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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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We propose a composite garbage collector combining the
existing generational copying collector of GHC for young
generations with a non-moving mark-and-sweep collector
for a single old generation. The existing collector allows for
fast allocation through a bump-pointer allocator, which is
evacuated and scavenged by copying in a stop-the-world
manner. In contrast, the non-moving heap can be collected
concurrently with the mutator using a mark-and-sweep ap-
proach, which facilitates short mutator pauses even when
the heap is large. To facilitate safe concurrent collection we
rely on the snapshot-at-the-beginning strategy of the non-
moving heap coupled with generational remembered sets
that ensure that both paradigms work together.

Our design allows concurrent execution of the mark-and-
sweep collector with bothmutators threads and the copying
collector. Moreover, it requires minimal changes in mutator
code, incurs minimal overhead when not in use, and can be
enabled at runtime without the need for recompilation.

Contributions. Webuild on priorwork of Ueno et al. [25]
to offer the following new contributions:

• We extend Ueno’s non-moving collector to a genera-
tional setting with a fast bump-pointer allocator.

• We develop an implementation that can be enabled in
the runtime system at runtime without the need for re-
compilation.

• We offer an incremental marking scheme for evalua-
tion stacks where mutator and mark thread share mark-
ing effort, thereby efficiently supporting a large number
of deep program stacks as often arises in parallel func-
tional programs.

• We integrate the concept of object aging and eager pro-
motion to allow efficient treatment of thunks in our gen-
erational setting.

• We analyze the runtime behavior of our collector in
comparison to GHC’s existing collector, focusing on ap-
plications that require fast response times.

Outline. We review related work in Section 2 and sum-
marize foundations for our design in Section 3. Section 4
details the design of the Alligator collector. We empirically
evaluate the new collector approach in Section 5, before con-
cluding the paper.1

2 Related Work
Several garbage collection approaches have been suggested
to reduce the length of the pause times. These fall into two
broad categories: incremental collection and concurrent col-
lection. Incremental collectors reduce mutator interruption

1More materials and results available in the online appendix at
https://github.com/well-typed/ismm-2020-nonmoving-gc/.

by interleaving GC pauses of bounded-length with muta-
tor progress. The concurrent collectors reduce mutator in-
terruption by allowing the bulk of collection to run concur-
rently with the mutator. Our Alligator collector also falls
into this concurrent category.

Low-latency garbage collection in GHC. Several attem-
pts have been made to introduce a low-latency garbage col-
lector into GHC. An earlier attempt [6, 7] leverages an ar-
tifact of GHC’s lazy-evaluation mechanism — the fact that
the mutator must call a heap object’s “entry” code before in-
specting its contents — to implement a low-cost read-barrier.
This read-barrier is used to implement an incremental tri-
colour garbage collection scheme [2] with low (less than
5%) runtime overhead. However, the later introduction of
the “pointer tagging” optimisation [20] is incompatible with
this collection approach as it eliminates mutator calls to en-
try code in many cases.

Orthogonally, there has also been un-mergedworkwithin
GHC that explore the use of local heaps [19] to permit con-
current collection of individual mutator threads’ allocation
areas. While this improves the scalability of the collector by
eliminating the need to synchronise across mutator threads
for frequent minor collections, it does not address the long
pause times caused by major collections.

While it doesn’t target low latency, the Immix collector [4]
explores the use of a heap structure providing allocation
performance approximating that of a bump-pointer heap
through use of mark-region collection.

Concurrent garbage collectors. Outside of the functional
programming communitymany concurrent collector designs
are proposed (cf. Table 1). Some are on-the-fly collectors,
which require no pause on the mutator’s part.

Doligez, Leroy, and Gonthier [10, 11] suggest a pause-free
mark-and-sweep collector for sequentially consistent ma-
chines using tri-color marking and a two-phase handshake
between the collector and mutator(s). Domani et al. [12] de-
scribe a similar collector for Java which includes support
for use on non-sequentially consistent machines, and gen-
erational collection.

The Sapphire collector [16, 27] offers a prescription for
introducing on-the-fly concurrent collection into any copy-
ing collection scheme via replication. This technique is par-
ticularly suitable for settings with high thread-counts (like
many GHC programs) as the mutator can be moved one-
thread-at-a-time to the replica.

TheGarbage First collector [9] is amoving collectorwhich
targets soft real-time applications by focusing collection ef-
fort on heap regionswhich contain a high fraction of garbage.
This allows the collector to enjoy the benefits of compaction
while avoiding the long pause associated with collection
of the entire heap. This comes at the cost of added book-
keeping to track references between heap regions.
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Table 1. Comparison of related work. The “HW reqs.” column refers to hardware capabilities demanded by the collection
approach: “HTM” refers to Hardware Transactional Memory and “VM” refers to non-trivial virtual memory operations which
might impact portability.

Collector Implementation Incremental /
concurrent

Moving /
non-moving

Hardware
requirements

Parallel
collect? Generational

Shenandoah [13] Java (OpenJDK) incr. compacting no no
G1 [9] Java(Hotspot JVM) conc. compacting yes yes
Ben-Yitzhak compactor [3] Java (IBM JVM) incr. compacting yes no
Ossia compactor [21] Java (IBM JVM) conc. compacting VM no no
Chihuahua [1] Java (Jikes) conc. compacting HTM no no
Compressor [17] Java (Jikes) conc. compacting VM yes no
Immix [4] Java (Jikes) neither non-moving no yes
Non-Stop Haskell [6, 7] Haskell (GHC) incr. compacting no no
Ueno – Ohori [25] SML (SML#) conc. non-moving yes no
Alligator (ours) Haskell (GHC) conc. non-moving yes yes

The Shenandoah collector [13] is a concurrent compact-
ing design targetting low pause times with very large heaps.
While it relies only on the compare-and-swap operation, its
reliance on a read barrier and Brooks’ indirection [5] which
would require recompilation.

The Compressor collector [17] is a concurrent, parallel,
and incremental compaction algorithm. However, it relies
on the machine’s virtual memory subsystem to trap object
accesses during compaction. Ossia, et al. [21] describe a simi-
lar compaction scheme intended to supplement a mark-and-
sweep collection scheme. Like in Compressor, page protec-
tion is required to catch lost writes. Ossia analyses the over-
head associated with page access violation events, finding
that single trap events can cost more than 100 microseconds.
The effective cost of these events would likely be higher
with recent changes in hardware architecture and increased
context-switch times due to hardware data leakage mitiga-
tions.

There have been several recent approaches [1, 23] explor-
ing the use of the hardware transactional memory (HTM)
functionality of some modern processors for garbage col-
lection. However, Haskell supports platforms without such
functionality. Also, the performance advantages are unclear [23,
Section 5.2].

Alligator draws from Ueno and Ohori [25, 26], who de-
scribe a concurrent, on-the-fly collector implemented in SML#.
As will be described in Section 3, we use the heap structure
and snapshottingmechanism from this design, but, in the in-
terest of simplicity, without the on-the-fly handshake. How-
ever, as our design relies on moving, stop-the-world minor
collection, in practice our design stands to benefit little from
on-the-fly operation.

3 Background
Since our approach heavily relies on both the Ueno non-
moving collector [25] and as GHC’s existing Cheney-style
copying collector [8], we will give a brief overview.

3.1 GHC’s Existing Copying Collector
GHC’s copying garbage collector [18] is built around an allo-
cator (knownwithin GHC as the “block allocator” but which
refer to here as the “storagemanager allocator” to avoid con-
fusion) that offers a variety of convenient properties:

• Each block is associated with a metadata area, the block
descriptor, which is accessible in 𝑂 (1) time and can be
used to store information such as the generation towhich
the block belongs.

• While the block size is fixed, contiguous groups of blocks
be allocated.

• Blocks can be linked together into lists.

On top of this allocator GHC builds a standard Cheney-
style generational, copying collector. In every collection cy-
cle, the semi-space collector evacuates live objects to to-space,
then scavenges the freshly evacuated objects, i.e., evacuat-
ing its references and updating pointers.

Like other generational collectors, GHC’s moving collec-
tor uses a write-barrier on pointer mutations to track ref-
erences from objects living in old generations to objects in
younger generations. This write barrier records pointers liv-
ing in young generations in what we call the generational
remembered set.

3.2 Generational Collectors
Generational collectors exploit the observation thatmost ob-
jects are short-lived, frequently collecting recently-allocated
objects to keep residency low. Here we use the term major
collection to refer to collection of the oldest generation and
minor collection for collections of younger generations.

While it is common for objects in the young generation
(short: young objects) to refer to objects in the older gen-
eration (old objects), references from old to objects can be
introduced by mutation. While minor collections only trace
the young generation, they must take care to account for
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such old-to-young references when determining reachabil-
ity. This issue is accomplished by adding old objects refer-
ring to young objects to the root set for the minor collection.
Specifically, the collection scheme must ensure that when-
ever a reference from an old object to a young object is intro-
duced, the old object is added to a generational remembered
set. This guarantee is provided via a write barrier (called the
generational write barrier) implemented by the mutator.

3.3 Snapshot Formalism
The collector has to determine the set of reachable nodes in
the heap graph while that graph is being modified by the
mutator. To simplify this task, many collectors reclaim with
respect to the snapshot-at-the-beginning reachable set [28].

The snapshot formalism enables the determination of the
(conservatively approximated) set objects that were reach-
able at the snapshot point 𝑡0, typically taken to be the begin-
ning of collection. The difficulty lies in reconstructing the
heap state at 𝑡0 at a later time point 𝑡1, when the heap may
be concurrently mutated. To reconstruct this, the collector
must maintain additional information about the heap state
at 𝑡0; herein we use the term snapshot to refer to this extra
information.

3.4 Ueno-Ohori Non-moving Collector
Ueno et al. [25] describe a non-moving heap structure and
garbage collector designed for functional programming lan-
guages such as SML#.The design accommodates concurrent
and parallel collection based on a mark-and-sweep strategy
that controls concurrency through a snapshot-at-the-begin-
ning approach.While Ueno et al. introduce a fully-concurrent
collection strategy, our approach is based on the single-muta-
tor variant which we describe below.

Ueno et al. make use of a heap structure, depicted in Fig-
ure 1, which divides the memory into a set of fixed-size al-
location segments. Each segment contains an array of fixed-
size allocation blocks and a metadata header. Segments are
aligned to the segment size, allowing efficient location of
the segment header of a given block.

The segment header contains the following information:
(1) AllocPtr, an allocation pointer containing the index of
the first unallocated allocation block, (2) AllocPtrSnap, a
snapshot pointer which preserves the value of the allocation
pointer at 𝑡0, and (3) a mark bitmap containing one bit per
allocation block.

The heap consists of sub-heaps, each servicing a range of
allocation request sizes.These sizes are chosen to be powers
of two. Each sub-heap consists of three sets of segments: (1)
a set of filled segments which have no empty blocks, (2) a
set of active segments which are partially empty, and (3) one
current segment for each mutator.

The basic operations of this heap structure are:

Segment List
Filled Current Active

Segment

Blocks Bitmap AllocPtr AllocPtrSnap

26 bytes

Sub-heaps 𝐻5 𝐻6 𝐻7 𝐻8𝐻4

Figure 1. A schematic representation of the Ueno et al.
non-moving heap structure. The heap consists of a family
of power-of-two-sized sub-heaps (call-out shows 26 byte
sub-heap), each of which consists of three sets of segments.
Blocks occupied by (possibly live) heap objects are denoted
by shading.

Allocation. The object’s size determines which sub-heap
services the request. The first free block, indicated by Al-
locPtr, is returned as the allocation result. AllocPtr is up-
dated to point to the next unallocated block via search of the
bitmap. If the segment contains no unallocated blocks, the
segment is placed on the filled list for sweeping.
Write barrier. To mark all objects that were reachable at
snapshot point 𝑡0, while mutation is underway, the mutator
records all overwritten pointers in the update remembered
set, which is different from the generational remembered set
described in Section 3.2.
Mark and Sweep Collection. Firstmark all live objects, de-
noted by a bit in the segments’ mark bitmap. A zero in the
mark bitmap means that either block is empty or contains
an object that is no longer reachable. We refer to the mark
stack used to track objects which have yet to be marked as
WorkList.

4 Approach: Alligator Collector
The design of our generational Alligator collector is a com-
posite of Ueno’s non-moving collector for the old genera-
tion and GHC’s existing copying collector for young gener-
ations. This provides several advantages:
1. The design allows us to enable the new garbage collector

at runtime without requiring recompilation of the code
(or any dependent libraries)2

2N.B. When GHC compiles Haskell programs to machine code, the allo-
cation code is inlined into the mutator code, and hence cannot be easily
changed at runtime.
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2. Our empirical study shows that the bump-pointer alloca-
tor is much faster than other allocation schemes, which
will be reflected in mutator performance.

3. In GHC’s copying collector, the max pause times grow
with the heap size. By keeping the moving generations
at a bounded size, we restrict the max pause times even
when the heap is large.The oldest generation uses Ueno’s
non-moving design for concurrent mark and sweep.
During a young-generation collection, the garbage collec-

tor will evacuate live data from the young generation into
the non-moving heap. The Alligator collector supports use
of an arbitrary number of moving young generations. How-
ever we expect that the most common configuration will
involve a single moving heap for the young generation and
a non-moving heap for the old generation, which is the con-
figuration that we characterise in Section 5.

Collections of the old generation are then performed by
concurrent mark and sweep. Objects in the old generation
are placed in a non-moving heap. The heap design is based
on the “single-mutator collector” described byUeno [25, Sec-
tion 3.1] as summarized in Section 3. Our modifications are
described in Section 4.1.

The collection of the old generation, also called a major
collection, is conducted in four phases (cf. Figure 2):
Preparation: Suspendmutators, collect the (moving) young
generation, thereby promoting all live data into the non-
moving heap, update a snapshot of the non-moving heap,
enable the update write barrier, and resume mutator execu-
tion.
Marking: Concurrent marking of the non-moving heap, as
described in Section 3.
Post-mark synchronization: Suspend mutators (again),
mark update remembered sets, prune generational remem-
bered set entries which were found to be unreachable, and
disable the update write barrier.
Sweeping: Concurrently sweep unreachable objects from
non-moving segments as described in Section 3.

Next, we provide an overview of how the two heaps and
collection approaches are combined and interact.

4.1 Heap Structure
We customize the non-moving heap as follows: our non-
moving allocator implementation makes use of the alloca-
tor3 of GHC’s storage manager [18] to allocate segments,
allowing integration with the existing garbage collector’s
logic for determining object generation.

Segments are aligned block groups of 32 kilobytes in length
as this provides a reasonable trade-off between heap frag-
mentation (which may increase with larger segment sizes)

3GHC refers to its allocator as the “block allocator.” However, for the pur-
poses of this paper we will refer to it as the “storage manager allocator” to
avoid confusion with “block” used by Ueno’s heap structure.

and metadata overhead (which increases with smaller seg-
ment sizes).

The Ueno allocator maintains a sub-heap for objects of
each size range. In our collector we choose the sub-heap
block sizes to be powers of two, ranging from 23 to 215

bytes. Larger objects are allocated in dedicated blocks from
the storage manager allocator, as is the case under GHC’s
existing copying collector, and are tracked separately by the
collector.

4.1.1 Mark Bitmaps and State Vectors. To maintain a
high rate of allocation, the Ueno collector uses two bitmaps
per segment: a tree-structured [26, Section 2.3] Bitmap to
determine the next free block and TraceBitmap for mark-
ing [25, Section 4.2]. We adjust the design as follows.

We use Ueno’s heap only for the old generation which ex-
hibits a lower allocation rate than the youngest generation
(which was Ueno’s use case). Therefore, we forgo the com-
plexity of this tree-structured bitmap in our generational
collector. In contrast, we propose to use a smaller flat repre-
sentation which combines Bitmap and TraceBitmap.

We further adjust the design to enable efficient parallel
marking. In Ueno’s algorithm the entries of Bitmap aremod-
ified during two stages of collection: (a) clearing of mark
bitmap when a filled segment is prepared for marking, and
(b) individually setting a block’s mark flags as each block
is marked. Parallel marking requires that mark threads do
not race when setting mark flags of two objects that are
placed adjacently in the heap. Since marking is idempotent,
we avoid the runtime penalty of atomic memory operations
by representing the bit state as a byte, since writes to bytes
are guaranteed to be non-interfering on all supported archi-
tectures. We call the bitmap when represented as an array
of bytes the segment’s state vector.

We avoid the need to clear the bitmaps before marking,
which would incur 𝑂 (heap size) cost, by using globally al-
ternatingmark epochs (referred to as epoch A and epoch B).
Each block’s state byte may take one of three states: empty
(represented by 0) for unoccupied blocks, epoch A (1), indi-
cating that the block is occupied by an object which was last
marked in epoch A, or epoch B (2).The global mark epoch is
advanced at the beginning of every major collection cycle,
and will be used during marking and sweeping.

Replacing the mark bit with a state byte increases the to-
tal space requirement only marginally: Assuming a worst
case of a heap filled with small heap objects of the minimum
block size of 24 bytes, the state vector overhead is 6%. In real-
world applications with larger objects the bitmap overhead
is observed to be about 2.5%.

4.1.2 Scavenging Freshly-Promoted Objects. Ueno’s
non-moving collector design did not foresee use in a gener-
ational setting. Therefore, the garbage collection algorithm
requires that all objects are maintained by the non-moving
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Time

Concurrent
Collector

OS Thread 1

OS Thread 2

Start of
Major GC

Prep.
Minor

Collect
Snapshot

Enable
Write Barrier

Final
Sync.

Preparatory
Pause

1 - 10 ms

Concurrent
Marking

Sync.
Marking

Begin
Sweep

Concurrent
Sweeping

Pre-sweep
Pause

< 10 ms

Mutator
execution

Prep.
Minor

Stack chunk
marking

End
Sweep

Concurrent
Phase

100 - 1000 ms

Concurrent
Sweeping

10 - 100 ms

Figure 2. The lifecycle of a typical major garbage collection under Alligator. The timings are typical figures from a program
with a few gigabytes of data in the non-moving heap on a modern x86-64 machine.

heap. Hence, a major collection would require to first evacu-
ate all live data in the young generation to the non-moving
heap. However, this incurs an unacceptable runtime cost as
large numbers of short-lived objects would need to be evac-
uated to the non-moving heap whenever a major collection
is performed.This is undesirable for two reasons: (a) evacua-
tion into the non-moving heap is more expensive than evac-
uation into the moving heap due to higher allocation costs,
and (b) this short-lived data will likely be retained in the old
generation long after it has become unreachable, unneces-
sarily growing the program’s residency. We suggest a better
approach in Section 4.5, allowing the collector to choose to
retain some objects in the moving heap (commonly known
as aging).

A minor collection will promote young objects from the
moving heap into the non-moving heap. GHC’s existing col-
lector is a typical Cheney-style collector, consisting of two
operations: first a set of objects are evacuated into to-space;
then freshly-evacuated objects will be scavenged by evacu-
ating their referenced objects and updating references ac-
cordingly. The scavenging process requires an inexpensive
means of identifying freshly-evacuated objects in need of
scavenging. A bump-pointer allocator would place freshly-
evacuated objects contiguously in memory; Cheney’s algo-
rithm exploits this by requiring only book-keeping of the
begin and end pointer of the region of to-space which was
evacuated into (known as the scan and limit pointers).

However, it is not straightforward to identify freshly-evac-
uated objects in the non-moving heap as these objects are
interspersed with pre-existing allocations. While one solu-
tion would be to maintain a list containing each individual
object in need of scavenging, this would come at a signifi-
cant cost.

A simpler solution is to use Cheney-style scan and limit
pointers and keep track of which objects in that objects in

that range are freshly-evacuated via the segment’s state vec-
tor: If a block’s state is empty (0), we know that the object
in this block was freshly evacuated. Since freshly-evacuated
objects are allocated into a Current segment, the bitmap of
which is not touched by the concurrent mark phase, the allo-
cator can safely rely on the bitmap to find free blocks. Note
that we must avoid scavenging objects that are not freshly
evacuated. Since their liveness is unknown they could con-
tain references to already-swept objects.

4.2 Write Barrier for Update Remembered Set
If programs would not require mutation, our design so far
would guarantee that objects in the old generation do not
hold references to the young generation, and hence major
collections of the non-moving heap could be performed in
parallel to minor copying collections without any potential
interaction. In this section we describe how the collector
supports mutation.

Mutation affects our design is by introducing pointers
from old objects to young objects. These old objects will
be added to the generational remembered set to act as ad-
ditional roots during minor collections (cf. Section 3).

To support concurrent moving and non-moving collec-
tions, we need to ensure the correctness of the reachabil-
ity analysis for old objects 𝑂 ′ that are only reachable from
young objects 𝑌 , especially if those are only reachable from
old objects𝑂 (depicted in Figure 4). Specifically, because the
minor collection would move live young object 𝑌 (thereby
temporarily invalidating the pointer in 𝑂), we must take
care not to trace objects in the young generation. This is ad-
dressed by promoting all young objects 𝑌 at the beginning
of the non-moving collection (with the exception of aging,
see Section 4.5).

The snapshot invariant of the non-moving collector guar-
antees that any objects promoted to the non-moving heap
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after the snapshot point 𝑡0 will not be affected by non-moving
collection. However, because references within the old gen-
eration may be overwritten, we need to ensure that that all
objects that were reachable at the snapshot point 𝑡0 will be
correctly marked. For example, if at time point 𝑡1 > 𝑡0, a ref-
erence from an old object 𝑂 to an old object 𝑂 ′ is mutated
to instead point to object 𝑋 , we need to ensure that 𝑂 ′ is
marked to respect the snapshot invariant. However if mark-
ing would inspect object 𝑂 after time 𝑡1, it would instead
proceed to trace 𝑋 . While it is unnecessary (but tolerable)
to mark newly introduced objects such as 𝑋 , we need to en-
sure that the old referent𝑂 ′ is also added to WorkList. We
implement this by collecting such objects 𝑂 ′, whose refer-
ees are overwritten by mutation, in an update remembered
set which feeds into the WorkList. We enable a write bar-
rier for old objects to populate the update remembered set.
Unlike the generational write barrier, the update write bar-
rier only needs to be enabled during the concurrent mark
phase of collection.

In pure functional programming languages, only a lim-
ited number of causes can lead to mutation. In GHCHaskell,
pointer mutations arise from three sources:

• Advancement of the evaluation stack,
• Thunk updates, and
• Modification of mutable arrays and reference cells.

Figure 3 presents the pseudo-code for the write barrier
on pointer updates. This write barrier incurs two branches
only while non-movingmarking is underway.The code-size
overhead of the barrier is negligible as most mutation code
(e.g., thunk updates and most mutable object mutation) is
defined in the runtime system, not the compiler-generated
mutator code.

The update remembered set, like the generational remem-
bered set, is accumulated in a per-thread data structure to
minimize contention in parallel programs. During a non-
moving collection three eventsmay prompt a thread to flush
its local accumulator set to the global WorkList:

• The local accumulator is filled,
• The concurrent mark phase ends, and a global sync is

requested,
• The program performs a minor collection.

While flushing the update remembered set on minor GC
is not necessary for correctness, it limits the size of the lo-
cal accumulator and thereby reduces the amount of marking
that must be performed during the final sync phase of col-
lection, reducing pause times.

4.3 Marking Stacks
The GHC runtime system accommodates very deep evalua-
tion stacks. Evaluation stacks in GHCHaskell are organized
in a chain of stack chunks of variable size. To the collector, a
stack chunk looks like any other heap object, and hencemay
live in the non-moving generation. Like all heap objects, the

// Mutate pointer array with new value.
void WriteArray(Array *arr, int i, Object *value) {

if (update_write_barrier_enabled
&& IsInOldGeneration(arr))

push arr[i] to UpdateRemembSet;
arr[i] = value;

}

// Overwrite thunk object with result of evaluation.
void UpdateThunk(Thunk *thunk, Object *result) {

overwrite thunk with indirection pointer to result;
if (IsInOldGeneration(thunk)) {

if (update_write_barrier_enabled) {
for (Object *p in free variables of thunk)

push p to UpdateRemembSet;
}
push thunk to GenRemembSet;

}
}

// Update IORef mutable reference cell.
void UpdateIORef(IORef *ref, Object *new) {

if (! IsMarkedDirty(ref)) {
if (update_write_barrier_enabled)

push ref.value to UpdateRemembSet;
push ref to GenRemembSet;
MarkDirty(ref);

}
ref.value = new;

}

Figure 3. Pseudo-code for write barrier used on array
writes, thunk, and mutable reference cell updates. The barri-
ers on other mutable objects are similar to the array case.
Global flags are denoted in snake-case, where functions,
variables and types are denoted in camel-case.

non-moving collector must ensure that all references reach-
able through evaluation stacks at 𝑡0 will be traced.

Since stack operations are extremely frequent, tracking
overwritten references through a write barrier would incur
a large overhead on mutator execution. Instead, we imple-
ment a specialmarking behavior for evaluation stack chunks
which guarantees that a thread does not resume execution
on a stack chunk until that chunk has been marked.

When amutator starts the execution on a new stack chunk,
it checks whether the stack chunk has been marked (using
the mark byte in the state vector): If it is not yet marked,
the thread walks the stack chunk, pushing all pointers to its
update remembered set. In either case, the thread proceeds
with the execution. As depicted in Figure 2, stack chunk
marking and mutation can be interleaved. Moreover stacks
can be marked by the concurrent mark thread, whichever
happens first.
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This introduces a potential race as mutator and concur-
rent mark thread may simultaneously attempt to mark the
same stack. To avoid this, the stack must be locked before
initiating marking. If the mutator fails to lock the stack it
waits until the concurrent mark thread has finished mark-
ing before commencing with execution. If the concurrent
mark thread cannot acquire the lock, it defers marking of
this chunk to the mutator and will proceed with the next
item on WorkList.

As stack chunks are of bounded size (32 kBytes), the a-
mount of work necessary to mark a stack chunk prior to ex-
ecution is bounded. This approach complements the stack
dirtying logic already present for the existing moving col-
lector, which ensures that all stacks are pushed to the gen-
erational remembered set prior to mutation.

4.4 Write Barrier for Reference Cells
GHC Haskell exposes a few types of primitive mutable ref-
erence cell: MVar, IORef, and TVar. These cells contain a
single reference to a heap object and represent a significant
source ofmutation inHaskell programs. Consequently, both
GHC’s existing andAlligator collectors focus onminimizing
the barrier costs for these objects.

Each mutable reference cell has a single-bit “dirty” flag
which is set when the object is mutated (and hence added
to the generational remembered set ).This allows future mu-
tations to avoid repeatedly adding the object to this remem-
bered set. The dirty flag is reset during scavenging if the
object does not hold references into younger generations.

The non-moving collector employs a similar technique to
avoid added update remembered set traffic, taking advan-
tage of the fact that the non-moving write barrier is only
obligated to push the pointer value present at 𝑡0, and not
those arising from subsequent mutations.

Specifically, the write barrier will push the overwritten
pointer value to the update remembered set only if the ob-
ject is clean (implying that this is the first mutation to the
object since the last GC). See Figure 3 for code of this barrier.

For this to be safe we must ensure that all reference cells
referring to objects in the non-moving generation are either
(a) marked as clean, or (b) have their referents at 𝑡0 on the
mark worklist. To accomplish this, we scavenge any refer-
ence cells on the generational remembered set during the
preparation phase of collection and mark each cell as clean
if it contains no references into the young generation, other-
wise (e.g. in the case of an aged object, as we will see below)
push its referent to the update remembered set.

4.5 Eager Promotion and Aging
So far, we explained our design with the assumption that
major collections would first evacuate all live data to the
non-moving heap, as this ensures that the concurrent mark
can safely trace all live data. However, due tomutation, some
objects such as evaluation stacks and mutable objects are

Moving heap
(nursery)

Non-moving heap
(old generation)

O

O’

Y
Root set

Figure 4. Handling inter-generational references during
concurrent collection with aging. However, allowing 𝑌 to
remain in the young generation during preparatory GCmay
hide live object 𝑂 ′ from mark.

associated with many short-lived objects. We would like to
avoid promoting short-lived objects to the non-moving heap
for several reasons: (1) allocation in the non-moving heap
is much slower than using the bump-pointer allocator of
the young generation. (2) The young generation is collected
more frequently, where unreachable short-lived objects in
the old generation consume unnecessary heap space.

For these reasons, generational collectors introduce object
aging, i.e., where some objects, such as evaluation stacks and
mutable arrays, remain in the young generation instead of
being promoted, as depicted in Figure 4.

However, aging complicates the concurrent collection ap-
proach, since we cannot safely examine young objects, be-
cause the copying collector may be in the process of evac-
uating them. Instead, we have to ensure that objects in the
non-moving heap which are reachable only via aged objects
are marked via some other means.

Whenever an object is aged by keeping it in the young
generation during evacuation, all non-moving heap object
references encountered during scavenging are placed on the
mark work list. Aging is applied to objects which are likely
to be subject to frequent mutation including STM transac-
tion records, mutable reference cells (e.g. IORefs), muta-
ble pointer arrays, and a variety of runtime-internal book-
keeping structures (e.g., blocking queues).

Before our Alligator collector accommodated aging, we
observed unacceptably high increases in bytes copied by the
non-moving collector.

4.6 Other Issues
GHC’s garbage collector is used for detecting threads that
are deadlocked due to blocking on un a concurrency primi-
tive (e.g. MVar and TVar) that is not reachable.

Providing this functionality in the Alligator collector is
complicated by the conservative treatment of inter-genera-
tional reference cycles that arise due to aging. In particular,
consider the scenario depicted in Figure 4 with an additional
edge from 𝑂 ′ to 𝑂 (inducing a cycle). If 𝑂 is not reachable
from the root set, we would want to identify a deadlock.
However when 𝑌 is aged, 𝑂 remains on the generational
remembered set, and we would consider the entire cycle to
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be reachable, which would hide the deadlock. To avoid this
failure of deadlock detection, we use a heuristic to disallow
aging when there there are no runnable threads (and we
therefore suspect a deadlock).

5 Evaluation
The Alligator garbage collector is implemented in the GHC
Haskell runtime system, available inGHC 8.10.1.4 Aprimary
goal of the Alligator collector is to offer consistent short
maximum GC pause times. While the previous moving col-
lector was optimized for throughput, its stop-the-world na-
ture potentially produced long pause times which would be
unacceptable for many latency-sensitive applications, par-
ticularly in the presence of large heaps.

To substantiate our claims of response-time improvements
in our GC architecture, we characterise the Alligator col-
lector in comparison to the original throughput-optimized
copying collector on several benchmarks.

5.1 Evaluation Paradigm
Unless otherwise noted, all experiments are taken on aAMD
Ryzen 2990WX 32-core processor with 512KB L2 cache and
64GB of RAM, running Debian 10.

5.1.1 Benchmarks. Our evaluation characterises a selec-
tion of Haskell programs which seek to model a wide range
of program behaviors (due to space, we report only a subset
of results in the paper; additional benchmark results can be
found in the online appendix). We briefly summarise these
programs below:
nofib: Nofib [22] is a benchmark suite consisting of several
dozen small Haskell programs. It is included for the sake
of completeness as it is commonly used as a timing bench-
mark in the functional programming community. However,
we note that very few of these benchmarks serve as useful
benchmarks of the Alligator collector as the maximum heap
residencies (and, consequently, GC pause times) of these
testcases are generally quite small. All benchmarks are com-
piled with “-O1” and are run in their “slow” configuration.
lru-cache: Simulates a typical caching HTTP server appli-
cation. The application loads a large static data structure
into the heap and proceeds to serve HTTP requests. Each
request looks up the query string in an LRU cache to see
whether a cached result is available. If so, it is returned; if
not, the result is computed, inserted into the LRU cache, and
the cache pruned to maintain a size of 640,000 entries. The
query results are Wikipedia pages rendered to HTML from
their TREC CAR representation [14].
Load is provided by the wkr2 load generator simulating re-
quests a one-hour-long Wikipedia query log from 2016. To
ensure a balance of cache misses, the request distribution is
“flattened” by clamping request count at 1000.

4Activated with the -xn runtime system flag.

text-search: Incrementally builds an inverted index forweb
search applications from small batches of user-provided doc-
uments. Retrieval of top-𝑘 rankings of keyword-based search
queries, using a term-frequency-based ranking function sim-
ilar to well-known retrieval models TF-IDF or BM25. Re-
quests are of two types: add document requests cause the
server to incrementally build an inverted index for a named
document and merge the index into the global index state.
Query requests use the global index state to perform a top-
𝑘 query for a given set of query keywords. The queries and
documents are based onWikipedia titles and passages, which
are taken from the TREC Complex Answer Retrieval docu-
ment corpus [14].
edit-distance: Computation of the Levenshtein distance be-
tween character strings using a dynamic programming algo-
rithm implemented via memoized recursion. Each request
requires the computation of a all pairs in a set of 18 input
strings of 50 characters.The strings are taken fromWikipedia
abstracts.
kv-store: Models an in-memory database server applica-
tion by building and querying a large on-heap dictionary,
recording the service-time of each request. Both keys and
values are random integers and the dictionary is provided
by the size-balanced binary tree implementation of the con-
tainers library.
list-alloc: This program is a microbenchmark which mea-
sures allocation cost by allocating a linked-list of Ints of
length 108.
ghc-cabal: Simulates a large complex application without
response-time critical nature. We use GHC, which is itself
written in Haskell and hence runs on the Haskell GHC run-
time system, to compile Cabal, a Haskell library of moder-
ate size.

Test cases lru-cache and text-search use Wikipedia data
provided as part of the TREC Complex Answer Retrieval
competition [14]. The dataset is derived from Wikipedia to
offer a corpus de-duplicated content from Wikipedia. The
dataset is available under CC-SA and was produced in coop-
eration with the National Institute of Standards and Tech-
nology who organizes the Text Retrieval Conference, a se-
ries of shared tasks in information retrieval.

5.1.2 Evaluation Measures. We evaluate by the follow-
ing measures of response-time in addition to overall elapsed
runtime:
Response latency is characterised for the lru-cache bench-
mark with the wrk2 HTTP load generator and measures the
time between the sending of a request and receiving the re-
ply.5

5The wrk2 HTTP load generator is available at https://github.com/giltene/
wrk2. The generated load is exhibits a constant request rate, thus avoiding
the problem of coordinated omission[24].

95

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2


ISMM ’20, June 16, 2020, London, UK Ben Gamari and Laura Dietz

GC pause times are measured by the GHC runtime sys-
tem. We examine maximum pause time, average pause time,
and pause time histogram for both moving and non-moving
collections.
Service times are measured for the lru-cache, inv-index,
and kv-store benchmarks aswall-clock time to compute each
work item.
Elapsed runtime ismeasured as total wall-clock time from
the start to the exit of a benchmark process.

5.2 Experiment 1: Response and Pause Times
Many applications require consistently short response-times,
such as servicing requests in a client-server fashion, and in-
teractive applications such as games. In such settings it is
unacceptable for the program to be unresponsive due to a
long garbage collection pause. In this first experiment, we
analyse the population of response and pause times through
the course of many requests.

Figure 5 shows the distribution of response times under
two server configurations: theA configurationmeasures the
collector at a one core with a request rate of 2000 requests
per second, while the B configuration uses a high core-count
and higher request rate (eight cores with 8000 requests per
second). For each configuration the load generator configu-
ration was chosen such that it avoided saturation and was
roughly proportional to the server core count.

We observe a long tail of response times on the order of
one second for the moving GC. In contrast, the Alligator col-
lector’s tail converges to approximately 20 milliseconds. We
also note that the two collectors exhibit qualitatively differ-
ent behavior as the server core count is increased: While
the moving collector’s tail latency decreased when the core
count was increased, the tail latency of the non-moving col-
lector increased.

We complement this experiment with an analysis of the
max and average garbage collection pause times, shown in
Figure 6. Here we see that the response latency distribution
reflects that of garbage collection pauses.

5.3 Experiment 2: Throughput of Non-moving
Collector

To evaluate the throughput of the non-moving collector, we
look at elapsed runtime for each of the experiments, sum-
marised in Table 2. We will discuss two benchmarks in par-
ticular: ghc-cabal and nofib. GHC is used as a typical ex-
ample of a large-scale Haskell program, requiring a mod-
erate heap size and using a mix of laziness, explicit muta-
tion, and optimised computation proportionate to what one
would find in a typical Haskell program. The nofib testsuite
is used as a worst-case for the collector as residencies are
small and tests tend to be laziness- and allocation-heavy. For
all of these tests the elapsed runtime and mutator time are
measured.

Figure 5. Response time distribution for the lru-cache
benchmark run in four configurations: non-moving-A and
moving-A run with one operating system thread and a load
of 2000 requests per second. non-moving-B and moving-B
run with eight operating system threads and serve 8000 re-
quests per second. The peak residency of the server is ap-
proximately 8 gigabytes.

Figure 6. Garbage collector pause time distribution for the
lru-cache benchmark run.

The nofib cases are quite mixed. While a quarter of tests’
runtimes are unchanged or slightly improved (the gc/mut-
store1 test improves by 11%), most tests slow down, with a
median of +21%. One test, spectral/ansi increases in run-
time by 450%, exhibiting an increase in bytes copied by a
factor of 20. This result is consistent with a failure to age a
heavily mutated heap object, resulting in the promotion of
large quantities of short-lived garbage.

The ghc-cabal benchmark, which is more realistic, is sig-
nificantly more favorable. In particular, total wall clock time
increases by a mere 5%, from 176 seconds to 187 seconds
whereas mutator time increases from 143 seconds to 156 sec-
onds. The ghc-cabal benchmark also reveals an interesting
pause behavior: the program exhibits a single long pause
of 550 milliseconds due to a moving collection, by contrast
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Table 2. Summary of runtime characteristics of the latency-oriented benchmarks when run under the Alligator collector. All
percentages are relative to the copying collector. “avg.” denotes arithmetic mean.

test text-search kv-store lru-cache edit-distance
collector 𝑐𝑜𝑝𝑦 𝑜𝑢𝑟𝑠 %𝑐ℎ𝑔 𝑐𝑜𝑝𝑦 𝑜𝑢𝑟𝑠 %𝑐ℎ𝑔 𝑐𝑜𝑝𝑦 𝑜𝑢𝑟𝑠 %𝑐ℎ𝑔 𝑐𝑜𝑝𝑦 𝑜𝑢𝑟𝑠 %𝑐ℎ𝑔
metric

elapsed time 193.2 s 229.8 s +19% 65.9 s 72.8 s +11% 313.5 s 311.7 s −1% 86.9 s 69.6 s −20%
CPU time 193.1 s 374.5 s +94% 65.8 s 103.3 s +57% 1493.7 s 1481.8 s −1% 86.8 s 112.0 s +29%
avg. min. GC pause 235.0 𝜇s 390.0 𝜇s +66% 284.0 𝜇s 466.0 𝜇s +64% 785.0 𝜇s 1.0ms +29% 342.0 𝜇s 824.0 𝜇s +141%
max. min. GC pause 4.3ms 10.0ms+133% 3.2ms 3.3ms +3% 14.1ms 74.4ms+428% 3.2ms 6.6ms+103%
avg. maj. GC pause 680.6ms 3.5ms −99% 102.8ms 557.0 𝜇s −99% 363.3ms 8.1ms −98% 2.8 s 1.5ms−100%
max. maj. GC pause 4.1 s 31.4ms −99% 457.4ms 725.0 𝜇s −100% 1.3 s 32.2ms −98% 20.1 s 5.7ms−100%

Figure 7. Distribution of minor collection pause times for
runs of the kv-store and search benchmarks.

the remaining moving collection with an average collection
pause of 9 milliseconds. We believe that this ourlier is due to
a thunk leak within GHC which results in a large quantity
of thunks being added to the generational remembered set,
which contributes a large number of roots to the moving
collection.

Another mechanism by which the non-moving collector
might affect overall throughput is the increased overhead
associated with allocation in during minor collection. To
characterise this we examine the minor collection pause of
the list-alloc benchmark under themoving and non-moving
collectors. Due to the allocation-heavy nature of this bench-
mark, the cost of minor collections will be dominated by
the cost of allocation. This is confirmed by the CPU profile,
which reveals that over 10% of CPU time is spent in the non-
moving allocator. The minor collection pause distribution
reveals that minor pauses grow by a factor of three relative
to the moving collector’s bump-pointer allocator.

In Figure 7 we compare minor GC pause time distribu-
tions of the kv-store and search benchmarks. Here we see
that the non-moving allocator reducesminor collector through-
put by between 30% and 50%.

5.4 Experiment 3: Heap Fragmentation
To simplify concurrent collection, theAlligator collectormakes
the intentional trade-off of only sweeping filled segments.
While this choice will inevitably result in some fragmenta-
tion of the heap, we hypothesize that typical Haskell pro-
grams have consistent enough allocation behavior that partially-
filled segments will quickly be filled and collected.

Figure 8.The top pane shows the evolution of non-moving
heap occupancy over time for an execution of the ghc-cabal
benchmark. The series correspond to the three smallest sub-
heaps by block size, having blocks sizes of 16, 32, and 64
bytes. The red points show the overall occupancy across all
sub-heaps. The bottom pane shows the quantity of live data
in each of these sub-heaps over time.

To characterise thiswe examine the heap occupancywhich
we define to be the fraction of blocks in the non-moving
heap which contain live data. Figure 8 shows the evolution
of the heap occupancy for the three smallest block-sizes from
a typical execution of the ghc-cabal benchmark. Note that
Haskell heaps are in large part dominated by small alloca-
tions: the 25 and 26-byte sub-heaps comprise nearly 80% of
the heap size for the majority of the program’s execution.

Figure 8 confirms that for this typical workload the rate of
allocation is sufficient to ensure that the heap occupancy re-
mains between 70% and 90%. This is an acceptable range for
most applications, especially when compared to the base-
line of the copying collector which doubles the program’s
residency during evacuation.

We note that at around 𝑡 = 115 seconds we observe an in-
crease in live data across all sub-heaps. This correlates with
the long pause in Section 5.3.

5.5 Experiment 4: Proprietary Server
In addition to the benchmarks described above, the Alligator
collector is tested via a small test run of a proprietary server
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Figure 9. Progression of major GC pause times from a run
of a proprietary server application using the copying and
Alligator collectors.

application in use by a commercial client to minimize col-
lection pauses in an algorithmic trade quoting service. The
service ingests XML trades and numeric market data and
calls a C++ library to perform a quantitative analysis of the
trade, producing a bid/ask quote among other measures. In
this small test the server has a peak residency of a bit more
than 100 MBytes. Figure 9 shows the evolution of major GC
pause times over the course of the run.

Pause times rise during the the initialization phase of the
program (from 𝑡 = 0 to 𝑡 = 400 seconds) and eventually sta-
bilize once the program enters its serving loop. The differ-
ence between the copying and Alligator collectors is stark,
with the latter routinely exhibiting 50-fold lower pause times
than the latter, even with this relatively small heap.

5.6 Experiment 5: Qualitative Analysis of Frag
To get a qualitative impression of the performance differ-
enced between the copying collector and the new Alligator
collector in an inter-active real-time system, we played the
game frag,6 a Doom-like first-person shooter with 3D ren-
dering on a dual-core 2.66 GHz CPU with 32GB of RAM.

The performance impression difference is quite drastic:
In the existing copying collector many frames are dropped,
given a ragged and nauseating impression of the game.When
played for 15 seconds, we observe pause times are 42 ms at
maximum and 21 ms on average.

By contrast the game play is smoother and responsive
with the Alligator collector, which is explained by much
shorter pause times with a maximum pause of 8 ms and av-
erage of 1 ms. Hence, we conclude that with the Alligator
collector, GHC Haskell is becoming suitable for interactive
applications.

6Frag is available at https://wiki.haskell.org/Frag.

6 Conclusion
The Alligator collector is a composite moving/non-moving
garbage collector that combines the advantages of fast young
generation allocation through a bump-pointer allocatorwith
the short pause times of a concurrent non-moving collector.
The joint marking of program stacks by mutator or mark
threads allows efficient handling of the large thread counts
present in typical Haskell server applicationswhile thewrite
barrier design exploits Haskell’s pure nature to provide effi-
cient concurrent collection without the need for recompila-
tion.

Our empirical evaluation demonstrates that pause times
are reduced by a factor of 10 to 100. Accordingly, the response-
times (latency) of the 99.9 percentile of the lru-cache bench-
mark improved from 1.3 seconds in the copying collector to
20 milliseconds under the Alligator collector.

Significant increases in allocation costs are exhibited by
some benchmark programs, as is clearly demonstrated in
the list-alloc benchmark. This is in part the result of our
choice of allocator, which makes little effort to optimise bit-
map scans. The hierarchical bitmap structure described by
Ueno [26] presents a clear avenue for improvement.

In the course of our evaluation we encountered a few
programs where the concurrent collector was running for
a large fraction of the program’s overall runtime. While the
mark FIFO [15] employed by the collector contributes amod-
est improvement,mark performance is still heavily constrain-
ed by cache locality.Wewonderwhether consolidatingmark-
ing work via batching along segment lines might provide
better locality and consequently marking performance.

We demonstrate that even for the high allocation-ratemu-
tators of functional programming languages, a concurrent
collector can achieve competitive pause times. This is con-
sistent with work on collection for Java [13] and Go. While
on-the-fly collectors are well-represented in the literature,
our evaluation shows that a simple concurrent collector can
yield acceptable pause times for typical server applications.
In our view, the most fruitful avenues for future improve-
ments lie in improving non-moving allocator throughput
and marking performance.
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