVaRt “ pµ̂iqiPΩt´1
, and

@ i PΩt´1, µ̂i “

#

max, if PpDiq ď 1´ ε

AVaRγi , otherwise.

Here, γi “
PpDiq´1`ε

PpDiq
, and AVaRγi is computed under the conditional probability induced by P, i.e.,

`PpDjq
PpDiq

˘

jPCi
.

This result, which holds under any reference measure P, suggests that starting with µI “AVaRε

and expanding its set of representing probability measures until it becomes rectangular exactly
results in a risk measure µ̂I that is a composition of one-step AVaRs. These one-step AVaRs are
computed under levels γi that can be different at each node i in the tree, and under the natural
conditional probability induced by the reference measure P.

There are several immediate implications. First, since µ̂I is the tightest possible coherent upper-
bound for any given coherent µI (see Lemma 2), this implies that the tightest possible choice for
a compositional AVaR that upper bounds a given AVaRε is exactly ˆAVaRε. In a different sense,
this also provides an instance when starting with a comonotonic (in fact, distortion) risk measure
µI results in a comonotonic (distortion) risk measure µ̂I , which furthermore belongs to the same
class as µI .

Lastly, the theorem confirms that the best possible compositional AVaR that upper bounds
AVaRε does involve compositions with the worst-case operator, in any node i that has probability
at most 1 ´ ε. Furthermore, it suggests, in a precise sense, that the compositional AVaR gets
increasingly conservative as the risk measurement process proceeds in time: note that γi ě γj, @ j P
Ci, and once node i requires a worst-case operator, so will any descendant of i, since PpDiq ě

PpDjq, @ j PCi. In particular, all future stages are more conservative than the measurement at time
t“ 0 (i.e., the root node), which exactly corresponds to the inconsistent evaluation µI “AVaRε.

This last point may be of particular relevance when designing risk measures for use in dynamic
financial settings: it suggests that regulators looking for safe counterparts (i.e., upper-bounds)
for a static AVaRε should use risk measurement processes that are compositions of increasingly
conservative AVaRε measurements.
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5. Conclusions. In this paper, we examined two different paradigms for measuring risk in
dynamic settings: a time-consistent formulation, whereby the risk assessments are designed so as
to avoid näıve reversals of preferences in the measurement process, and a time-inconsistent one,
which is easier to specify and calibrate from preference data. We discussed necessary and sufficient
conditions under which one measurement uniformly bounds the other from above or below, and
provided a notion of the multiplicative tightness with which one measure can be approximated by
the other. We also showed that it is generally hard to compute the scaling factors even for distortion
risk measures, but provided concrete examples when polynomial-time algorithms are possible.

Appendix A: Submissives, Downward Monotone Closures and Anti-blocking Poly-
hedra. In the current section, we discuss the important notion of the down monotone closure of
a polytope, also known as its anti-blocking polyhedron or its submissive. Our exposition mostly fol-
lows Chapter 9 in Schrijver [52], to which we direct the interested reader for a more comprehensive
treatment and references to related literature.

A polyhedron Q in Rn is said to be down-monotone or of anti-blocking type if

Q‰H, QĎRn`, and0ď yďx and x PQ imply y PQ.

The following proposition summarizes a useful representation for down-monotone polyhedra.

Proposition 12. A polyhedron Q in Rn is down-monotone if and only if there is a finite set
I of vectors taiuiPI and coefficients tbiuiPI such that ai ě 0, ai ‰ 0, bi ě 0, @ i P I, and

Q“
 

x PRn : aTi xď bi, @ i P I
(

.

Proof. The proof follows closely from the definitions. We omit it here, and direct the interested
reader to [52]. ˝

We remark that, whenever Q is full-dimensional, the right-hand sides bi in the representation
above can be taken to be strictly positive.

For any polyhedron QĎRn, we can define its down-monotone closure, also known as its submis-
sive, by

subpQq
def
“
 

y PRn` : Dx PQ, xě y
(

. (27)

It can be easily checked that subpQq “ pQ`Rn´q XRn`, and that subpQq is full-dimensional if and
only if Q z tx PRn : xj “ 0u ‰H, for all j P r1, ns (see Balas and Fischetti [8]). A very interesting
characterization of the down-monotone closure of a polyhedron is also possible in terms of the
polar of the polyhedron P . However, since these results are not directly needed in our treatment
here, we direct the interested reader to [8, 7] or Chapter 9 in [52] for more details.

Down-monotone polyhedra have been used for studying the strength of relaxations in integer
programming and combinatorial optimization – see Goemans and Hall [29] are references therein.
The following result is relevant for our purposes.

Theorem 11. Let P and Q be two nonempty, downward monotone polytopes in Rn`. Then
1. P Ď αQ if and only if, for any nonnegative vector w PRn,

max twTx : x PQu ě
1

α
max twTx : x P P u.

2. If Q“
 

x PRn` : aTi xď bi, @ i P I
(

, where ai, bi ě 0, then

α‹ “max
iPI

di
bi
, where di

def
“max

xPP
aTi x.
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Proof. Part (1) is essentially Lemma 1 in [29]. Since the latter reference omits a proof, we
include one below, for completeness. “ñ” follows trivially. “ð” Note first that αą 0. Assume (by
contradiction) that D x̄ P P zαQ. Since Q is down-monotone, by Proposition 12, it can be written
as Q“ tx PRn` : aTi xď bi, @ i P I u, where ai, bi ě 0, @ i P I. Since x̄ R αQ, there exists j P I such
that aTj x̄ą αbj. Since x̄ P P , we obtain the desired contradiction, 1

α
max taTj x : x P P u ě 1

α
aTj x̄ą

bj ěmax taTj x : x PQu.
Part (2) is exactly Theorem 2 in [29], to which we direct the reader for a complete proof. ˝

The above result shows that α‹ can be `8, which is the case if Q has a strictly smaller dimension
than P (in this case, some bi are 0, while the corresponding di are strictly positive [52]). However,
if Q is full-dimensional, α‹ is always finite.

Appendix B: Submodular Functions and Polymatroids In this section of the Appendix,
we discuss the basic properties of Choquet capacities in light of their connection with rank functions
of polymatroids. The exposition is mainly based on volume B of [53] (Chapter 44) and Chapter 2
of [27] (Section 3.3), to which we direct the interested reader for more information.

Consider a ground set Ω with |Ω| “ n, and let c be a set function on Ω, that is, c :F ÞÑR, where
F “ 2Ω is the set of all subsets of Ω. The function c is called submodular if

cpT q` cpUq ě cpT XUq` cpT YUq, @T,U PF .

The function c is called nondecreasing if cpT q ď cpUq whenever T ĎU ĎΩ. For a given set function
c on Ω, we define the following two polyhedra

Pc def
“
 

x PR|Ω| : xě 0, xpSq ď cpSq, @S ĎΩ
(

EPc def
“
 

x PR|Ω| : xpSq ď cpSq, @S ĎΩ
(

.
(28)

Note that Pc is nonempty if and only if c ě 0, and that EPc is nonempty if and only if cpHq ě
0. These conditions are trivially satisfied in our exposition, since all set functions c of interest
are Choquet capacities, i.e., by Definition 1, they are are nondecreasing and normalized, cpHq “
0, cpΩq “ 1.

If c is a submodular function, then Pc is called the polymatroid associated with c, and EPc the
extended polymatroid associated with c. Note that a nonempty extended polymatroid is always
unbounded, while a polymatroid is always a polytope, since 0 ď xi ď cptiuq, @ i P Ω. The next
theorem provides a very useful result concerning the set of tight constraints in the representation
of EPc.

Theorem 44.2 in [53]. Let c be a submodular set function on Ω and let x P EPc. Then the
collection of sets U ĎΩ satisfying xpUq “ cpUq is closed under taking unions and intersections.

Proof. Suppose xpT q “ cpT q and xpUq “ cpUq. Then

cpT q` cpUq ě cpT XUq` cpT YUq ěxpT XUq`xpT YUq “xpT q`xpUq “ cpT q` cpUq,

hence equality most hold throughout, and xpT XUq “ cpT XUq and xpT YUq “ cpT YUq. ˝

A vector x P EPc (or in Pc) is called a base vector of EPc (or of Pc) if xpΩq “ cpΩq. The set of
all base vectors is called the base polytope of c and is denoted by Bc,

Bc def
“
 

x PR|Ω| : xpSq ď cpSq, @S ĎΩ, xpΩq “ cpΩq
(

.

The following theorem summarizes several simple properties of Bc, and its relation to EPc and Pc.

Theorem 12. For any submodular function c satisfying cpHq“ 0,
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(i) Bc is a face of EPc, and is always a polytope.
(ii) EPc “Bc`Rn´, so that EPc and Bc have the same extreme points.
(iii) Pc “ subpBcq.
(iv) For any λě 0, Bλc “ λ ¨Bc, EPλc “ λ ¨ EPc, and Pλc “ λ ¨Pc.
Proof. (i) The fact that Bc is a face of EPc follows directly from the definitions. To see that Bc

is a polytope, note that, for any i PΩ, xi ď cptiuq, and xi “xpΩq´xpΩ z tiuq ě cpΩq´ cpΩ z tiuq.
(ii) “Ě” Follows trivially. “Ď” Consider any y P EPc. Without loss of generality9, assume y does

not lie in the strict interior of EPc, and let Iy def
“
 

S PF : ypSq “ cpSq
(

denote the collection of sets
corresponding to tight constraints at y. If Ω P Iy, then y P Bc, and the proof would be complete.
Therefore, let us assume Ω R Iy.

We claim that there exists s P Ω such that s R S, @S P Iy. To see this, note that, if any s P Ω
were contained in some S P Iy, then Ω P Iy, since the set of tight constraints is closed under union
and intersection, by Theorem 2. We can then consider the vector yλ “ y`λ1s for λě 0. It is easy
to test that, for small enough λ, yλ P EPc. By making λ sufficiently large, at least one constraint
a set S containing s becomes tight, hence enlarging the set Iy. Repeating the argument for the
point yλ recursively, we eventually recover a vector ỹ that belongs to Bc. Since ỹ“ y` ξ for some
ξ ě 0, we have that y P Bc`Rn´, which completes the proof of the first part of (ii). Since Rn´ is a
cone, and Bc is a polytope, the representation exactly corresponds to the Motzkin decomposition
of an arbitrary polyhedron, so that extpEPcq “ extpBcq.

(iii) Follows immediately from (ii), since Pc “ EPcXRn` “
`

Bc`Rn´
˘

XRn`
def
“ subpBcq.

(iv) Since λc is also submodular, the results immediately follow from the definitions. ˝

A central result in the theory of submodularity, due to Edmonds, is that a linear function wTx
can be optimized over an (extended) polymatroid by an extension of the greedy algorithm. The
following theorem summarizes the finding.

Theorem 13 (Theorem 44.3, Corollaries 44.3(a,b) in [53].). Let c : 2Ω Ñ R be a sub-
modular set function with cpHq“ 0, and let w PR|Ω|` . Then the optimum solution of maxxPEPc w

Tx
is

xpsiq
def
“ c

`

ts1, . . . , siu
˘

´ c
`

ts1, . . . , si´1u
˘

, i P r1, ns,

where ps1, . . . , snq is a permutation of the elements of Ω such that wps1q ěwps2q ě . . .wpsnq. If c
is also nondecreasing, then the above x is also an optimal solution to the problem maxxPPc w

Tx.

Proof The proof follows by duality arguments. We omit it here, and direct the interested reader
to [53]. ˝

In view of this result, the following characterization for the extreme points of Bc, EPc and Pc is
immediate.

Theorem 14. For a submodular set function c satisfying cpHq “ 0, the extreme points of Bc
and EPc are given by

xσpiq “ c
`

tσp1q, . . . , σpiqu
˘

´ c
`

tσp1q, . . . , σpi´ 1qu
˘

, i P r1, ns,

where σ PΠpΩq is any permutation of the elements of Ω. When c is also nondecreasing, the extreme
points of Pc are given by

xσpiq “

#

c
`

tσp1q, . . . , σpiqu
˘

´ c
`

tσp1q, . . . , σpi´ 1qu
˘

if iď k,

0 if ią k,

where σ PΠpΩq is any permutation of the elements of Ω, and k ranges over r0, ns.

9 Such a y can always be obtained by adding a certain ξě 0, and if the resulting y`ξ PBc`Rn´, then also y PBc`Rn´.
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Proof. For a complete proof, we direct the reader to Theorem 3.22 in [27] and Section 44.6c in
[53].
The previous result shows that there is a one-to-one correspondence between vertices of Bc and
permutations of r1, ns, and also that every inequality constraint in the characterization of Bc is
tight at some x PBc. The following corollary also immediately follows from the above result.

Corollary 7. For any submodular c such that cpHq “ 0, Bc Ă Rn` if and only if c is nonde-
creasing.

Proof. “ð” Immediate, since Bc is the convex hull of its extreme points, which (by Theorem 14)
are nonnegative. “ñ” Consider any two sets T Ă U ĎΩ, and take a chain of sets S1 Ă S2 Ă ¨ ¨ ¨ Ă

S|UzT | such that S1 “ T and S|UzT | “ U . By Theorem 14, there exists an extreme point x of Bc
having elements cpSi`1q ´ cpSiq, i P r1, |UzT | ´ 1s among some of its coordinates. Since xě 0, we
immediately obtain that cpUq´ cpT q ě 0.

Appendix C: Technical Proofs. This section contains several technical results from our
analysis.

Proposition 6. Consider a (two-period) consistent, comonotonic risk measure µCpY q “ µ1 ˝

µ2, where µt :XtÑXt´1. Then,
1. There exists QC Ď∆|Ω2| such that µCpY q

def
“maxqPQC q

TY , @Y PX2.
2. The set of measures QC is given by

QC def
“

"

q P∆|Ω2| : Dp P∆|Ω1|,
ppSq ď c1pSq, @S ĎΩ1

qpUq ď pi ¨ c2|ipUq, @U ĎCi, @ i PΩ1

*

”

!

q P∆|Ω2| : Dp PBc1 : q|Ci PBpi¨c2|i , @ i PΩ1

)

,

where c1 : 2|Ω1|Ñ R and c2|i : 2|Ci|Ñ R, @ i P Ω1 are Choquet capacities, and Bc1 ,Bc2|i are the base
polytopes corresponding to c1 and c2|i, respectively.

3. The downward monotone closure of QC is given by

subpQCq def
“

"

q PR|Ω2|

` : Dp PR|Ω1|

` ,
ppSq ď c1pSq, @S ĎΩ1,
qpUq ď pi ¨ c2|ipUq, @U ĎCi, @ i PΩ1

*

“

!

q PR|Ω2|

` : Dp PPc1 : q|Ci PPpi¨c2|i , @ i PΩ1

)

where Pc1 and Ppic2|i are the polymatroids associated with c1 and pic2|i, respectively.

Proof. The first claim is a standard result in the literature [22, 6, 45], but we rederive it here
together with the second claim, to keep the paper self-contained. To this end, recall that Definition 3
implies any DC comonotonic risk measure µC can be written as µ1 ˝µ2, where µ1 :X1ÑR is a first-
period comonotonic risk measure, and µ2 ” pµ

iqiPΩ1
, where µi :R|Ci|ÑR, @ i PΩ1 are comonotonic

risk measures. By the representation in Theorem 1, for any X1 PX1 and X2 PX2, we have

µ1pX1q “max
pPQ1

pTX1, Q1
def
“
 

p P∆|Ω1| : ppSq ď c1pSq, @S ĎΩ1

(

, (29a)

µi2pX2q “ max
qPQ2|i

qTX2, Q2|i
def
“
 

q P∆|Ω2| : qpUq ď c2|ipUq, @U ĎCi; q|Ω2zCi “ 0
(

. (29b)

In particular, Q1 ”Bc1 , and, similarly, the projection of the polytope Q2|i on the coordinates Ci
is exactly given by Bc2|i , for any i PΩ1. From these relations, we have that µCpY q “maxqPQ̃ q

TY ,

where Q̃ has the following product form structure [55]:

Q̃“
!

q P∆|Ω2| : Dp PQ1, Dq
i PQ2|i, @ i PΩ1, such thatq“

ÿ

iPΩ1

piq
i
)

. (30)
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We now show that Q̃“QC , by double inclusion.
“Ď” Consider any q P Q̃, and let p PQ1 and qi PQ2|i denote the corresponding vectors in represen-
tation (30). Since qCi

“ pi ¨q
i, @ i PΩ1, and qi PQ2|i, @ i PΩ1, we trivially have that p and q satisfy

the equations defining QC .
“Ě” Consider any q PQC , and let p be a corresponding measure satisfying the constraints for QC .
It can be readily checked that qi

def
“

qCi
pi
PQ2|i (the only non-obvious constraint is 1Tqi “ 1, which

must hold, since, otherwise, we would have
ř

iPΩ1
qpCiq “

ř

iPΩ1
pi 1

Tqi ă ppΩ1q “ 1, contradicting

q P ∆|Ω2|). Therefore, q “
ř

iPΩ1
pi q

i P Q̃. For completeness, we also note that qi “
qCi
pi
P Q2|iô

q|Ci
pi
PBc2|iô q|Ci PBpi¨c2|i , for any i PΩ1 (by part (iv) of Theorem 12 in Section B of the Appendix).

To prove the last claim, note that the two sets on the right being identical is immediate from the
definition of the polymatroid associated with a rank function c (see Section B). As such, denote
by A the set on the right of the equation.

“Ď”. Consider an arbitrary x P subpQCq. By definition, xě 0 and Dq PQC such that qěx. Let
p correspond to q in the representation for QC . To argue that x PA, we show that the pair pp,xq
satisfies all the constraints defining A. To this end, since p PBc1 (and Bc1 ĂR|Ω1|

` ), we immediately
have p PPc1 . Furthermore, @ i PΩ1 and @U Ď Ci, we have xpUq ď qpUq ď pi ¨ c2|ipUq, which proves
that x PA.

“Ě”. Consider an arbitrary q PA, and let p be such that the pair pp, qq satisfies all the constraints
defining A. Since p P Pc1 ” subpBc1q, D p̄ P Bc1 such that p̄ ě p ě 0. Furthermore, q|Ci P Pp̄i¨c2|i ”
subpBp̄i¨c2|iq, for any i PΩ1. Therefore, D q̄ PR|Ω2|

` such that q̄|Ci PBp̄i¨c2|i and q̄|Ci ě q|Ci ě 0, for any
i PΩ1. It can be readily checked that, by construction, the pair pp̄, q̄q satisfies all the constraints
defining QC . Therefore, with q̄ PQC and q̄ě qě 0, we must have q P subpQCq. ˝

Corollary 4. For any pair of risk measures µI and µC as introduced in Section 3.2,
1. The inequality µCpY q ď µIpY q, @Y PX2 holds if and only if

|Ω1|
ÿ

j“1

”

c1

`

Y
j
k“1sk

˘

´ c1

`

Y
j´1
k“1sk

˘

ı

¨ c2|sj pUsj q ď c
`

YiPΩ1
Ui
˘

,

where ps1, . . . , s|Ω1|
q denotes any permutation of the elements of Ω1, and Ui ĎCi for any i PΩ1.

2. The inequality µIpY q ď µCpY q, @Y PX2 holds if and only if

c
`

YiPSCi
˘

ď c1pSq, @S ĎΩ1,
cpUq

cpUq` 1´ cpΩ2zCiYUq
ď c2,ipUq, @U ĎCi, @ i PΩ1.

Proof. The main idea proof behind the proof is to rewrite the results in Corollary 3 in terms of
the extreme points of QC and QI , and then to suitably simplify the resulting problems.

To prove part (1), by Corollary 3, we have that µCpY q ď µIpY q, @Y PX2 holds if and only if

max
qPextpQCq

qpSq ď cpSq, @S ĎΩ2.

To this end, consider any S ĎΩ2, and partition it as S “Y`PΩ1
U`, for some U` Ď C`, @ ` PΩ1. The

expression for extpQCq is given in Proposition 7, which we paste below for convenience

qσ`piq “
”

c1

`

Y`k“1πpkq
˘

´ c1

`

Y`´1
k“1πpkq

˘

ı

¨

”

c2|`

`

Yik“1σ`pkq
˘

´ c2|`

`

Yi´1
k“1σ`pkq

˘

ı

, @ i P r1, |C`|s,@ ` PΩ1.

where π is any permutation of Ω1, and σ` is any permutation of C`, for each ` PΩ1.
Consider a fixed permutation π PΩ1. We claim that the permutation σ` yielding a maximal value

of qpU`q is always of the form
`

σpU`q, σpC`zU`q
˘

, i.e., it has the elements of U` in the first |U`|
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positions. This is because the functions c2|` are submodular, so that cpU`q´cpHqě cpU`YAq´cpAq,
for any A Ď C`zU`. With this recognition, the optimal permutations σ` always result in qpU`q “
”

c1

`

Y`k“1πpkq
˘

´ c1

`

Y`´1
k“1πpkq

˘

ı

c2|`pU`q. Maximizing over all permutations π PΠpΩ1q then leads to

the first set of desired conditions.
To prove part (2), one can use the expression from Corollary 3, and show that it reduces to

the desired condition. Instead, we find it more convenient to work with the results of Lemma 2
concerning xµI , the tightest possible coherent upper bound to µI . To this end, first recall the
representation for QC in Proposition 6, pasted below for convenience:

QC “
!

q P∆|Ω2| : Dp PBc1 : q|Ci PBpi¨c2|i , @ i PΩ1

)

.

Lemma 2 implies that that µIpY q ď µCpY q ô pQiµI ĎBct|i , @ i PΩt´1, @ t P r1,2s. Here, pQiµI are the
one-step conditional risk measures yielding xµI , and are given by (10). This is equivalent to

max
qPQI

q
`

YiPSCi
˘

ď c1pSq, @S ĎΩ1 p˚q

max
qPQI :qpCiq‰0

qpUq

qpCiq
ď c2|ipUq, @U ĎCi, @ i PΩ1 p˚˚q

We now argue that p˚q and p˚˚q are equivalent to the conditions in part (2). Recalling the description
of QI in Proposition 5, and the fact that any inequality qpSq ď cpSq is tight at some set S (also
see Theorem 14), it can be seen that the maximum value of qpYiPSCiq in p˚q is exactly cpYiPSCiq,
which yields the first desired condition. The proof that p˚˚q are equivalent to the second condition
is the subject of Proposition 13 below, which completes our proof. ˝

Proposition 13. Consider any i PΩt´1 for some t P r1, T s. Then, for any U ĎCi, we have

max
qPQI :qpDiq‰0

qpDUq

qpDiq
“

cpDUq

cpDUq` 1´ cpΩT zDiYDUq
. (31)

Proof. Since the problem on the left is a fractional linear program, the maximum is reached
at an extreme point of QI [13]. Note also that the objective is increasing in any qj, j P DU , and
decreasing in any qs, s PDizDU .

Recalling the expression for extpQIq in Proposition 7,

qσpiq “ c
`

Yik“1σpkq
˘

´ c
`

Yi´1
k“1σpkq

˘

, @ i P r1, |ΩT |s,

let vσ P extpQIq be the extreme point corresponding to σ PΠpΩT q. We claim that there exists an
optimal solution in (31) such that the permutation σ is of the form

DU “ tσp1q, . . . , σp|DU |qu

DizDU “ tσp|ΩT zDiYDU | ` 1q, . . . , σp|ΩT |qu,
(32)

i.e., the elements of DU appear in the first |DU | positions of σ, and the elements of DizDU appear
in the last positions of σ.

The proof involves a repeated interchange argument. We first argue that there exists an optimal
permutation σ such that the elements of DU appear before those of DizDU .

To see this, consider any permutation σ such that vσ is optimal in (31), yet there exist j PDU

and s P DizDU such that j “ σpkq, s “ σpk̄q, and k̄ ă k. In fact, let k be the smallest, and k̄ the
largest such index among all indices satisfying the property (this ensures that there are no indices
from Di appearing in σ between k̄ and k). Consider a new permutation π where the positions k
and k̄ are interchanged, and let vπ denote the corresponding vertex of QI . By submodularity of c,

vπj
def
“ c

`

Yk̄`“1σp`q
˘

´ c
`

Yk̄´1
`“1σp`q

˘

ě c
`

Yk`“1σp`q
˘

´ c
`

Yk´1
`“1σp`q

˘ def
“ vσj .
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By a similar argument, vπs ď vσs . Furthermore, by construction, vπr “ vσr , @ r P Diztj, su, since no
indices from Di appear between k̄ and k. Therefore, we have vπpDUq ě v

σpDUq, and vπpDizDUq ď

vσpDizDUq, so that the objective at vπ is at least as large as at vσ. Repeating the argument as
often as needed, we obtain an optimal permutation satisfying the desired property.

Having argued that (w.l.o.g.) σ contains the elements of DU before those of DizDU , a similar
interchange argument can be done with respect to ΩT zDi, to reach the conclusion (32). The final
result of the lemma exactly denotes the value corresponding to such a configuration (it follows
immediately by recognizing the telescoping sums appearing in the expressions). ˝

Proposition 9. Consider any distortion risk measure µI : X2 Ñ R, and the time-consistent,
comonotonic measures µI ˝ E and E ˝ µI , where E denotes the conditional expectation operator.
Then, for any cost Y PX2,

pµI ˝EqpY q ď µIpY q and pE ˝µIqpY q ď µIpY q.

Proof. First note that both measures are readily time-consistent and comonotonic, by Defini-
tion 3. The proof entails arguing that these choices correspond to Choquet capacities that verify
the first set of conditions in Corollary 4.

To this end, let Ψ denote the distortion function corresponding to the (distortion) measure µI ,
i.e., the Choquet capacity is given by cpSq “ΨpPpSqq, @S ĎΩ2, where Ψ : r0,1sÑ r0,1s is concave,
nondecreasing, with Ψp0q “ 0, Ψp1q “ 1. Recall from Section 4.2 that the (compositional) risk
measure µI ˝E (or, more correctly, µ1

I ˝E) exactly corresponds to the following choice of Choquet
capacities for the first and second stage, respectively:

c1 : 2Ω1 ÑR, c1pSq “Ψ
´

ÿ

iPS

PpCiq
¯

, @S ĎΩ1

c2|i : 2CiÑR, c2|ipUiq “
PpUiq
PpCiq

, @Ui ĎCi, @ i PΩ1.

Note that the same distortion function Ψ (yielding the risk measure µI) is applied in the first stage,
but to the appropriate conditional probability measure. The second stage is simply a standard
conditional expectation.

With pi
def
“ PpCiq and ui

def
“ PpUiq, the desired condition in Corollary 4 becomes:

|Ω1|
ÿ

i“1

Ψ
`
ři

j“1 pσpjq
˘

´Ψ
`
ři´1

j“1 pσpjq
˘

pσpiq
uσpiq ďΨ

´

|Ω1|
ÿ

i“1

uσpiq

¯

, @σ PΠpΩ1q, @ui P r0, pis, @ i PΩ1. p˚q

To see this, one can use the decreasing marginal returns property of Ψ, i.e.,

Ψpy2q´Ψpy1q

y2´ y1

ď
Ψpx2q´Ψpx1q

x2´x1

, @x1 ă x2, x1 ď y1, x2 ď y2, y1 ă y2,

to argue that
Ψ

`

ři
j“1 pσpjq

˘

´Ψ

`

ři´1
j“1 pσpjq

˘

pσpiq
ď

Ψ

`

ři
j“1 uσpjq

˘

´Ψ

`

ři´1
j“1 uσpjq

˘

uσpiq
. Replacing this in the left-hand

side of p˚q and telescoping the sum directly yields the desired result.
In a similar fashion, the risk measure E ˝µI corresponds to a choice of capacities

c1 : 2Ω1 ÑR, c1pSq “
ÿ

iPS

PpCiq, @S ĎΩ1

c2|i : 2CiÑR, c2|ipUiq “Ψ
´PpUiq
PpCiq

¯

, @Ui ĎCi, @ i PΩ1.
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With the same notation pi
def
“ PpCiq and ui

def
“ PpUiq, the conditions to test become:

|Ω1|
ÿ

i“1

pσpiqΨ
´uσpiq
pσpiq

¯

ďΨ

ˆ|Ω1|
ÿ

i“1

ui

˙

, @σ PΠpΩ1q, @ui P r0, pis, @ i PΩ1.

These are readily true, since tpiuiPΩ1
are convex combination coefficients, and Ψ is concave. ˝

Theorem 7. Consider a uniform scenario tree, i.e., |Ω1| “N, |Ci| “N, @ i PΩ1, under a uni-
form reference measure. Then, for any distortion risk measure µI , we have

α‹µI˝E,µI “ α
‹
E˝µI ,µI “N ¨max

!Ψp1{N 2q

Ψp1{Nq
,

Ψp2{N 2q

Ψp2{Nq
, . . . ,Ψp1{Nq

)

.

Before presenting the proof, we introduce two lemmas that outline several relevant properties for
the two expressions that need to be compared. To fix ideas, assume the distortion risk measure µI
is given by a concave distortion function Ψ : r0,1s Ñ r0,1s. To this end, by applying the result in
Theorem 4, our goal is to argue that

α‹E˝µI ,µI
def
“ max
qPextpQI q

max
SĎΩ1

ř

iPS maxUiĎCi
qpUiq

Ψ

`

PpUiq{PpCiq
˘

ř

iPS PpCiq
“ max
qPextpQI q

max
SĎΩ1

ř

iPS maxUiĎCi
qpUiq

PpUiq{PpCiq

Ψ
`
ř

iPS PpCiq
˘

def
“ α‹µI˝E,µI .

(33)

The following lemma discusses the factor α‹E˝µI ,µI in the expression above.

Lemma 4. Consider the maximization problems yielding α‹E˝µI ,µI in (33). We claim that:
1. For any given q PQI , the inner maximization over S ĎΩ1 is reached at a singleton set S “ tiu

for some i PΩ1.
2. The optimal q PQI in the outer maximization always corresponds to a permutation σ PΠpΩ2q

satisfying the property

tσp1q, . . . , σpNqu “Ci, (34)

for some i PΩ1. That is, the first N elements in the permutation belong to the same subtree Ci.
3. For any fixed i PΩ1,

max
qPextpQI q

max
UiĎCi

qpUiq

Ψ
`PpUiq
PpCiq

˘ “ max
UiĎCi

Ψ
`

PpUiq
˘

Ψ
`PpUiq
PpCiq

˘ .

4. α‹E˝µI ,µI “maxiPΩ1
maxUiĎCi

ΨpPpUiqq

PpCiqΨ
`

PpUiq
PpCiq

˘ .

Proof of Lemma 4. Claim (1) follows from the mediant inequality. To see this, for a fixed q, let

vi
def
“ maxUiĎCi

qpUiq

Ψ

`

PpUiq{PpCiq
˘ , @ i P Ω1, and note that the maximum over S Ď Ω1 is achieved at any

singleton tiu Ď arg maxtv`{PpC`q : ` PΩ1u.
To see Claim (2), first recall that the set extpQIq corresponds to all possible permutations of C2

(Proposition 7). By Claim (1), since the inner maximum always occurs at a singleton i‹pqq, the
optimal q‹ must be such that components in Ci‹pq‹q are “as large as possible”. Due to the concavity
of Ψ, this occurs when they appear in the first N positions in the permutation σ (also see the proof
of Corollary 4).

Claim (3) follows directly from Claim (2), by switching the order of the two maximizations, and
using the expression for the extreme points of QI from Proposition 7.

Claim (4) follows from Claims (1) and (3), after switching the order of the maximizations over
S and q. ˝
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The following lemma similarly summarizes properties of the second quantity of interest, α‹µI˝E,µI .

Lemma 5. Consider the maximization problems yielding α‹µI˝E,µI in (33). We claim that:
1. For any given q PQI , and any i P Ω1, the inner maximization over Ui Ď Ci is reached at a

singleton set Ui “ tju for some j PCi.
2. Fix S ĎΩ1. The optimal q‹pSq PQI corresponds to a permutation σS PΠpΩ2q such that

E j1,2 P t1, . . . , |S|u such that σpj1q, σpj2q PCi, for some i PΩ1.

In other words, the first |S| elements in the permutation σ belong to distinct subtrees Ci.
3. Under the same setup as (2), the first |S| elements in σS PΠpΩ2q correspond to the minimum-

probability in their respective subtree, i.e.,

@k P r1, |S|s, σSpkq P arg min
jPCi

Pj, where i is such that σpkq PCi.

4. Let mpiq
def
“ arg minjPCi Pj. Then

α‹µI˝E,µI “max
SĎΩ1

max
σPΠpSq

ř|S|

i“1 PpCmpσpiqqq
Ψ

`

ři
k“1 Pmpσpkqq

˘

´Ψ

`

ři´1
k“1

Pmpσpkqq
˘

Pmpσpiqq

Ψ
`
ř|S|

i“1 PpCmpσpiqqq
˘

.

Proof. Claim (1) follows, again, by the mediant inequality. The logic is the same as in Claim (1)
of Lemma 4, and is omitted.

Claim (2) follows from Claim (1), and by recognizing again that q should have components “as
large as possible” in the singletons j that yield the maximums.

To see Claim (3), first note that Claim (2) allows restricting attention to permutations σS

that have elements from distinct subtrees in the first |S| components. For any such σpjq, with
j P t1, . . . , |S|u,

qσpjq “
ΨpPσpjq`

řj´1

k“1 Pσpkqq´Ψp
řj´1

k“1 Pσpkqq
Pσpjq{PpCiq

,

where σpjq P Ci. By the concavity of Ψ, the above expression is decreasing in Pσpjq, which implies
that σpjq always corresponds to the element in Ci with smallest probability.

Claim (4) follows from the previous three. ˝

With the previous results, we are now ready to provide a complete proof for our desired result,
namely that under a uniform reference measure, α‹E˝µI ,µI “ α

‹
µI˝E,µI .

Proof of Theorem 7. By Lemma 4, α‹E˝µI ,µI “maxiPΩ1
maxUiĎCi

Ψ

`

PpUiq
˘

PpCiqΨ
`

PpUiq
PpCiq

˘ . For a uniform ref-

erence measure, due to the symmetry, this expression becomes

α‹E˝µI ,µI “N ¨max
!Ψp1{N 2q

Ψp1{Nq
,

Ψp2{N 2q

Ψp2{Nq
, . . . ,Ψp1{Nq

)

.

Similarly, by Lemma 5, α‹µI˝E,µI “maxSĎΩ1
maxσPΠpSq

ř|S|
i“1 PpCmpσpiqqq

Ψ

`

ři
k“1 Pmpσpkqq

˘

´Ψ

`

ři´1
k“1

Pmpσpkqq

˘

Pmpσpiqq

Ψ

`

ř|S|
i“1 PpCmpσpiqqq

˘ ,

which becomes, under uniform reference measure,

α‹µI˝E,µI “N ¨max
!Ψp1{N 2q

Ψp1{Nq
,

Ψp2{N 2q

Ψp2{Nq
, . . . ,Ψp1{Nq

)

.

Comparing the two expressions above immediately yields the desired equality. ˝



Iancu, Petrik and Subramanian: Tight Approximations of Dynamic Risk Measures
36

Proposition 10. Consider any distortion risk measure µI , and the time-consistent, comono-
tonic measures µI ˝ max and max˝µI , where max denotes the conditional worst-case operator.
Then:

(i) For any cost Y PX2, µIpY q ď pµI ˝maxqpY q.
(ii) There exists a choice of µI and of random costs Y1,2 PX2 such that pmax˝µIqpY1q ă µIpY1q

and pmax˝µIqpY2q ą µIpY2q.

Proof. Let the Choquet capacity yielding the distortion measure µI be of the form cpSq “
ΨpPpSqq, @S Ď Ω2. We show Part (i) of the corollary by checking the conditions of Corollary 4.
Recall that the risk measure µ1

I ˝max corresponds to a choice of capacities

c1 : 2Ω1 ÑR, c1pSq “Ψ
´

ÿ

iPS

PpCiq
¯

, @S ĎΩ1

c2|i : 2CiÑR, c2|ipUiq “ 1, @Ui ‰HĎCi, @ i PΩ1.

The conditions to check from Corollary 4 are

Ψ
`

P
`

YiPSCi
˘˘

ďΨ
´

ÿ

iPS

PpCiq
¯

, @S ĎΩ1,

ΨpPpUqq
ΨpPpUqq` 1´ΨpPpΩ2zCiYUqq

ď 1, @U ĎCi, @ i PΩ1.

The first inequality holds since P
`

YiPSCi
˘

“
ř

iPS PpCiq. The second inequality readily follows since
Ψ is upper bounded by 1. ˝

Proposition 11. Consider a uniform scenario tree, i.e., |Ω1| “N, |Ci| “N, @ i PΩ1, under a
uniform reference measure. Then, for any distortion risk measure µI , we have

α‹µI ,µI˝max “max
! Ψp1{Nq

Ψp1{N 2q
,

Ψp2{Nq

Ψp2{N 2q
, . . . ,

1

Ψp1{Nq

)

.

Proof. Recall that the risk measure µC ” µI ˝max (or, more correctly, µ1
I ˝max) corresponds to

a choice of capacities

c1 : 2Ω1 ÑR, c1pSq “Ψ
´

ÿ

iPS

PpCiq
¯

”Ψ
´

|S|

N

¯

, @S ĎΩ1

c2|i : 2CiÑR, c2|ipUiq “ 1, @Ui ‰HĎCi, @ i PΩ1.

By Theorem 4, the optimal scaling factor is given by α‹µI ,µC “ maxqPQC maxSĎΩ2
qpSq{Ψp |S|

N2 q.
Let us switch the order of the maximizations, and fix an arbitrary S “ YiPΩ1

Ui Ď Ω2. Using the
representation of QC provided by Proposition 6, it can be readily seen that qpUiq “ 0 if Ui “H,
and qpUiq ď pi, otherwise, where ppSq ď c1pSq, @S ĎΩ1. Therefore,

max
qPQC

qpSq “ c1pSq “Ψ
´

|S|

N

¯

,

which, when used in the expression for α‹µI ,µC , immediately leads to the desired result.
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