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Abstract. We propose a multi-horizon forecasting approach that ac-
curately models the underlying patterns on different time scales. Our
approach is based on the transformer architecture, which across a wide
range of domains, has demonstrated significant improvements over other
architectures. Several approaches focus on integrating a temporal con-
text into the query-key similarity of the attention mechanism of trans-
formers to further improve their forecasting quality. In this paper, we
provide several extensions to this line of work. We propose an adjustable
context-aware attention that dynamically learns the ideal temporal con-
text length for each forecasting time point. This allows the model to
seamlessly switch between different time scales as needed, hence pro-
viding users with a better forecasting model. Furthermore, we exploit
redundancies arising from incorporating the temporal context into the
attention mechanism to improve runtime and space complexity. Our ex-
periments on several real-world datasets demonstrate significant perfor-
mance improvements over existing state-of-the-art methodologies. The
code for reproducing the results is open sourced and available online1.
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1 Introduction

Time series forecasting is an important problem across many domains, such as
economics [4, 34], retail [29, 7], healthcare [19], and sensor network monitoring
[23]. In such domains, users are interested in future forecasts based on the his-
torical data to glean insights. Multi-horizon forecasting is a critical demand for
many applications, such as early severe weather events forecasting and travel
planning based on traffic congestion.

Recurrent Neural Networks (RNNs) have been applied to model repeating
patterns in time series [24, 25], however RNNs and their variants are not able to
leverage information from the longer past as needed to model long-term depen-
dencies. Previous studies have demonstrated that RNNs including Long Short
Term Memory networks (LSTMs) [12] might also fail to capture long-term pat-
terns of dependency when information from the past is gradually overwritten by
information from recent observations [15].

1 https://github.com/SepKfr/Adjustable-context-aware-transfomer

https://github.com/SepKfr/Adjustable-context-aware-transfomer
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a) Point-wise attention b) Temporal attention

Fig. 1. A synthetic example of predicting the future after the dashed red line given
the preceding data. The attention mechanism would choose the points that are most
similar to the query point at t0 (depicted in blue) and predict a similar trajectory. In
the case of (a) point-wise attention, this would be the green point, which would result
in an erroneous forecast following the blue dashed line, where the correct forecast is
depicted in black. In the case of (b) temporal attention the similarity is depending on
the context, depicted as rectangle, and the pink rectangle is determined to exhibit most
similar behavior. This results in an accurate forecast, depicted as blue dashed line.

Transformers [30] can incorporate any observations of the series (potentially
skipping over non-relevant data points) which renders them more suitable for
capturing similarities in the longer past. We hypothesize that these similarities
are critical for achieving accurate forecasts. However, the basic attention mech-
anism in transformers estimates the similarity based on a point-wise vector of
the query and key, each representing individual time steps, thereby ignoring
the temporal context surrounding the query and key. As depicted in Figure 1
estimating similarities based on point-wise vectors without incorporating the
temporal context might lead to misleading predictions, when observations have
high point-wise similarities but exhibit different temporal behaviours (Figure 1
left).

Many approaches are based on the hypothesis that in a multi-layer model,
the temporal context can be absorbed into the representation of the query and
key from a previous layer. However, there are two shortcomings. 1) Previous
layers suffer from the same lack of temporal understanding. 2) Such a mecha-
nism operates indirectly which provides little insights for more explainability.
We strive for a direct approach that is even effective as a single-layer model, as
it obtains better performance while using fewer resources.

Li et al [18] address this shortcoming with a Convolutional Neural Network
(CNN) transformer. CNNs are used as a preliminary layer to inform points with
context information to feed into the transformer stack. However, our experimen-
tal results demonstrate that integrating a fixed length temporal context limits
the degree of flexibility to detect similarities on different time scales in order to
improve the forecasting quality.
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We dive into these issues and investigate the importance of incorporating a
flexible temporal context into the attention mechanism. Our contributions are
summarized as follows:

• We propose the adjustable context-aware attention, an attention mechanism
that dynamically learns the optimal temporal context length for each query
and key pair to obtain the best forecasting results. We propose the ad-
justable Context-aware Transformer (ACAT) which replaces the basic at-
tention mechanism with our adjustable context-aware attention.

• We increase the efficiency of our approach by exploiting redundancies in
temporal contexts. While it seems counter intuitive to first introduce then
remove redundancies, the result is a more efficient model overall.

• We successfully apply our proposed architecture to real world time series
datasets to validate its potential in generating more accurate predictions.

2 Problem Definition

Given the input data prior to time step t0, the task is to predict the variables of
interest for multiple steps into the future from t0 to t0 + τ .

Given the previous time series observations of variables of interest y1:t0 =
[y1,y2, . . . ,yt0 ], and time series covariates that are known over both the histori-
cal and forecasting period x1:t0+τ = [x1,x2, . . . ,xt0+τ ], we predict the variables
of interest for the next τ time steps yt0+1:t0+τ = [yt0+1,yt0+2, . . . ,yt0+τ ]. Where
yi ∈ Rdy and xi ∈ Rdx

For a univariate problem each xi contains the information of static time-
based covariates such as hour of the day and day of the week. However, we
also include other exogenous covariates to xi, when dealing with a multivariate
problem. In this paper we focus on generating univariate predictions where the
total number of target variables at each step is one (dy = 1), although the
problem can be generalized to predict multiple target variables at a time step
(dy > 1).

3 Related Work

Time series forecasting methods can be categorized into classical and neural
network methods. Prominent examples of classical methods include ARIMA [3]
and state space models (SSMs) [8]. ARIMA and SSMs require the expertise of
practitioners to manually select the autocorrelation structure, seasonality, trend,
and other explanatory variables. Additionally, the core assumption of classical
methods, such as stationarity and homoscedasticity of the time series data, make
them unsuitable for sporadic and nonuniform large data.

Neural network methods have been widely applied to time series forecast-
ing to model the non-linearity in large-scale data across related time series. Deep
neural networks have been proposed to model the interacting patterns among
time series and they have demonstrated strong performance improvements over
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traditional time series models [24, 1, 22]. Many deep learning architectures de-
pend on RNNs to model non-trivial time series data [24, 25, 32, 10]. Deep AR [25]
generates parameters of a one-step-ahead Gaussian distribution using stacked
layers of LSTM [13]. The Deep State Space Model (DSSM) [24] uses LSTMs
to generate parameters of a linear state space model at each time step. Multi-
horizon Quantile Recurrent Forecaster (MQRNN) [32] uses an RNN architecture
as an encoder to generate a context vector for multi-layer perceptrons to generate
multi-step forecasts.

Transformers have shown superior performance in modeling long-term de-
pendencies compared to RNNs [18, 9]. The Attention mechanism has been ap-
plied to a variety of tasks such as translation [30], image classifications [31],
music generation [14], and tabular learning [2]. Recently, the attention mecha-
nism has gained popularity in the time series community as well [18, 6, 20, 21,
27]. To include temporal information in the query-key similarity of the attention
mechanism, several works benefit from CNNs [17, 18, 26]. CNN-trans [18] uses a
convolutional processing layer to integrate the temporal context into the atten-
tion mechanism to build an autoregressive transformer-based model. Temporal
Convolution Attention-based Network (TCAN) [28] follows a similar approach
by applying dilated convolution to the output of a temporal attention layer to
model the short- and long-term temporal behavior. However the aforementioned
approaches use a convolutional filter with a fixed size controlled by a hyperpa-
rameter. In natural language processing domain, Chen et al [5] demonstrate the
usefulness of a max pooling layer on top of different CNN filters by proposing a
Dynamic Multi-pooling Convolutional Neural Network (DMCNN). Albeit in a
different domain, this idea is related in spirit to our approach.

Recently, new approaches have developed efficient transformer models to pre-
dict for long-time series forecasting problems. Informer [33] uses KL-divergence
and ProbAttention to select the most prominent queries and reduces the com-
plexity to O(L logL). Autoformer [11] includes the series decomposition as an
inner block of transformers and replaces the attention mechanism with the auto-
correlation among sub-series to achieve O(L logL) complexity. Our contribution
is complementary to these extensions since our attention mechanism can serve
as a substitute for auto-correlation and attention block in ProbAttention.

4 Methodology

In this section, we detail shortcomings to point-wise attention and elaborate
on principles of context-based temporal attention. We develop a self-adjusting
model that will select the most appropriate filter size for each forecasting deci-
sion. We remove redundancies of this model via a subsampling approach.

4.1 Background: Issues Arising from Point-wise Attention

Given time series data, a basic single-layer transformer model with masked scaled
dot-product QKV attention would predict the layer output yi at time step i as
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Fig. 2. An example of the temporal behaviour of the target variable taken from the
watershed dataset. The center of the plot depicts a stormy period with higher dynamical
behavior. Shorter context sizes are more appropriate for modeling temporal behavior
in these periods.

yi = softmax(
∑
j≤i aijvj) with attention aij = softmax

(
qᵀ
i · kj/

√
d
)

where

query, key, and value vectors are derived via qi = proj (xi), kj = proj (xj), and
vj = proj (xj) using three different multi-layer perceptron-style projections of
inputs to vectors with dimension d.

We call this form of attention point-wise, because it does not incorporate the
temporal context, as we are solely considering the information at time points
i and j. Figure 1 illustrates a forecasting issue that might arise because of the
point-wise attention mechanism in transformers. The canonical approach to in-
corporate the temporal context into the attention mechanism is to use a multi-
layer model. The hope is that in a multi-layer architecture, the previous layers
provide an appropriate representation of the temporal context. However, previ-
ous layers are also suffering from the problem induced by point-wise attention.
Therefore, while multi-layer transformers can theoretically learn a good tem-
poral representation, the architecture is an impediment to good performance.
In the following we address this issue with a simple-to-implement approach to
directly incorporate the temporal context and demonstrate in the experimental
evaluation that even a single layer of our approach can outperform a multi-layer
transformer model.

4.2 Temporal Attention

The first step towards a better model is to include the temporal context into the
attention. This idea has been discussed under the name convolutional attention
[18] or temporal attention [28].

This is achieved by deriving query and key vectors from the context of length
L preceding the time step i. Denoting this temporal context i<L = [(i − (L −
1)), . . . , i], the only modification to the temporal attention is how query and key
vectors are obtained: qi = proj (xi<L

) and kj = proj (xj<L
) . The attention

follows as: aij = softmax
(
qᵀ
i · kj/

√
d
)

.
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Fig. 3. An example of the adjustable context-aware attention architecture with context
lengths L = {1, 3, 6, 9}. We consider different context sizes to project the input data at
time step i and j to create a set of context-aware query and key vectors (the projections
is indicated in dashed arrows). Attention score aij is governed by the highest similarity
to query at time step i and key at time step j.

Note that xj<L
∈ Rdx×L is a matrix, which can be interpreted as being

re-shaped into a vector.
While this kind of attention is considering the temporal context, the issue is

that this context is of a fixed length L, which needs to be either pre-determined
or tuned as a hyperparameter. The common belief is that even if the ideal context
length L∗ would be unknown, choosing a sufficiently large context length L ≥
L∗ is sufficient. It is based on the hope that end-to-end training will set the
parameters of the MLP-projection to ignore parts that are not needed.

However, we hypothesize that the noise introduced by excessively large con-
text sizes will inhibit good performance and potentially mislead the model. In
the following we propose an alternative and demonstrate in the experimental
section that this leads to significantly better forecasting performance.

4.3 Adjustable Context-aware Attention

Our goal is to provide the model with the flexibility to choose the optimal context
length L for the temporal attention. In the following we refer to optimality with
respect to the overarching model’s hold-out performance of forecasting target
variables, via the query-key similarity.

Rather than learning a single one-size-fits-all context length parameter L,
we hypothesize that a successful model would need to switch between different
lengths dynamically, depending on the situation. For example, as depicted in
Figure 2 for the watershed domain, behavior of the target variable is much more
dynamic during storm events than during dry periods. Hence the ideal context
length would be much shorter during a storm event than during dry periods.
Hence, we will consider multiple context sizes L = {l1, . . . ln} when computing
the attention score. We will make the selection of the ideal context length part
of the prediction problem using the following model.

for all context length l ∈ L obtain:

• query vector qi,l = proj
(
xi<l

)
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Fig. 4. An overview of our subsampling scheme with c = 9. Context sizes are from
L = {1, 3, 6, 9}. Each key with context length l ∈ L subsumes the information of its l
preceding inputs. Hence, even though keys from time step j−1 to j−8 are skipped, the
information of xj−1 to xj−8 is represented in key kj,9 via the context-aware attention.

• key vector kj,l = proj
(
xj<l

)
.

Then use the context length that maximizes the attention score:

aij = maxl∈L softmax
(
qᵀ
i,l · kj,l/

√
d
)
.

The intuition is that all wrong filter lengths will miss to detect the similarity,
therefore if a filter length triggers a similarity, during training, the back propaga-
tion encourages a low similarity across all filter lengths for intervals with different
temporal behavior. This adjustable context-aware attention score is used inside
the transformer model. Note that, with this approach, the query qi and the key
kj are represented by multiple context-aware query and key vectors for different
context lengths in L. Figure 3 depicts an overview of our proposed attention
mechanism.

We claim that this provides the attention mechanism with the flexibility
to dynamically determine the optimal query-key similarity and hence leads to
better forecasting results. We will provide empirical evidence for this claim in
the experimental evaluation.

The downside of this approach is its demand in resources. To calculate the
attention weights, our model needs to explore all possible context-aware query
and key pairs. For an attention model with Q queries and K keys, computing
the attention weights requires O(|L| ·Q ·K) space and time — not accounting for
the cost of projections. This is in contrast to O(Q ·K) for the original point-wise
attention. We address this next.
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4.4 Efficient Adjustable Context-aware Attention

In order to increase the efficiency our adjustable context-aware attention, we
first propose a subsampling scheme for the keys used for attention then explain
how our model still incorporates the information from skipped time points.

Let c be the subsampling rate, our transformer would only consider keys
with index j ∈ Jc = [0, c, 2c, 3c, . . . ]. For example c = 2 would skip every other
key, where with c = 5, only every 5’th key is considered. However, multiple
filter lengths are available at each of these indices, therefore, as an example the
information between 0 and c is represented via kc.

Hence the predicted output yi at time i is obtained as:

yi = softmax(
∑
j∈Jc

aijvj).

In neural networks with point-wise attentions, such a subsampling approach
would potentially degrade the performance, as each of the skipped time steps
might be potentially crucial for an accurate forecasting result.

Due to the use of the temporal attention in our model, data between skipped
keys, for example data from 2c+ 1 to 3c− 1 is represented via k3c. This is also
depicted in Figure 4. In contrast, if we would not subsample keys, this would
lead to lots of redundancies as any input xj is incorporated into multiple key
vectors kj ,kj+1,kj+2 . . . due to the temporal attention paradigm.

Context lengths L and subsampling rate c have opposing effects on the overall

complexity, which renders the total memory usage and runtime to O( |L|c ·Q ·K).
While L and c can be independently chosen, in our experimental setup, we use
c = maxL. The effect on the overall network is that for the query at time step
i and the key at time step j, the network selects the context length l that is
sufficient to identify whether the temporal behavior of time step j is helpful to
forecast at time step i.

In other words, during periods where a short context is sufficient to identify
that the behavior is different, a small context window will be chosen and c keys
will be skipped as it is identified as not helpful. Also whenever the similarity is
only apparent when inspecting longer contexts, the longer context will be chosen
by the network and c keys can be skipped to avoid redundancies. We want to
remark that this approach is designed to work with target variables that are
smooth over time, with signals that can exhibit rapid or slow changes.

4.5 Overarching Architecture

Our model adapts an encoder-decoder architecture used by Vaswani et al [30].

Encoder. While a stack of ACAT layers could be used, we use an encoder of
only a single layer. The encoder is comprised of a multi-head adjustable context-
aware self-attention and a feed forward network sub-layer. The encoder is used to
encode the information of previous observation (including the target variables)
into hidden representations.
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Decoder. The decoder is a single layer comprised of a masked multi-head
adjustable context-aware self-attention, a multi-head adjustable context-aware
cross-attention, and a feed forward network sub-layer. Masked multi-head atten-
tion is applied by setting masked dot-products to −∞. This prevents the current
time step from attending to future time steps. The decoder generates predictions
based on the encoder’s hidden representation of previous observations and cur-
rent known inputs. Alternatively a stack of ACAT decoder layers could be used,
here we demonstrate the efficacy of even a single layer.

5 Experiments

5.1 Datasets

We empirically perform experiments on three datasets, including two univariate
publicly available datasets and one multivariate dataset that we provide in our
github repository.

• Electricity:2 The univariate UCI Electricity Load Diagrams dataset, con-
taining the electricity consumption of 370 customers aggregated on an hourly
level.

• Traffic:3 The univariate UCI PEM-SF Traffic Dataset, containing occupancy
rate (yt ∈ [0, 1]) of 440 SF Bay Area freeways aggregated on an hourly level.

• Watershed:4 This multivariate dataset contains hydrological streamflow
responses of ten watershed sites, aggregated on a 15 minutes level.

Regarding our choices of datasets, we select the traffic and electricity datasets
that have been extensively used by a significant amount of research papers for
modeling and evaluation [25, 20, 18, 11, 33]. We are also working with col-
laborators who are interested in modeling real-world stream chemistry for the
watershed dataset. We use 160,000 samples for each dataset, each sample includ-
ing historical observations of one week (168 hours) for the traffic and electricity
datasets and 42 (168 quarter) hours for the watershed dataset. We generate
predictions for 24 and 48 future horizons on all datasets. After zero-mean nor-
malization, we partition each dataset into three parts, 80% training set for the
learning procedure, 10% validation set for hyperparameter optimization, and
10% hold-out test set for performance evaluation.

5.2 Evaluation Metrics

Models are evaluated by two standard metrics, including root mean squared error

(RMSE):
√

1
n

∑n
i=1(y − ŷ)2 and mean absolute error (MAE): 1

n

∑n
i=1 |y − ŷ|.

MAE is a linear score that equally weighs the errors, where RMSE is a quadratic
score that assigns higher weights to larger errors.

2 https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011-2014
3 https://archive.ics.uci.edu/ml/machine-learning-databases/00204
4 https://github.com/a1992/Context-Aware-Transformer/data/watershed

https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip
https://github.com/anonymous-1992/Context-Aware-Transformer/tree/master/data/data/watershed
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Table 1. Results summary in RMSE and MAE of all methods on three datasets.
Lower RMSE and MAE indicate a more accurate forecast. Best results are highlighted
in boldface.

D
a
ta

se
t

H
o
ri

z
o
n

M
e
tr

ic
ARIMA LSTM Transformer Trans-multi CNN-trans ACAT (Ours)

T
ra

ffi
c 24

RMSE 0.81 ±0.00 0.50 ±0.02 0.48 ±0.00 0.59 ±0.09 0.47 ±0.00 0.38 ±0.00

MAE 0.56 ±0.00 0.28 ±0.02 0.25 ±0.00 0.35 ±0.09 0.24 ±0.00 0.16 ±0.00

48 RMSE 0.79 ±0.00 0.49 ±0.00 0.46 ±0.00 0.68 ±0.09 0.46 ±0.00 0.35 ±0.00

MAE 0.56 ±0.00 0.26 ±0.00 0.24 ±0.00 0.45 ±0.09 0.23 ±0.00 0.16 ±0.00

E
le

c
tr

ic
it

y 24 RMSE 3.98 ±0.00 1.29 ±0.03 1.29 ±0.07 1.48 ±0.08 1.27 ±0.08 0.64 ±0.02

MAE 0.41 ±0.00 0.13 ±0.01 0.15 ±0.01 0.16 ±0.00 0.14 ±0.00 0.08 ±0.00

48
RMSE 4.06 ±0.00 1.40 ±0.07 1.47 ±0.02 1.56 ±0.14 1.26 ±0.04 0.84 ±0.03

MAE 0.41 ±0.00 0.14 ±0.00 0.16 ±0.00 0.17 ±0.00 0.14 ±0.00 0.09 ±0.00

W
a
te

rs
h
e
d

24
RMSE

-
0.35 ±0.05 0.33 ±0.01 0.35 ±0.01 0.34 ±0.00 0.28 ±0.01

MAE 0.20 ±0.03 0.19 ±0.01 0.21 ±0.01 0.20 ±0.00 0.16 ±0.01

48
RMSE

-
0.42 ±0.04 0.36 ±0.01 0.35 ±0.01 0.35 ±0.01 0.31 ±0.01

MAE 0.25 ±0.01 0.21 ±0.03 0.20 ±0.01 0.20 ±0.01 0.16 ±0.01

5.3 Baselines

We compare a single layer architecture of our proposed ACAT model to the
following methods. ARIMA is only applicable to univariate datatsets (traffic
and electricity).

1. ARIMA [3]: Auto-regressive integrated moving average.
2. LSTM [13]: A single layer encoder-decoder Long Short Term Memory.
3. Transformer [30]: A single layer transformer equivalent to our approach

with the basic multi-head attention.
4. Trans-multi [30]: A three encoder layer and one decoder layer transformer

with multi-head basic attention.
5. CNN-trans [18]: A single layer transformer with convolutional multi-head

attention.

5.4 Model Training and Hyperprarameters

Training Procedure. All neural network methods are trained and evaluated
multiple times. We use grid search for hyperparameter tuning. The model size is
chosen from {16, 32} for all neural network methods. The number of heads is set
to 8 for all transformer-based models. The kernel size for convolutional processing
layer of CNN-trans is chosen from {1, 3, 6, 9}. The mini batch-size is set to 256
for all datasets. We use the Adam optimizer [16] with β1 = 0.9, β2 = 0.98 and
ε = 10−9, we update the learning rate and use warmup steps = 4000 according
to the basic transformer [30]:

lrate = d−0.5
model.min(step num−0.5, step num.warmup steps1.5)
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t0 =

a) 24 horizons b) 48 horizons

Fig. 5. Forecasted predictions of one sample of hold-out test set on the traffic dataset
of neural network models. Predictions are generated for a) 24 and b) 48 horizons given
the previous 168 input samples. The predictions generated by our ACAT model are
exhibiting a higher accuracy than other baselines.

The total number of epochs is 50 with early stopping set to five iterations.

Loss Function. For all methods, we choose the mean squared error (MSE) loss
function to calculate the loss of generated predictions compared to the target se-
quence in the training procedure. The loss is back-propagated from the decoder’s
outputs to the entire model.

Hardware and Computational Cost. All models were trained on a single
NVIDIA Titan XP GPU with 12 GB of memory. For our proposed ACAT model
with L = {1, 3, 6, 9}, it takes 0.3 seconds to finish one training step and each
epoch takes 150 seconds.

5.5 Results and Discussion

Results are reported as mean and standard error of RMSE and MAE scores
for the total number of three experimental runs for neural networks and one
experimental run for the ARIMA model.

Table 1 summarizes the evaluation results of all methods on three datasets
when generating predictions for 24 and 48 forecasting horizons. Across all datasets
we observe that ACAT outperforms other methods. The significant improve-
ments of our ACAT model over other methods stem from our proposed ad-
justable context-aware attention. The difference in performance to CNN-trans
demonstrates the gain when providing the model with the flexibility to choose
the right context length adaptively. Regarding baselines, the performance of the
Trans-multi model indicates that even a multi-layer transformer is ineffective
in recovering from the point-wise attention. The performance of the CNN-trans
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Table 2. Comparison of different subsampling rates. As a result of increasing the
subsampling rate (maximum context size max(L)) more keys are skipped. Lower RMSE
and MAE indicate a more accurate forecast. Best results are highlighted in boldface.
The last row indicates how many times this configuration obtained the best result. The
performance of our ACAT model is resilient towards the subsampling rate.

D
a
ta

se
t

H
o
ri

z
o
n

M
e
tr

ic

max(L) = 9 max(L) = 12 max(L) =15 max(L) = 18 max(L) = 21 max(L) = 24

T
ra

ffi
c 24

RMSE 0.38 ±0.00 0.38 ±0.00 0.37 ±0.00 0.37 ±0.00 0.37 ±0.00 0.38 ±0.00

MAE 0.16 ±0.00 0.16 ±0.00 0.16 ±0.00 0.15 ±0.00 0.16 ±0.00 0.15 ±0.00

48
RMSE 0.35 ±0.00 0.36 ±0.00 0.36 ±0.00 0.37 ±0.00 0.37 ±0.00 0.37 ±0.00

MAE 0.16 ±0.00 0.16 ±0.00 0.16 ±0.00 0.17 ±0.00 0.17 ±0.00 0.16 ±0.00

E
le

c
tr

ic
it

y

24
RMSE 0.64 ±0.02 0.66 ±0.02 0.63 ±0.02 0.67 ±0.03 0.73 ±0.03 0.72 ±0.05

MAE 0.08 ±0.00 0.08 ±0.00 0.08 ±0.00 0.08 ±0.00 0.08 ±0.00 0.09 ±0.00

48
RMSE 0.84 ±0.03 0.84 ±0.01 0.83 ±0.03 0.80 ±0.09 0.83 ±0.06 0.83 ±0.01

MAE 0.09 ±0.00 0.09 ±0.00 0.09 ±0.00 0.09 ±0.01 0.09 ±0.00 0.09 ±0.00

W
a
te

rs
h
e
d

24
RMSE 0.28 ±0.01 0.25 ±0.00 0.28 ±0.01 0.27 ±0.00 0.27 ±0.00 0.28 ±0.02

MAE 0.16 ±0.01 0.13 ±0.00 0.15 ±0.01 0.14 ±0.00 0.16 ±0.00 0.15 ±0.00

48
RMSE 0.31 ±0.01 0.30 ±0.01 0.31 ±0.02 0.30 ±0.01 0.29 ±0.00 0.30 ±0.01

MAE 0.16 ±0.00 0.17 ±0.01 0.17 ±0.01 0.16 ±0.01 0.16 ±0.00 0.16 ±0.01

Total Wins 5 5 5 6 5 4

model is relatively similar to the basic transformer. This indicates that inte-
grating a temporal context with a fixed length cannot enhance the forecasting
quality considerably if the model is not able to adjust the context length.

Figure 5 displays forecasted predictions of all neural network methods includ-
ing our ACAT on one example from traffic dataset over 24 and 48 forecasting
horizon. The predictions generated by ACAT are aligning closely with the ground
truth, while the generated predictions of other neural network baselines exhibit
larger errors and fail to resemble the temporal behaviour.

Ablation Study: The Impact of Subsampling Rate. To demonstrate that
the performance of our ACAT model is resilient towards how many keys are
skipped during subsampling, we conduct an ablation study by increasing the
subsampling rate. As a result of choosing the subsampling rate as the maximum
context size max(L), we skip more keys by increasing the value of the maximum
context size. Table 2 demonstrates the results of this ablation study, it is observed
that the performance of our model is resilient towards the subsampling rate. In
contrast, increasing the subsampling rate allows us to include a longer history
into the forecasting while adjusting the temporal context length, which leads to
a better performance in some cases.
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6 Conclusion

In this paper, we study the multi-horizon time series forecasting problem and in-
troduce ACAT, the Adjustable Context-aware Transformer, which automatically
selects the ideal context size to obtain the best forecasting results. We demon-
strate the effectiveness of our approach on three real-world datasets in com-
parison with the classical forecasting method ARIMA, the RNN-based encoder-
decoder LSTM, transformers based with basic and CNN attention, as well as
multi-layer transformers. Our extensive analyses show that our ACAT model
obtains performance improvements over state-of-the-art temporal attention ap-
proaches, including those based on the convolutional attention models. This
indicates that incorporating the ideal context length in the query-key similarity
of the attention mechanism can improve the forecasting quality.

In the introduction we hypothesized that the structure of the basic atten-
tion mechanism presents an impediment for the original transformer architecture
when applied to temporal analyses, even when including multiple layers. Experi-
mentally we verify this claim, and demonstrate that our ACAT model addresses
its shortcoming even with a single layer.

Lastly, our ACAT model can benefit any application domain where accurate
forecasts are important. For example in the watershed domain, natural scientists
base their analysis on forecasting models. Incorrect forecasts can lead to false
models of natural processes. Another example are forecasts on traffic or electric-
ity consumption, which, if inaccurate, have severe negative effects on our society.
Our work demonstrates significant improvements in all these three domains.
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[2] Sercan Ö. Arik and Tomas Pfister. “TabNet: Attentive Interpretable Tab-

ular Learning”. In: Proceedings of the AAAI Conference on Artificial In-
telligence 35.8 (May 2021), pp. 6679–6687. url: https://ojs.aaai.org/
index.php/AAAI/article/view/16826.

[3] G. E. P. Box and G. M. Jenkins. “Some Recent Advances in Forecasting
and Control”. In: Journal of the Royal Statistical Society Series C 17.2
(June 1968), pp. 91–109. doi: 10.2307/2985674. url: https://ideas.
repec.org/a/bla/jorssc/v17y1968i2p91-109.html.

[4] Carlos Capistrán, Christian Constandse, and Manuel Ramos-Francia. “Multi-
horizon inflation forecasts using disaggregated data”. In: Economic Mod-
elling 27.3 (May 2010), pp. 666–677. url: https://ideas.repec.org/a/
eee/ecmode/v27y2010i3p666-677.html.

https://proceedings.neurips.cc/paper/2019/file/1d0932d7f57ce74d9d9931a2c6db8a06-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d0932d7f57ce74d9d9931a2c6db8a06-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://doi.org/10.2307/2985674
https://ideas.repec.org/a/bla/jorssc/v17y1968i2p91-109.html
https://ideas.repec.org/a/bla/jorssc/v17y1968i2p91-109.html
https://ideas.repec.org/a/eee/ecmode/v27y2010i3p666-677.html
https://ideas.repec.org/a/eee/ecmode/v27y2010i3p666-677.html


14 Sepideh Koohfar and Laura Dietz

[5] Yubo Chen et al. “Event Extraction via Dynamic Multi-Pooling Convolu-
tional Neural Networks”. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Bei-
jing, China: Association for Computational Linguistics, July 2015, pp. 167–
176. doi: 10.3115/v1/P15-1017. url: https://aclanthology.org/P15-
1017.

[6] Edward Choi et al. “RETAIN: An Interpretable Predictive Model for
Healthcare Using Reverse Time Attention Mechanism”. In: Proceedings of
the 30th International Conference on Neural Information Processing Sys-
tems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016, pp. 3512–
3520. isbn: 9781510838819.

[7] Pascal Courty and Hao Li. “Timing of Seasonal Sales”. In: The Journal
of Business 72.4 (Oct. 1999), pp. 545–572. doi: 10.1086/209627. url:
https://ideas.repec.org/a/ucp/jnlbus/v72y1999i4p545-72.html.

[8] James Durbin and Siem Jan Koopman. Time Series Analysis by State
Space Methods. OUP Catalogue 9780198523543. Oxford University Press,
2001. isbn: ARRAY(0x4eed11c8). url: https://ideas.repec.org/b/
oxp/obooks/9780198523543.html.

[9] Chenyou Fan et al. “Multi-Horizon Time Series Forecasting with Tem-
poral Attention Learning”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery Data Mining. KDD
’19. Anchorage, AK, USA: Association for Computing Machinery, 2019,
pp. 2527–2535. isbn: 9781450362016. doi: 10.1145/3292500.3330662.
url: https://doi.org/10.1145/3292500.3330662.

[10] Alex Graves. “Generating Sequences With Recurrent Neural Networks.”
In: CoRR abs/1308.0850 (2013). url: http://dblp.uni-trier.de/db/
journals/corr/corr1308.html#Graves13.

[11] haixu wu haixu et al. “Autoformer: Decomposition Transformers with
Auto-Correlation for Long-Term Series Forecasting”. In: Advances in Neu-
ral Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Cur-
ran Associates, Inc., 2021, pp. 22419–22430. url: https://proceedings.
neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-

Paper.pdf.
[12] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.

In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/neco.
1997.9.8.1735.

[13] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”.
In: Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.
1997.9.8.1735.

[14] Cheng-Zhi Anna Huang et al. “Music Transformer: Generating Music with
Long-Term Structure”. In: ICLR. 2019.

[15] Urvashi Khandelwal et al. “Sharp Nearby, Fuzzy Far Away: How Neural
Language Models Use Context”. In: Proceedings of the 56th Annual Meet-

https://doi.org/10.3115/v1/P15-1017
https://aclanthology.org/P15-1017
https://aclanthology.org/P15-1017
https://doi.org/10.1086/209627
https://ideas.repec.org/a/ucp/jnlbus/v72y1999i4p545-72.html
https://ideas.repec.org/b/oxp/obooks/9780198523543.html
https://ideas.repec.org/b/oxp/obooks/9780198523543.html
https://doi.org/10.1145/3292500.3330662
https://doi.org/10.1145/3292500.3330662
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13
https://proceedings.neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/bcc0d400288793e8bdcd7c19a8ac0c2b-Paper.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


Adjustable Context-aware Transformer 15

ing of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Melbourne, Australia: Association for Computational Linguistics,
July 2018, pp. 284–294. doi: 10 . 18653 / v1 / P18 - 1027. url: https :

//aclanthology.org/P18-1027.
[16] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic

Optimization”. In: CoRR abs/1412.6980 (2015).
[17] Yann LeCun and Yoshua Bengio. “Convolutional Networks for Images,

Speech, and Time Series”. In: The Handbook of Brain Theory and Neural
Networks. Cambridge, MA, USA: MIT Press, 1998, pp. 255–258. isbn:
0262511029.

[18] Shiyang Li et al. “Enhancing the Locality and Breaking the Memory Bot-
tleneck of Transformer on Time Series Forecasting”. In: Proceedings of the
33rd International Conference on Neural Information Processing Systems.
Red Hook, NY, USA: Curran Associates Inc., 2019.

[19] Bryan Lim. “Forecasting Treatment Responses Over Time Using Recur-
rent Marginal Structural Networks”. In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates,
Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/file/
56e6a93212e4482d99c84a639d254b67-Paper.pdf.

[20] Bryan Lim et al. “Temporal Fusion Transformers for interpretable multi-
horizon time series forecasting”. In: International Journal of Forecasting
37.4 (2021), pp. 1748–1764. issn: 0169-2070. doi: https://doi.org/10.
1016/j.ijforecast.2021.03.012. url: https://www.sciencedirect.
com/science/article/pii/S0169207021000637.

[21] Jiawei Ma et al. CDSA: Cross-Dimensional Self-Attention for Multivariate,
Geo-tagged Time Series Imputation. 2019. arXiv: 1905.09904 [cs.LG].

[22] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. “The
M4 Competition: 100,000 time series and 61 forecasting methods”. In: In-
ternational Journal of Forecasting 36.1 (2020), pp. 54–74. url: https:
//EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:54-

74.
[23] Spiros Papadimitriou and Philip Yu. “Optimal multi-scale patterns in time

series streams”. In: Jan. 2006, pp. 647–658. doi: 10 . 1145 / 1142473 .

1142545.
[24] Syama Sundar Rangapuram et al. “Deep State Space Models for Time Se-

ries Forecasting”. In: Advances in Neural Information Processing Systems.
Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url: https:
//proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-

Paper.pdf.
[25] David Salinas et al. “DeepAR: Probabilistic forecasting with autoregressive

recurrent networks”. In: International Journal of Forecasting 36.3 (2020),
pp. 1181–1191. issn: 0169-2070. doi: https://doi.org/10.1016/j.

ijforecast.2019.07.001. url: https://www.sciencedirect.com/
science/article/pii/S0169207019301888.

https://doi.org/10.18653/v1/P18-1027
https://aclanthology.org/P18-1027
https://aclanthology.org/P18-1027
https://proceedings.neurips.cc/paper/2018/file/56e6a93212e4482d99c84a639d254b67-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/56e6a93212e4482d99c84a639d254b67-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://arxiv.org/abs/1905.09904
https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:54-74
https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:54-74
https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:1:p:54-74
https://doi.org/10.1145/1142473.1142545
https://doi.org/10.1145/1142473.1142545
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.07.001
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888


16 Sepideh Koohfar and Laura Dietz

[26] Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. “Temporal pattern at-
tention for multivariate time series forecasting”. In: Machine Learning 108
(Sept. 2019). doi: 10.1007/s10994-019-05815-0.

[27] Huan Song et al. “Attend and Diagnose: Clinical Time Series Analysis
Using Attention Models”. In: AAAI Press, 2018. isbn: 978-1-57735-800-8.

[28] Pengfei Tang et al. “Channel Attention-Based Temporal Convolutional
Network for Satellite Image Time Series Classification”. In: IEEE Geo-
science and Remote Sensing Letters 19 (2022), pp. 1–5. doi: 10.1109/
LGRS.2021.3095505.

[29] Sean Taylor and Benjamin Letham. Forecasting at scale. Sept. 2017. doi:
10.7287/peerj.preprints.3190v2.

[30] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[31] Fei Wang et al. “Residual Attention Network for Image Classification”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 6450–6458. doi: 10.1109/CVPR.2017.683.

[32] Ruofeng Wen et al. “A multi-horizon quantile recurrent forecaster”. In:
NeurIPS 2017. 2017. url: https://www.amazon.science/publications/
a-multi-horizon-quantile-recurrent-forecaster.

[33] Haoyi Zhou et al. “Informer: Beyond Efficient Transformer for Long Se-
quence Time-Series Forecasting”. In: AAAI. 2021.

[34] Yunyue Zhu and Dennis Shasha. “StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time”. In: Proceedings of the 28th
International Conference on Very Large Data Bases. VLDB ’02. Hong
Kong, China: VLDB Endowment, 2002, pp. 358–369.

https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1109/LGRS.2021.3095505
https://doi.org/10.1109/LGRS.2021.3095505
https://doi.org/10.7287/peerj.preprints.3190v2
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/CVPR.2017.683
https://www.amazon.science/publications/a-multi-horizon-quantile-recurrent-forecaster
https://www.amazon.science/publications/a-multi-horizon-quantile-recurrent-forecaster

	Adjustable Context-aware Transformer

