
A Threat Model Driven Approach for Security Testing ∗

Linzhang Wang
Department of Computer Science

Nanjing University
Nanjing, Jiangsu 210093, P.R.China

lzwang@nju.edu.cn

Eric Wong
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083, USA

ewong@utdallas.edu

Dianxiang Xu
Department of Computer Science

North Dakota State University
Fargo, ND 58105, USA
dianxiang.xu@ndsu.edu

Abstract

In this paper, we propose a novel threat model-driven
security testing approach for detecting undesirable threat
behavior at runtime. Threats to security policies are mod-
elled with UML (Unified Modeling Language) sequence di-
agrams. From a design-level threat model we extract a set
of threat traces, each of which is an event sequence that
should not occur during the system execution. The same
threat model is also used to decide what kind of informa-
tion should be collected at runtime and to guide the code
instrumentation. The instrumented code is recompiled and
executed using test cases randomly generated. The execu-
tion traces are collected and analyzed to verify whether the
aforementioned undesirable threat traces are matched. If an
execution trace is an instance of a threat trace, security vio-
lations are reported and actions should be taken to mitigate
the threat in the system. Thus the linkage between models,
code implementations, and security testing are extended to
form a systematic methodology that can test certain security
policies.

Keywords: threat model, UML sequence diagram, secu-
rity testing

1 Introduction

In the current software development process, as the non-
functional requirements of the system under construction,

∗Supported by the National Natural Science Foundation of China
(No.60603036) and the National Grand Fundamental Research 973 Pro-
gram of China (No.2002CB312001).

software security is implemented and tested after the func-
tional features are implemented. The delay results in con-
tinually revising the code in the late phase of software de-
velopment, which will do harm to the efficiency and quality
of software as well as add the cost. System-level penetration
testing is a traditional security testing method, which tries to
simulate an adversary’s attempts to achieve malicious goals
in the system. Although similar to software testing which
aims to prove that a product works as it should, penetration
testing concentrates on exploring software security flaws.
In other words, software testing usually verifies that prod-
ucts work as expected in certain scenarios or conditions.
This is known as positive testing. Penetration testing, on
the other hand, must probe directly and deeply into security
risks driven by threats to security policies. Therefore, it is
considered negative testing.

Recent research and practices of model-driven engineer-
ing and security engineering have advocated negative de-
sign of software security that models security threats from
the adversary’s perspective. Security threats are identified
to explain exactly where and how the attackers violate se-
curity policies. Published literature[1, 2] already gives a list
of observed threats corresponding to certain security poli-
cies, we can verify the final system to ensure that violations
of these security properties have not been reintroduced into
it. We cannot ensure the software is totally correct and meet
the security requirement, but we can ensure the software is
immune to the exploited threats.

Threat modeling usually describes threats with attack
tree or informal description at code-level[1]. It can also
be extended to model security threats with UML in the de-
sign phase. UML is widely used to model software sys-
tems by both academia and industry[3]. UML-based mod-

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

eling shifts software development from a code-centric ac-
tivity to a model-centric activity gradually, and models de-
scribed in UML and UML profiles are ordinary artifacts
employed to specify the expected structure and behavior of
the software under construction[4]. The code is still im-
plemented by the programmers based on the design model,
and is not automatically generated from the design model.
Model-driven testing approaches reuse the design models as
the source of test generation and the rational oracle of the
test execution[5, 6]. UML is a proper formalism for threat
modelling to specify the undesirable behavior. Whether the
software meets the security requirement can be determined
by threat model driven security testing in a negative way.

This paper propose a threat model-driven security
testing method. Threat behaviors are modelled with UML
sequence diagram. Then, the threat models are used to
driven the security testing of final system. The rest of
the paper is organized as follows. Section 2 introduces
the threat modeling approach. The systematic approach
of threat model-driven security testing is presented in
section 3. Related work is presented in section 4, and
some conclusions and future work are discussed in the last
section.

2 Threat modeling with UML sequence dia-
grams

A software system consists of different granularity units,
such as classes, components, and subsystems, which are re-
alized individually and integrated to constitute the whole
system. The system behavior is realized by interactions be-
tween the involved units, and the interactions are focused
on during the design modeling phase. A threat scenario is
an undesirable behavior of the system, and its occurrence
would violate security goals. It can be identified by re-
viewing the key use cases. A UML sequence diagram is
an attractive formalism for specifying requirements related
to interaction behavior scenarios of software[3]. As security
requirements often crosscut functional requirements, threat
scenarios can be modelled by sequence diagrams at the de-
sign phase. A sequence diagram describes an interaction by
focusing on the sequence of messages that are exchanged,
along with their corresponding occurrence specifications on
the lifelines. It can be used to model the behavior of the sys-
tem by representing the realization of a use case scenario. It
depicts the objects and classes involved in the scenario and
the sequence of messages exchanged between the objects in
order to realize the behavior of the scenario.

To model the threat scenario, the first step we need to
take is determine the security policy and potential threats
to the system. A security policy says what is allowed and
what is not. A threat is a condition that enables someone

(i.e., the attacker) to violate the security policy. Threat be-
haviors are negative scenarios with hostile intent, appear to
be new avenues to compensate security requirements. We
treat identification of security threats as part of the require-
ments analysis and model them with UML sequence dia-
grams. Threats are behaviors that an attacker may pose to
the system to violate security properties, such as authentica-
tion,authorization,confidentiality, privacy, and availability.
They essentially reflect various ways of violating desirable
security properties.

UML sequence diagrams are exploited to describe the
interactions an attacker would go through to compromise
the system, resulting in a threat. The threat scenario is rep-
resented by a sequence of message exchanges. Actually,
a message sequence is a path from the first message to the
end message in the sequence diagram. We can apply certain
coverage criteria to the sequence diagram to get the paths,
each of which can represent a independent threat scenario.
In this paper, we focus on message exchanges via procedure
calls.

A critical issue is how security requirements specifica-
tion can further facilitate the design, implementation, and
testing of software systems in which security is a major con-
cern. The threat models in the design phase can be used to
find the solution to mitigate the threat, and they also can be
used during the security testing for validating the security
policy by applying a scenario specification-based method.

In the rest of the paper, a threat model represented
by a sequence diagram (SDTM) is viewed as a tuple of
(O,M,E) where

– O = {o1, o2, · · · , om} is a finite set of objects.
For any oi ∈ O, let fOC(oi) represent the
belonging class of object oi;

– E = {e1, e2, · · · , ek} is a finite set of events. Let
feo be a function from E to O, feo(e) = oi ∈ O
means e is the occurrence of the corresponding
message in the lifeline of oi;

– M = {m1,m2, · · · ,mn} is a finite set of la-
belled messages. ∀mk ∈ M , let !mk and ?mk

represent the send and the receive of mk, respec-
tively, and ∃ei, ej ∈ E the corresponding send-
ing and receiving event, and let fem(ei) =!mk

and fem(ej) =?mk;

A threat behavior is a scenario of the misuse case and
also a sequence of object interaction. For example, an
unauthorized user with the wrong password can access the
system and an authorized user cannot access the system.
This scenario violates the security policy,authentication,
and should be prohibited in the implementation. In a UML-
based software development process, the threat scenarios

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

are modelled with a sequence diagram in the design phase.
Researchers and practitioners of testing focus on testing the
code implementation against the model. There may be al-
ternatives and loops in a sequence diagram. So by travers-
ing the possible paths of the sequence diagram, we can get
the message sequences. Each message sequence represents
a single scenario of the threat model. In the threat model,
the messages may be conditioned or iterated, as denoted by
the guard conditions in the label of the messages. We can
derive alternative message sequences from the complicated
sequence diagrams by applying gray-box testing coverage
criteria[5]. For a threat model SDTM = (O,M,E), msq is
a message sequence in the form (m1 → m2 → ... → mj →
mk → ... → mn), ∀i, 1 < i < n,mi ∈ M , mi → mj (i.e.,
mj is the direct successor of mi,we use → to denote the
precede relationship between two elements).

Because the runtime behavior of software is a event se-
quence of method calling and method execution, to verify
whether the threat behavior described by the threat model
was implemented, the sequence of events should be derived
from the sequence diagram which represents the trace of
the threat behavior. The set of messages and the sequence
of the messages can be generated by analyzing the sequence
diagram. A pair of message sending event and message re-
ceiving event can be determined from each message. If the
sequence between any two events can be determined, the
message sequence can be refined into an event sequence.
Thus the threat trace of event sequences can be generated
from the threat model. The semantic of a message is sim-
ply a trace of a message sending event and message receiv-
ing event, because at runtime each message is realized by
a message sending event and a message receiving event.
Hence, a system behavior that is represented by a message
sequence can also be represented at a finer granularity in
terms of a sequence of sending and receiving events.

In a UML sequence diagram, message passing can be
synchronous or asynchronous. In the case of the former,
sending and receiving of the message is said to take place
in a sequential order, whereas the asynchronous case treats
the sending and receiving of message as distinct events tak-
ing place at different times. As for the asynchronous mes-
sage passing, because of the infinite transmit time of mes-
sages and multi-threaded nature of object-oriented software,
an object can only control the time of the message send-
ing event and not the message receiving event. So we can
only determine the message sending event prior to the cor-
responding message receiving event, and the sequence be-
tween two sending events. The time sequence between the
receiving events of different messages cannot be determined
until runtime, so any sequence of these events is possible.
Based on previous work[7], the time sequence between any
two events of the sequence diagram can be determined with
the help of message sequence. Since the message sequence

can be directly extracted from the sequence diagram, so the
possible event sequences can be derived to represent spe-
cific behaviors more precisely.

If the time sequence between any two events of the se-
quence diagram was determined, the sequence of events
which represents the threat modelled in the sequence di-
agram specification has been determined. It is a run
of a sequence diagram in a certain scenario, we name
it as threat trace, denoted by ttrace. Let SDTM =
(O,E,M) be a threat model, ∀ei ∈ E, 1 < i < n,
and an event sequence e1 → e2 → · · · → en is an
ttrace, which represents one behavior scenario of SDTM ,
where ei = (eid, etype, sender, receiver,method),∃m ∈
M,feo(ei) =!m or ?m.

1. eid is a serial number, and uniquely denotes an event.

2. etype = iif(fem(ei) =!m,′ s′,′ r′) is the type of
event, ′s′ represents the message sending event, and ′r′

represents the message receiving and executing event;

3. sender, receiver represent the message sending ob-
ject and the message receiving object of the event,

(a) if fem(ei) =!m, then sender = feo(ei),
receiver = feo(?m)

(b) if fem(ei) =?m, then sender = feo(!m),
receiver = feo(ei)

4. method is the method called by the message m.

The traces of the threat model may be implemented by
the trace of the program at runtime. So it is used to rep-
resent the threat behavior. Based on the threat model, we
can systematically introduce the threat model-based secu-
rity testing method.

3 Threat model driven security testing

The operation of the software system may suffer from se-
curity failures which should not occur if the corresponding
threats are carefully modelled, analyzed, and tested. The
threat model can help programmers take necessary actions
to prevent the undesirable threats from being implemented
into the system, and can also help testers verify whether the
final system is free from the undesirable threat behavior.

Security testing is used to uncover software security
threats before release so as to prevent attacks after deploy-
ment. However, possible violations of the security proper-
ties can be previewed by threat modelling in design phase.
We can test the final code against the threat model to ensure
that violations of these security properties have not been
reintroduced into it. Penetration testing is a traditional se-
curity testing method. Just like the black-box and white-box

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

testing method, penetration testing can either be blind or in-
formed. In blind penetration tests, the test team is given no
inside knowledge, such as design documentation or source
code. With informed penetration testing, the testers are
given access to some or all of this information. Given the
threat models, we can track the runtime behavior of the cor-
responding modeled threats in the execution of the code.

We extend our previous research on scenario specifica-
tion based runtime verification[8] and model-driven testing
[5] to the threat specification based negative testing. The
exploited threats of specific security policies are expressed
as a set of UML sequence diagrams, each of which denotes
a certain threat scenario. We can use these threat models to
drive the security testing process in the following steps.

First, we derive message sequences from the threat mod-
els, and derive the threat traces from each message se-
quence. Second, we want to track the threat scenario rep-
resented in the threat model in a running program. When
the code becomes baseline, it can be instrumented using the
threat model as a guide, so as to record the trace of threat
scenario related method calling and method execution at
runtime and also to reduce the cost of irrelevant information
collection. Third, in order to exercise the program under
test more thoroughly, the random testing method is applied.
After we get the input parameters and their corresponding
domain, a large amount of test cases can be generated, and
arranged into a data pool. Fourth, we recompile the instru-
mented code, and design a test driver to feed test execu-
tion with random test data. The runtime execution traces
are recorded into a trace file. Last, the runtime execution
traces are matched with the threat traces in order to deter-
mine whether the threat is still existing.

The key technique in this paper is to verify the consis-
tency between the threat specification, which is described
in a UML sequence diagram, and the code implementation.
It views the execution of the program as a event sequence of
method calling and method executions. If any of the event
sequences recall the possible event sequence in the threat
model, then the threat in the model is still present in the
code, and an error message will be produced to report the
failure. The specification of threat scenarios can be derived
by threat modeling, introduced in section 2, and is the basis
of this method. The two artifacts in the software develop-
ment process, the threat model and the program, are input
by the proposed approach. The details are explained in this
section.

3.1 An Example

The example employed in this paper is based on the
project ”Simulation of an Automated Teller Machine”
(see also http://www.math-cs.gordon.edu/local/courses/
cs211/ATMExample/Links.html). It was implemented in

Java. To demonstrate the method in this paper, we simplify
both the design model and the code. The software under
test will control a simulated automated teller machine
(ATM) having a magnetic stripe reader for reading an
ATM card, a customer console (keyboard and display)
for interaction with the customer, a slot for depositing
envelopes, a dispenser for cash , a printer for printing
customer receipts, and a key-operated switch to allow
an operator to start or stop the machine. The ATM will
communicate with the bank’s computer over an appropriate
communication link. (The software on the latter is not
part of the requirements for this problem.) The ATM will
service one customer at a time. A customer will be required
to insert an ATM card and enter a personal identification
number (PIN), and both the card number and the PIN will
be sent to the bank for validation as part of each transaction.
The authorized customer will then be able to perform one
or more transactions. In our case study, we are concerned
with the violation of the authorization policy.

3.2 Modeling threat scenarios with UML
sequence diagrams

Based on the experience of predictable undesirable
threats and the specification of use cases and misuse cases
of the system under test, we can derive a specification of
threat scenarios from the misuse cases. A threat behavior
is a scenario of a misuse case and also a sequence of object
interaction. For example, an unauthorized user accessing
the service provided by the bank is one threat to the ATM
system. This scenario violates the security policy of autho-
rization, and should be prohibited in the implementation. It
is undesirable with respect to both the users and the devel-
opers. We can model one threat scenario of an unauthorized
user accessing the service provided by the bank with a UML
sequence diagram, which is depicted in figure 1.

3.3 Deriving threat traces from the threat
model

Since the threat model is a simple sequence diagram,
we derive a message sequence from the model. Regard-
ing to the complicate sequence diagram, we can derive
the set of message sequences by applying gray-box cov-
erage criteria[5]. We use the sequential number of the la-
bel of the message represent message respectively, such as
1 → 2 → 3 → 4. Based on the description in section 2,
we can derive an event trace from the message sequence,
!1 →?1 →!2 →?2 →!3 →?3 →!4 →?4. Then, the mes-
sage sending event and the message receiving event of the
trace can be replaced by method calling and method exe-
cution by corresponding objects respectively. This is an
instance-level threat trace, which may be implemented by

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

:CardSlot :screen :Bank:NumKeypad:Session

1 prompt("Please Enter PIN:")

2 inputPIN:=getEntry()

3 checkCard(cardNum,inputPIN)

4[!validPIN] prompt("Please Select transaction")

Figure 1. The sequence diagram for the threat
model of access control scenario

the trace of the program at runtime. So it is used to repre-
sent the threat behavior and is also the basis of the track.

3.4 Instrumenting the source code

Because we want to track the behavior modeled in
the threat model, in order to reduce the cost of irrelevant
information instrumentation, only the essential information
described in the threat model is focused on. In this paper,
our objective is to collect runtime information, such as the
method name and the class name of the method calling
and the method execution. The insert position in the
code is determined by the feature of the information to be
collected. Traditional instrumentation is only concerned
with the method execution[9]. We want to track the runtime
behavior in finer granularity. The probe statement of
method calling is inserted before the calling statement
of method calling, and the probe statement of method
execution is inserted before the first statement of the
method definition of the method executing. Thus we can
monitor method calling and method execution event pair
at runtime execution. First, the source code is scanned for
parsing tokens. Once a related method calling and method
definition m is found, if it is a definition of method m,
then we revise the formal parameter list by adding a formal
parameter mid and insert the code segment before the
first statement in the method definition for gathering the
information about the receiver and the class it belongs to.
If it is a calling for method m, then we revise the actual
parameter list according to the formal parameter mid and
insert the code segment before the method calling for
gathering the information about the sender and the class it
belongs to. The parameter mid is used to pair a method
calling and its corresponding method execution. Thus the

caller and callee can be related. The dynamic behavior,
such as method calling and method execution, can be
profiled by the execution of the instrumented statement
and recorded into a trace file. The method calling and
the method executing in the source code are instrumented
to record the method name and occurring sequence. The
detail algorithm is not listed due to the limited place.

3.5 Monitoring the test execution driven
by random test cases

Penetration testing is used to exercise the software under
test to detect the specific threat traces. Test case genera-
tion is one of the important concerns in software testing.
Generating test cases based on the design model is not a
new topic. Most published literatures introduce techniques
for generating test cases from UML models, such as se-
quence diagrams or activity diagrams, and so on[5, 6]. Any
diagram-based test method is based on path traversing[9].
A run driven by one test case may not detect the modeled
threats, so various runs taking different paths may be nec-
essary to find a path which can activate the threat behavior.
So we randomly generate a number of test cases automati-
cally which can be used to drive the program execution to
collect the traces which represent the behavior of the sys-
tem and can be used to match the threat traces. Test case
generation is customized by the user interactively. Given
the input parameters and their corresponding domain, spec-
ified size of test cases are randomly generated to construct
a test suite. The test data is sequentially organized in a data
pool (i.e., a .txt file). Each line of the file is a test case.
The instrumented program is then recompiled and driven by
the randomly generated test cases without user interference.
When the execution needs input, test data is fed from the
data pool. When the instrumented statements in the source
code are executed, the method calling and method execution
will be reported to the trace file (also a .txt file). A trace seg-
ment corresponds to a random test case. And flags are set
between any two traces so as to conveniently differentiate
them. The trace file is the operational profile of the runtime
behavior, which can be visualized as the runtime execution
trace. The tester then can conduct the comparing operation.

3.6 Matching the execution traces with
the threat traces

In this section, we check the program execution traces
for the threat model by matching the execution traces with
the threat traces. Each runtime execution trace is a sequence
of method call and method execution, which correspond
to the message sends and receives in the threat model be-
cause of the guided instrumentation. From the trace file,

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

we find the execution trace, denoted as etrace, which is a
sequence of method calling and method execution events
at runtime, such as re1 → re2 → · · · → rem, where
rei = (mid, etype, os, ot,method), mid is the unique flag
of the message, etype could be s or r representing the
method calling event or method execution event, respec-
tively, ot is the name of the target object of method call,
os is the name of the source object which issued the request
of the method call, and method is the name of currently
calling or executing method. Thus both ttrace and etrace
are sequences of method calling events and method execut-
ing events. They can be compared directly, while the un-
expected threat behavior and the runtime behavior can not.
If an etrace matches a ttrace, we can conclude that an un-
desirable threat behavior is detected, and some measures
should be taken to mitigate the threat.

4 Related work

Secure software design and security testing is focused
on by more and more professionals. As UML is one of
the most popular modeling languages, some of the secu-
rity research applies UML as the modeling language in se-
curity design. Most of them demonstrate how to describe
the expected security by different methods to design secure
software with UML[10, 11]. Few of them are concerned
about the negative design from the adversary’s perspective,
such as security threats, so as to let the programmer know
what’s undesirable and should be absent from the system
under development[1, 12, 16]. Threat modeling is a sound
approach to address software security from the attacker’s
viewpoint at the design level, but most of them are mod-
elled by attack trees or just text format[1]. Pauli and Xu [16]
introduced an approach to model the threats with UML se-
quence diagrams. But they only highlighted and mitigated
security violations, without considering the security testing.

Although UML and model-driven engineering are pop-
ular in the industry, to our knowledge, code is still imple-
mented based on the design model, and is not generated
automatically from the model. So the design model meet-
ing the security requirement does not assure that the final
implementation satisfies the security requirements. In this
circumstance, we should verify whether the implementa-
tion meets the security design and is absent of the modelled
threats. Penetration testing is a traditional security testing
method. Blind penetration testing method can be easily ap-
plied in an ad hoc manner. But it can hardly be automated,
and thus is a time-consuming, labor intensive technique and
requires the users to have a strong security background.
So far, informed penetration only accesses the code infor-
mation, without considering the design information[1, 13].
Swinderski and Snyder[1] also presents the idea of threat
model based penetration testing, but also manually. Differ-

ent from previous works, we use UML sequence diagrams
to model the threats. Both the threat model and the code
are combined and used in the security testing. A runtime
verification technique[8, 17, 18] is applied in the testing
process for monitoring the execution trace of the software.
Specification-based testing method is usually used to gen-
erate test cases[5, 6, 9]. However in this paper, it is applied
to derive threat traces from threat models. We use a random
method to generate a large number of test data, and we also
design a test harness to drive the test execution, to feed the
test data. The approach proposed in this paper is highly au-
tomated, and can be easily deployed. It is more usable espe-
cially in the industry for software engineers without detailed
knowledge of formal methods and security.

5 Conclusion and future work

In this paper, a threat model-driven security testing
method is proposed. The potential threats which violate
the security policies are described in the threat model based
on the users’ previous experience. We track the runtime
behavior based on the threat models. The test process is
driven by the threat models, and the test design occurs in
parallel with the software development right after the threat
models become baseline. The threat traces are derived from
the threat model to represent the undesirable threat behav-
ior. The test cases are automatically generated with a ran-
dom testing method. After the code becomes the baseline,
it is instrumented guided by the threat models. The instru-
mented code is recompiled and executed with the randomly
generated test cases. The runtime behavior of the system
is monitored, and the execution traces can be recorded into
a trace file. Thus we can match the execution traces with
the threat traces so as to detect the modelled threats in the
program behavior.

The proposed approach extends our scenario
specification-based runtime verification and mode-driven
testing method to security testing based on negative design
specification, i.e., threat model. It is highly automated but a
little blind. With the help of our method, the development
team and customers can make sure whether the system
under test is absent of the modelled threats. Thus they can
achieve confidence in their product in regard to security
concerns.

The UML-based approach can increase the chance of the
work having some impact in industry, notably in widely-
used development processes and tools, because in a UML-
based software development process, if the testing is also
based on UML, the relationship between the testing and the
design model is more manifest. In addition, this will make
the testing approach more accessible. The approach pre-
sented in this paper can be easily applied in practice. As we
acquire the knowledge of security threats, the threats can be

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

modelled, which can be used to detect whether the imple-
mented code exercises the modelled threats. Thus software
testing engineers can use such approach to detect possible
security violations without security expertise. However, the
approach still need to be used in more real projects. In the
future, we will create a repository of the observed threats
with respect to specific security policies guided by the se-
curity expert, as well as implement a systematic tool to fa-
cilitate the security test. Then security engineers can model
the threats from the adversary’s perspective. And we can as-
sist the security testers with the threat model-driven security
testing tool.

References

[1] F. Swinderski, W. Snyder, Threat modeling, Microsoft
Press, 2004.

[2] D. Gilliam, J. Powell, E. Haugh, M. Bishop, Address-
ing software security and mitigations i n the life cycle,
Proceeding of the 28th Annual NASA Goddard Soft-
ware Engineering Workshop (SEW ’03), 2003.

[3] M. Fowler,UML Distilled (3 Edition), Addison Wes-
ley, 2003.

[4] Stuart Kent, Model Driven Engineering, Third Inter-
national Conference on Integrated Formal Methods
(IFM 2002), LNCS 2335, pp. 286-298, 2002.

[5] L. Wang, Research on Model-driven Software Testing,
[PH.D Dissertation], 2005 [in Chinese].

[6] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, G.
Zheng, Generating Test cases From UML Ac-
tivity Diagram based on Gray-box Method, Pro-
ceeding of 11th Asia-Pacific Software Engineering
Conference(APSEC’04),Busan, Korea,November 30-
December 04,2004, pp.284-291.

[7] X. Li and J. Lilius. Timing Analysis of UML Sequence
Diagrams, UML’99 , Lecture Notes in Computer Sci-
ence 1723, Springer, 1999, pp.661-674.

[8] X. Li, L. Wang, X. Qiu, B. Lei, J. Yuan, J. Zhao,
and G. Zheng,Runtime Verification of Java Programs
for Scenario-Based Specifications. In Proceedings of
the 11th International Conference on Reliable Soft-
ware Technologies (AE2006), Portugal, 2006, Lecture
Notes in Computer Science 4006, Springer, pp.94-
106.

[9] B. Beizer, Black-box Testing:Techniques for func-
tional testing of software and systems, John Wiley and
Sons,Inc, New York 1995.

[10] Jan Jürjens, Secure Systems Development with UML,
Springer-Verlag, 2004.

[11] T. Lodderstedt, D. A. Basin, J. Doser, SecureUML:
A UML-Based Modeling Language for Model-Driven
Security, The proceeding of 5th International Con-
ference on the Unified Modeling Language (UML),
2002, LNCS Volume 2460 426-441.

[12] M. Howard, D. Leblanc, Writing secure code(Second
edition), Microsoft Press, 2004.

[13] B. Arkin, S. Stender,G. McGraw, Software penetration
testing, Security and Privacy Magazine, IEEE Volume
3,Issue 1, Jan-Feb 2005,pp.84-87.

[14] G. McGraw, Software security, Security and Pri-
vacy Magazine, IEEE Volume 2, Issue 2,Mar-Apr
2004,pp.80-83.

[15] B. Potter, G. McGraw, Software security testing, Se-
curity and Privacy Magazine, IEEE Volume 2,Issue 5,
Sept.-Oct. 2004,pp.81-85.

[16] J. Pauli, D. Xu, Threat-Driven Architectural Design
of Secure Information Systems, In Proceeding of
First International Workshop on Protection by Adap-
tation (PBA 2005, In conjunction with the 7th Interna-
tional Conference on Enterprise Information Systems
(ICEIS 2005)), Miami, May 2005.

[17] M. Lettrai, J. Klose. Scenario-based monitoring and
testing of real-time UML models. In Proceedings of
4th International Conference on Unified Modeling
Language (UML2001), LNCS 2185, Springer, 2001.

[18] K. Havelund,G. Rou. Monitoring Java Programs with
Java PathExplorer. In Electronic Notes in Theoret-
ical Computer Science, Vol.55, Issue 2, Elsevier,
2001,pp.200-217.

Third International Workshop on Software Engineering for Secure Systems (SESS'07)
0-7695-2952-6/07 $20.00 © 2007

