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Abstract Manually creating test collections is a time-,
effort-, and cost-intensive process. This paper describes
a fully automatic alternative for deriving large-scale
test collections, where no human assessments are needed.
The empirical experiments confirm that automatic test
collection and manual assessments agree on the best
performing systems. The collection includes relevance
judgments for both text passages and knowledge base
entities. Since test collections with relevance data for
both entity and text passages are rare, this approach
provides a cost-efficient way for training and evaluat-
ing ad hoc passage retrieval, entity retrieval, and entity-
aware text retrieval methods.

Keywords automatic evaluation · entity and passage
retrieval · complex answer retrieval

1 Introduction

Passage and entity retrieval are central components in
search engine result pages (SERP), “fetch and browse”
interfaces, and composite retrieval (Arvola et al., 2010;
Kaszkiel and Zobel, 1997; Bota et al., 2014). However,
creating reusable test collections is difficult and time
consuming (Wade and Allan, 2005). The availability of
large-scale entity linking methods have led to a large
number of hybrid approaches that combine information
about text and (Wikipedia) entities, such as people,
proteins, or events. Most of these hybrid approaches
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combine different components for predicting the rele-
vance of entities and text, which are integrated to im-
prove performance on both tasks which are defined as
follows:

Passage and entity retrieval tasks. Given an informa-
tion need expressed as a search query Q, retrieve a rank-
ing of (1) passages from a given corpus and (2) entities
from a given knowledge graph that is ordered by rele-
vance for the query.

Examples of hybrid entity-passage retrieval approaches
either improve on passage retrieval by exploiting in-
formation about relevant entities (Dalton et al., 2014;
Xiong and Callan, 2015; Xiong et al., 2017b,a; Raviv
et al., 2016, inter alia); or improve entity retrieval by in-
corporating knowledge of relevant passages (Bast et al.,
2018, 2016; Boston et al., 2014; Schuhmacher et al.,
2015; Dietz, 2019, inter alia).

In the context of search result diversification, as an
additional requirement, the ranking needs to cover pas-
sages (or entities) that are relevant for different po-
tential query interpretations. In other settings, ranked
results need to be clustered into coherent sub-topics.
Both settings require relevance annotations for differ-
ent query facets, i.e., a ground truth of relevance for
each query interpretation or sub-topic.

A variation on entity-aware retrieval is the task of
entity support-passage retrieval, where given a query
and an entity, a ranking of passages is to be predicted
that explain why the entity is relevant for the query
(Blanco and Zaragoza, 2010; Chatterjee and Dietz, 2019;
Arnold et al., 2019).

Closely related is entity-centric question answering
where the query is a question for which the answer is
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a relevant entity that needs to be extracted from rele-
vant passages (Yang et al., 2015; Sawant et al., 2019).
The task of retrieving such answer-containing passages
is called answer-passage retrieval (O’Connor, 1980). In
conversational search (Choi et al., 2018; Dalton et al.,
2019), multiple questions evolve around a changing sub-
ject that is expressed through entities and passages.

While all above mentioned approaches exploit rele-
vant entities and text, they are usually evaluated and
trained on benchmarks that are designed for either ad
hoc document retrieval (e.g., Clueweb or Robust04) or
entity retrieval (e.g., INEX or TREC Entity), but not
both. This poses non-ideal circumstances for evaluating
the quality of methods and studying potential mistakes
made by underlying components. It also leads to long
training times due to marginalization over latent pa-
rameters (Xiong and Callan, 2015) or an explosion of
the feature space (Dalton et al., 2014).

While test collections with relevance assessments for
both text and entities would be beneficial for research
on integrated entity-passage retrieval models, such test
collections are expensive to create manually and hence
not widely available (cf. Section 2.1). To study the re-
trieval task in the context of search result clustering or
diversification, relevance assessments for query facets
need to be available.

In this work, we attempt the daring experiment to
build a test collection for entity-passage retrieval that
does not require any human assessor. We describe a
mechanism for creating fully automatic test collections
for passage, entity, and integrated entity-passage rank-
ing with query facets. If successful, our approach of-
fers low-cost access to large-scale test collections for
ranking text and entities—which is particularly impor-
tant for academic research. Of course, we envision auto-
matic test collections to be complemented with human-
assessed test collections for the purpose of training,
evaluation, and error analysis. To assess whether this
“humans optional” approach is viable, we compare the
ranking of systems (i.e,. leaderboard) produced with
the automatic test collection to a gold standard leader-
board that was produced with an established approach
using manual pool-based assessments.

For the experimental study, systems and manual as-
sessments were taken from the TREC Complex Answer
Retrieval track (TREC CAR, Dietz et al. 2017, 2018).
The manual test collection was constructed by exhaus-
tively assessing all top ranked documents and entities
of all participating systems. The assessment procedure
was performed under the supervision of experts from
the National Institute for Standards and Technology
(NIST) who have several decades of experience in creat-
ing manual test collections for the Text Retrieval Con-

ference (TREC). The manual benchmark hence offers
a reliable gold standard for the systems’ quality.

As an example domain, we focus on fact-oriented
popular science queries where users ask for overviews
of multi-faceted topics. We interpret the relevance of
passages and entities as “Is this passage or entity to be
included in an article about the topic?” A test collec-
tion for such information needs—with query facets—is
derived from a corpus of Wikipedia pages and science
textbook chapters. The textbook chapters were taken
from a textbook question answering corpus (TQA, Kem-
bhavi et al. 2017). Our approach is more generally ap-
plicable beyond this concrete example, by varying the
corpora of input pages such as other Wikis, other text-
book chapters, product descriptions, knowledge com-
pendia, taxonomies, or glossaries. Our approach is re-
lated to an established test collection approach in com-
munity question answering (CQA) (Shah and Pomer-
antz, 2010); test collections are derived from web sites
like stack overflow1 or yahoo2 to use questions as queries
and confirmed answers as true text passages. Similar
benchmarks can be derived from chatbot dialog collec-
tions (Choi et al., 2018).

In general, our approach is applicable to any collec-
tion of human-authored pages that coincides with antic-
ipated queries and responses. An example where our ap-
proach is not applicable are news articles, because news
titles are not a good representation of queries (Soboroff
et al., 2018).

Contributions. To advance research in the area of eval-
uation methods, we propose a fully automatic approach
for building large-scale test collections with several hun-
dred thousand queries. For queries Q, the test collection
provides relevance data for text passages and knowledge
base entities. Our test collection generation paradigm
can be applied to a wide range of sources, such as
Wikipedia, Web crawls, or QA sites. Unlike many other
approaches towards automatic test collections, our ap-
proach does not need any human assessments and uses
realistic informational queries.

An important contribution of this work is the exper-
imental demonstration that human assessors and auto-
matic approach agree about the relative performance
of a diverse set of systems. Specifically, for the goal of
ranking systems by quality (i.e., a leaderboard), the
leaderboards produced with the manual benchmarks
and our automatic benchmark agree nearly perfectly,
achieving Kendall’s τ of 0.93 for text passage retrieval
and 0.89 for entity retrieval.

1 https://archive.org/details/stackexchange
2 https://webscope.sandbox.yahoo.com/catalog.php?

datatype=l



Humans optional? Automatic Large-Scale Test Collections for Entity, Passage, and Entity-Passage Retrieval 3

Outline. Section 2 elaborates on existing test collec-
tions and related approaches for benchmark creation.
Section 3 introduces our approach for automatic test
collection creation and a discussion of different error
modes. Experiments in Section 4 evaluate the quality
of the automatic benchmark with human assessors on
passages and entities, before concluding in Section 5.

2 Related Work

We survey related test collections for combined docu-
ment and entity retrieval. Then we discuss approaches
to reduce the number of manual assessments as well as
fully automatic pseudo-test collection approaches.

2.1 Manual Entity and Passage Test Collections

The TREC Web Track provides benchmarks, assessed
on deep pools and a large corpus. A collection of en-
tity link annotations was released (FACC1, Gabrilovich
et al. 2013), although without any relevance data.

Test collections for entity retrieval are from TREC
Entity (Balog and Neumayer, 2013) and INEX (Demar-
tini et al., 2009) tracks. Some focus on text retrieval for
queries about people or person entities, such as TREC
Knowledge Base Acceleration (Frank et al., 2014). Bast
et al. (2018) evaluate a “KB+text” system via entity
ranking benchmarks. Only very few test collections pro-
vide data for both text relevance and entity relevance.
Only small add-on test collections are available TREC
Web and Robust04 topics (Schuhmacher et al., 2015;
Foley et al., 2016). In this work, we develop an approach
to build large and reliable test collections to evaluate
approaches that combine entity and text retrieval.

Passage retrieval has been studied within a range of
data sets, such as the TIPSTER (Callan, 1994), TREC
HARD track (Allan, 2003), and INEX Focused Task
(Kamps et al., 2008) and “Relevant in Context” (Kamps
et al., 2007). Such datasets do not pre-define passage
boundaries, and hence use character-based evaluation
metrics to reuse existing passage annotations (Wade
and Allan, 2005). While such measures can also be ap-
plied to the automatic test collections created by our
method, our work focuses on how to create a test collec-
tion independently of customized evaluation measures.

2.2 Automatic Support for Manual Test Collections

Several approaches for reducing the assessment costs
have been explored. A system of Cormack et al. (1998)
aids manual assessors in determining the relevance

through interactive searching and judging. Jayasinghe
et al. (2014) suggest a machine learning method to ob-
tain more resilient assessment pools for manual assess-
ment. Yilmaz et al. (2008) reduce manual assessment
costs by sampling assessment pools randomly from in-
put rankings while preferring highly ranked documents.
They suggest extensions to MAP and nDCG that cor-
rect sampling bias and obtain better performance esti-
mates than random sampling.

Given a small number of manual assessments for
a query, the AutoTAR algorithm (Zhang et al., 2018)
trains a query-specific classifier. The classifier is used to
identify documents with similar characteristics, which
are presented to the assessor for assessment. Machine
learning, pool prediction, and manual assessment are
interleaved in a continuous process.

While these approaches reduce the number of re-
quired manual assessments, benchmark creation still
hinges on human assessors. In contrast, our automatic
test collection approach does not require any human in-
tervention beyond the selection of suitable input pages.

2.3 Fully Automatic Pseudo-Test Collections

The closest in spirit to our work are approaches to-
wards fully automatic test collections, which are also
called pseudo-test collections. In general, approaches
are based on selecting subsets of a corpus that repre-
sent relevant documents for possible information needs,
from which queries are derived. Two main approaches
for query derivation are to simulate queries from term
distributions and to exploit available meta-annotations.

Queries are simulated by selecting terms that max-
imize the probability of discriminating between the rel-
evant and non-relevant document set (Berendsen et al.,
2013; Azzopardi et al., 2007). Unfortunately, there is
no guarantee that such queries are realistic.

An alternative is to derive the query from meta-
annotations of the corpus. A wide range of meta-anno-
tations have been explored, such as anchor text (Asadi
et al., 2011), metadata of scientific articles about method,
classification, and control (Berendsen et al., 2012), cat-
egories in the Open Directory Project (Beitzel et al.,
2003), or glosses in Freebase (Dalvi et al., 2015).

While automatic test collections can support both
the evaluation and training of approaches, most re-
lated work focuses on one or the other. Berendsen et al.
(2012) report a discrepancy between test collection qual-
ity for evaluation versus training purposes.

Our work derives queries from meta-annotations in
the form of titles and headings. In contrast to prior
work, our experimental study is integrated into a shared
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A heavy reliance on automobiles 
increases traffic throughout the city.

Residents of more sprawling areas are 
at greater risk of dying in a car crash. 

Urban Sprawl

1. Characteristics

2. Effects
  2.1. Safety
  2.2. Social

3. Debate .. pedestrians ... ....restaurants...

Input page
Query

Query facet

Passage
Entity link

Fig. 1: Example for test collection creation taken from the Wikipedia page about Urban Sprawl. Left: Page title
and outline from which query and query facets are derived. Right: Text passages with entity links, where arrows
depict the relevant passages. Linked entities in relevant passages are automatically marked as relevant.

evaluation at TREC: Automatically derived queries are
also used in the manual assessment. For training and
evaluation, participants had access to both automatic
and manual benchmarks (evaluation benchmarks were
only released after the evaluation). This allows for an
in-depth comparison between manual and automatic
benchmarks for both passage and entity ranking tasks.

3 Automatic Creation of Test Collection for
Queries and Facets

Our fully-automatic approach creates a test collection
for evaluating passage ranking, entity ranking, and inte-
grated entity-passage ranking—in some cases even with
query facets. Our approach relies on a collection of a
human-created corpus, which is often readily available,
such as a Wikipedia dump, textbook chapters, product
descriptions, a knowledge compendium, or glossary.

3.1 Test Collection Format

The test collection consists of a passage corpus, a ref-
erence knowledge base, and relevance data in the form
of tuples that contain:

– query text and ID,
– passage ID and/or entity ID,
– binary relevance (relevant vs. non-relevant), and
– query facet for this assessment (optional)

Relevance data for established evaluation frameworks
(such as “qrels” for trec_eval3) or learning-to-rank tools
such as RankLib4 or SVMrank5 can be derived from

3 https://github.com/usnistgov/trec_eval
4 http://www.lemurproject.org/ranklib.php
5 https://www.cs.cornell.edu/people/tj/svm_light/

svm_rank.html

this representation. While useful for method develop-
ment of integrated entity-passage approaches, to eval-
uate the passage quality, the entity information is ig-
nored—and vice versa for entity ranking evaluation. For
entity support-passage retrieval, query and entity are
given, and the resulting ranking is evaluated based on
the passage and relevance information. For result di-
versification, query facets are used in intent-aware eval-
uation measures; for sub-topic clustering, query facets
provide ground truth information for predicted clusters.

3.2 Derivation from Input Sources

Given a manually created source corpus of input pages,
we suggest the following automatic approach for de-
riving a test collection. An example of an input page
about the topic “Urban Sprawl” is depicted in Figure
1. A summary of the approach is given in Algorithm 1.

Queries are derived from the titles of input pages,
which we refer to as $title in the following. In our exam-
ple domain, the information need is interpreted as “Pro-
vide comprehensive information about $title”. Hence,
the content of a Wikipedia page on Urban Sprawl is rel-
evant for this information need. After identifying head-
ings, the remaining content of the page is split into
paragraph-sized passages with content-based ID. The
passage corpus is comprised of all passages from a large
collection of input pages, which also include pages for
queries. Only passages contained in the query-gener-
ating page are defined as relevant for the query.

Entities that are mentioned on this page are as-
sumed to be relevant to a user that would like to know
more about the query. For the example query Urban
Sprawl, relevant entities are automobiles, city, traffic,
resident, sprawling areas, car crash, restaurants, etc. In
the case of Wikipedia, such relevant entities will be indi-
cated as a hyperlink to the entity’s Wikipedia page. For
input pages from other sources, an entity linking tool
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(such as Tagme, Ferragina and Scaiella 2010 or DBpe-
dia Spotlight, Mendes et al. 2011) is used to identify
entities that are mentioned on the input page—which
we define as relevant entities. To define the universe of
possible entities, the test collection provides a reference
knowledge base. A common choice are knowledge bases
derived from Wikipedia or the Wikipedia corpus itself,
which is applicable to both relevance criteria, as long
as appropriate Wikipedia dump versions are used.

By keeping track of passages in which entities are
mentioned, we align relevant passages with relevant en-
tities which is useful to study the context of relevant
entities as well as entity-passage ranking tasks. In a sim-
ilar fashion, benchmarks for many related tasks can be
derived such as text segmentation across section bound-
aries (Arnold et al., 2019) or query-centric passage clus-
tering (Wan and Yang, 2008).

When input pages have sections with headings, we
use these headings to define query facets. In hierarchi-
cal sections, we either define the lowest level of sections
as facets (as in TREC CAR year 1) or any hierarchi-
cal level (as in TREC CAR year 2). In either case, the
heading of a section is concatenated with parent head-
ings and page title to define the query facet. In the
example of Urban Sprawl (Figure 1), five query facets
are defined: “Urban Sprawl/ Characteristics”, “Urban
Sprawl/ Effects/ Safety”, “Urban Sprawl/ Effects/ So-
cial”, “Urban Sprawl/ Effects”, and “Urban Sprawl/
Debate”. The relevance assessment of passages and en-
tities in the content of the corresponding section is an-
notated with the query facet. Query facet annotations
allow to evaluate the coverage of different query facets
in rankings about the information need through intent-
aware evaluation measures (Sakai and Song, 2011). Al-
ternatively, specific queries can be derived by concate-
nating page title and headings, such as “Urban Sprawl
Effects Safety”, for which only passages and entities in
the corresponding section (or a sub-section) are marked
as relevant. The latter approach was taken to derive
queries in TREC CAR year 1 and year 2.

If Wikipedia is used to derive both queries and the
reference knowledge base, there is a danger of releas-
ing the true answers to queries as part of the reference
knowledge base. To avoid inadvertent cheating in the
evaluation, input pages from which queries are derived,
must be removed from the reference knowledge base.
An alternative is to use a different collection of input
pages, such as school books from the TQA dataset and
reserve the use of Wikipedia as a reference knowledge
base only. The former approach was applied in TREC
CAR year 1 and the “Wiki-18” subset of year 2. The
latter approach was applied in the “TQA” subset of
TREC CAR year 2.

3.3 Discussion

While the automatic test collection is intended to be
used for relative system comparisons, the absolute value
of an evaluation measure is expected to be lower than
in manual collections. This is due to a set of potentially
relevant passages which might not have been included
on the input page by chance, and thus are counted as
non-relevant by our construction. This is in contrast
to manual test collections, where assessors will judge
the relevance of every passage in the assessment pool.
If there are several similar passages, under a manual
assessment all would be counted as relevant, where un-
der the automatic collection only the one included on
the input page would be counted as relevant—we call
the remaining passages false non-relevant assessments,
since they are false negatives when the manual bench-
mark is taken as the gold standard.

To reduce the problem of false non-relevant assess-
ments, it is essential to detect near-duplicates in the
passage corpus and treat the whole set of duplicates as
relevant whenever one of its members is relevant ac-
cording to our criterion. Despite deduplication efforts,
the evaluation in Section 4 reveals that human judges
are more lenient than the automatic approach, yield-
ing about three times as many positive relevance as-
sessments per query than the automatic approach. In
the following, we discuss three arguments why this is-
sue does not negatively affect relative system evaluation
through the automatic test collection.

The creation of manual assessments is always a noisy
process since some assessors are strict while others are
lenient; furthermore, changes in concentration and ex-
pertise will impact the resulting assessments. Moreover,
whenever a relevant passage is not contained in the as-
sessment pool, such passages will be assumed to be non-
relevant. Hence, false non-relevant assessments arise in
manual evaluation as well, albeit due to different ef-
fects. Consequently, the absolute value of an evalua-
tion measurement needs to be taken with a grain of
salt: Only relative performance improvements over a
baseline are reliable indicators of performance. In this
context, the automatic test collection behaves similarly
to a strict assessor with an imperfect assessment pool.

One might be worried that a low number of positive
assessments per query would lead to unstable perfor-
mance evaluations. However, this low number is com-
pensated by a larger number of test queries (hundreds
to millions) in comparison to manual assessments (fifty
to a few hundred in public test collections). As a result,
unfair penalization of systems that retrieve false non-
relevant assessments applies randomly across all sys-
tems. With the help of statistical analyses, stable rel-
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Algorithm 1 Automatic test collection creation.
Given set of query pages, derive the automatic test collection:

– Passage corpus: All passages from all pages after redun-
dancy removal, in randomized order.

– Knowledge base: All Wikipedia pages, except query
pages.

– Queries: Titles of query pages, e.g., “Urban Sprawl”
– Passage relevance: All passages on the page are defined

as relevant for the query (page-level passage retrieval).
– Entity relevance: All entities to which the page contains

an entity link are defined as relevant (page-level retrieval).
In the case where input pages have sections with headings,
query facets are derived from the section hierarchy.

– Query facets: Each section heading in the outline of the
page, e.g., “Urban Sprawl/ Effects/ Safety”.

– Faceted passage relevance: All passages located in the
corresponding section (or sub-section) defined as relevant
with respect to the facet (section-level passage retrieval).

– Faceted entity relevance: Entities to which the corre-
sponding section contains an entity link are defined as rel-
evant for the facet (section-level entity retrieval).

In the example of TREC CAR year 1 and year 2, the queries are
formed from query facets as “$title/$heading”. Furthermore, a
test collection for entity support-passages is derived from the
information above by considering each pair of query facet and
relevant entity as a new information need for which the passages
that mention the corresponding entity on the input page are
defined as relevant.

ative performance estimates can be derived as long as
the number of overall assessments is on the same order
of magnitude (cf. total positive relevance assessments
in Tables 1 and 2).

An important issue in information retrieval is the
assessment of marginal relevance, where redundant pas-
sages should not be regarded as relevant. The automat-
ically created benchmark is naturally suitable for eval-
uating marginal relevance, since a human-edited input
page is unlikely to contain many redundancies.

3.4 Implementation Details

To reduce the issue of false non-relevant assessments,
near-duplicates are removed from the passage corpus.
We identify sets of redundant passages with a combina-
tion of GloVE-based (Pennington et al., 2014) locality-
sensitive hashing and a 50% bigram-overlap criterion.
We replace all occurrences of near-duplicate passages
with a representative, which is reflected in the passage
corpus and relevance data.

We manually select input pages to derive queries
from, to ensure that page titles and headings represent
realistic search queries in both Wikipedia and text-
books from the TQA corpus. We omitted pages with
quality issues or less than three sections and reformu-
lated headings where necessary.

4 Experimental Evaluation

We study to which extent such an automatic test col-
lection can substitute manual assessments for the pur-
poses of evaluating passage retrieval and/or entity re-
trieval methods. While our framework can derive rel-
evance data for several different tasks, here we evalu-
ate the query-faceted benchmark in the context of the
TREC Complex Answer Retrieval track (CAR). We
compare the leaderboards under automatic and man-
ual test collection with respect to number of systems
swapped (Kendall’s τ) and changes in the rank of a
system (Spearman’s rank correlation coefficient ρ). Fur-
thermore, we use Cronbach’s α̂ to analyze the reliability
of both test collections Bodoff (2008).
We study the following research questions:

– RQ1: Does the automatic passage test collection
yield the same leaderboard of systems as a manual
test collection?

– RQ2: What are the effects of false non-relevant as-
sessments (as discussed in Section 3.3)?

– RQ3: Does the automatic entity test collection yield
the same leaderboard as a manual test collection?

– RQ4: What is the effect of creating entity test collec-
tions through an entity linking tool versus manually
edited hyperlinks?

We discuss the dataset and evaluation paradigm be-
low and elaborate on results for each research question.

4.1 Example Data Set: TREC CAR

In TREC CAR year 1 and year 2, the track provides
queries in the form “$title/$heading” to participants,
which coincide with query facets as defined in our ap-
proach. (The “$title” queries were used in year 3.) Using
the same set of queries, the track offers both an ad hoc
passage retrieval task and an ad hoc entity retrieval
task. This evaluation uses submitted systems and pool-
based assessments from the passage task of year 1 (Di-
etz et al., 2017) and entity task of year 2 (Dietz et al.,
2018). In both cases, manual assessments were created
by NIST assessors.

A Wikipedia dump from Dec 20, 2016 (Wiki-16) is
used as input pages to create the passage corpus and
the reference knowledge base which defines the legal
set of entities. Pages from which queries are derived are
omitted from the reference knowledge base.

In year 1, query facets are selected from Wiki-16
input pages, where in year 2, query facets are selected
from textbook chapters of the TQA dataset6 and new

6 http://data.allenai.org/tqa/
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Table 1: Passage retrieval benchmark statistics of training data (benchmarkY1train) and test collection (bench-
markY1test). Manual assessments are produced with submitted systems in TREC CAR year 1. The inter-annotator
agreement κ is comparable to other IR experiments (Alonso and Mizzaro, 2012).

Passage Train Data Passage ⋆

Size of passage corpus, duplicates removed ←−−−−−−−−− 29,678,367−−−−−−−−−→
Automatically assessed queries ($title) 117 133
Automatically assessed query facets ($title/$heading) 1,816 2,125
Total positive automatic relevance assessments 4,530 5,820
Manually assessed queries ($title) – 132
Manually assessed query facets ($title/$heading) – 702
Total positive manual assessments (must, should, can) – 7,796
Total negative manual assessments (topic, non-relevant, trash) – 23,389
Binary inter-annotator agreement (Dietz et al., 2017) – Fleiss κ = 0.57

Table 2: Entity retrieval benchmark statistics of training data (benchmarkY1train) and both subsets of the test
collection (benchmarkY2test). Manual assessments are produced with submitted systems in TREC CAR year 2.

Entity Train Data TQA Entity ⋆ Wiki-18 Entity ⋆

Size of knowledge base, omitting input pages for queries ←−−−−−−−−−−−−−−−−− 5,153,990−−−−−−−−−−−−−−−−−→
Automatically assessed queries ($title) 117 31 34
Automatically assessed query facets ($title/$heading) 1,816 277 699
Total positive automatic relevance assessments 13,031 1,727 15,317
Manually assessed queries ($title) – 18 9
Manually assessed query facets ($title/$heading) – 128 143
Total positive manual assessments – 1,817 1,356
Total negative manual assessments – 1,858 3,384
Binary inter-annotator agreement (Dietz et al., 2018) – Fleiss κ = 0.42 (without annotator 2)

pages from a 2018 Wikipedia dump (Wiki-18). The
change was necessary after the reference knowledge base
was released containing all Wiki-16 pages except those
used for the year 1 benchmark.

While the TREC CAR track features several bench-
marks, we focus on these two datasets since both a
manually assessed benchmark and an automatic test
collection is available for their query set. In contrast,
no manual entity benchmark was created for year 1.
Furthermore, automatic passage relevance assessments
cannot be derived from input pages used in year 2, as
query pages were derived from pages in Wiki-18 that
did not exist in Wiki-16, while the passage corpus was
created from Wiki-16.

Systems used in our experimental evaluation were
submitted by participants to the TREC CAR track
and include neural ranking methods, entity-aware rank-
ing methods, standard retrieval models such as BM25,
RM3, and sequential dependence models, as well as
methods based on learning-to-rank. Participants were
prohibited to access a Wikipedia corpus except the pro-
vided training data and reference knowledge base—

neither of which included the input pages from which
queries were derived. We anonymize7 the systems since
they are not the focus of this work, details are available
in the TREC proceedings and TREC CAR overview
notebooks (Dietz et al., 2017, 2018). System runs are
provided upon request.

The manual assessment was conducted on assess-
ment-pools of the top six passages and top five entities
from each contributed system. Passages that are rele-
vant under the automatic benchmark were added to the
manual assessment pool for verification. Some rankings
contained fewer passages and several passages were in-

7 Passage task: A--1: mpii-nn4_pos_hperc, A--2: mpii-
nn6_pos, A--3: mpii-nn6_pos_tprob, B--1: CUISPR,
C--1: UNH-benchmarkY1test.expan, C--2: UNH-
benchmarkY1test.bm25, D--1: UTDHLTRINN20, D--2:
UTDHLTRINN50, D--3: UTDHLTRIAR, E--1: treccarict,
F--1: nyudl-qr, F--2: nyudl-ds, F--3: nyudl-qrds, G--1: ECNU-
runONE.
Entity task: A--1: UNH-e-L2R, A--2: UNH-e-graph, A--3:
UNH-e-mixed, B--1: uog-paragraph-rf-ent, B--2: uog-linear-
ltr-hier-ent, B--3: uog-heading-rh-sdm-ent, C--1: DWS-UMA-
EntAspQLrm, C--2: DWS-UMA-EntAspBM25none, D--1:
CUIS-dogeDodge, D--2: CUIS-XTS, D--3: CUIS-Swift.
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cluded in multiple rankings. On average, 44 passages
and 31 entities per query facet were assessed.

Given the query and facet, assessors judge whether
a passage or entity is to be included in an article about
the topic. The grading scale differentiates between must
be included (3), should be included (2), can be included
(1), roughly on topic but not sufficiently specific (0), not
relevant (-1), trash (-2). In this evaluation, we only dis-
tinguish positive assessments (must, should, can) from
negative assessments (topic, not-relevant, trash).8

4.2 Evaluation Paradigm

The motivation for our automatic test collection ap-
proach is to evaluate systems without human involve-
ment. We experimentally evaluate whether the auto-
matic test collection and manual assessors agree on the
relative quality of systems. We use both automatic and
manual relevance data to evaluate systems submitted
by track participants and predict the leaderboard, i.e.,
ranking of systems by relative performance. In line with
the TREC CAR guidelines, system performance is eval-
uated with R-Precision (RPrec), Mean-average preci-
sion (MAP), and Normalized Discounted Cumulative
Gain (nDCG@20) as implemented in the evaluation
tool trec_eval (with ‘-c’ option). TREC participants
could train their submitted systems on the automatic
benchmark of dedicated training queries called bench-
markY1train which includes training data for both pas-
sage and entity ranking tasks. Statistics on training
data is presented in Tables 1 and 2. Benchmarks marked
with ⋆ are used in this evaluation and were released only
after the shared task concluded. Furthermore, a much
larger automatic test collection based on 285,000 input
pages is available in the TREC CAR data release to
support the training of neural networks.9

The intuition behind Chronbach’s α̂ is that the vari-
ance of system scores across queries is representing how
consistent the difficulty of queries and their assessments
are. Hence, smaller variances mean that assessments for
each query in the collection are of similar difficulty—as
opposed to having a high variance in leniency of asses-
sors and difficulty of queries. Bodoff (2008) states that
resulting α̂ only “pertains to that particular group of
algorithms [systems]”, hence we only use it to compare
between manual and automatic test collections and use
the same set of systems to calculate Cronbach’s α̂.

8 Similar results are obtained when “roughly on topic” is
counted as a positive assessment (Dietz et al., 2017).

9 http://trec-car.cs.unh.edu/datareleases/

4.3 RQ1: Evaluation of Passage Rankings

We first evaluate the quality of the automatic passage
test collection. Figures 2a and 2d demonstrate that
both automatic and manual relevance data sets result
in nearly the same leaderboard.

Very high Spearman’s rank correlation and Kendall’s
τ of 0.93 are obtained for all three evaluation measures
(Table 4). According to Voorhees (2001), a τ of 0.9 sug-
gests that the ordering of systems under both bench-
marks are not meaningfully different. In fact, the only
difference is that a single system fell two ranks behind.

The reliability measure Cronbach’s α̂ for both auto-
matic and manual test collection is comparable. Both
are even slightly higher than in early TREC collections
(cf. Table 3 in this paper with Table 2 of Bodoff (2008)).

We conclude that in this example task, automatic
relevance data is as suitable for evaluating passage rank-
ings as manual test collections produced with trained
assessors.

4.4 RQ2: Missing Relevant Passages Vs. Size

As discussed in Section 3.3, we study false non-relevant
assessments which arise since for every page, one can
easily imagine an alternative version that uses different
words and selects different examples but is equally use-
ful to the reader. This can potentially lead to a large
amount of false non-relevant assessments, despite dedu-
plication efforts.

Indeed, Figures 2a and 2d show that the evalua-
tion scores are generally lower under the automatic rel-
evance data. The manual pooled evaluation found three
times as many relevant passages: On average each query
facet has 10.7 positive manual assessments, but only 2.7
in the automatic test collection. However, nearly all au-
tomatic relevant assessments were confirmed as relevant
by manual assessors (except 1%). The 1% exception are
passages that were separated from their context such as
“See the example below”.

On the whole, automatic and manual assessments
agreed on 79% of assessments; resulting in an inter-
annotator agreement between automatic and manual
assessments of Cohen’s κ = 0.268. Nearly all disagree-
ment is due to the higher strictness levels of the auto-
matic benchmark, which renders the automatic bench-
mark more challenging with respect to absolute values
of evaluation measurements. However, this strictness af-
fected all system’s scores equally and resulted in nearly
the same relative order of systems on the leaderboard.

The system’s performance differences are consistent
across all queries, reflected in Chronbach’s α̂ (Table 3).
A useful test collection must be able to discriminate
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(e) Auto Wiki-18 Entity
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(f) Auto TQA Entity

Fig. 2: Leaderboard of passage and entity runs under manual (top) and automatic (bottom) test collections. The
white bracket indicates systems for which no significant difference to the best system could be detected with a
paired-t-test (α = 5%). The systems are anonymized to “team–run”, all runs by the same team share the same
bar color. See footnote and TREC CAR Overview reports for details about the systems.

Table 3: Reliability measure Cronbach’s α̂ with respect to RPrec evaluation scores of systems. For comparison,
the reliability of TREC 3-10 collections range between 0.857 and 0.933 (Bodoff, 2008).

Passage TQA Entity Wiki-18 Entity
Manual test collection 0.996 0.981 0.959
Automatic test collection 0.993 0.989 0.996

Table 4: Kendall’s τ and Spearman’s ρ correlations between automatic and manual leaderboards for passage
ranking and entity ranking tasks.

τRPrec τMAP τnDCG ρRPrec ρMAP ρnDCG

Passage 0.93 0.93 0.93 0.98 0.99 0.98
TQA Entity 0.74 0.85 0.89 0.89 0.93 0.96
Wiki-18 Entity 0.74 0.67 0.81 0.90 0.86 0.93

better from worse systems through significance analy-
ses. A paired-t-test significance analysis based on the
system with the highest mean performance depicted by
white brackets in Figure 2) determines a small set of
clear “winners”. Moreover, standard error bars are of
the same relative magnitude for automatic test collec-
tion and manually created assessments, indicating the
suitability of IR evaluations.

These encouraging results are obtained when com-
paring an automatic and a manual approach that have
a comparable number of positive relevance assessments
across all queries (cf. Tables 1 and 2).

While the manual assessments were limited by a
budget of 240 hours for the passage task (120 hours
for the entity task), the automatic test collection ap-
proach is only limited by the number of input pages.
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Table 5: Kendall’s τ and Spearman’s ρ correlations between leaderboards on the Wiki-18 subset. Three-way
comparison of entity test collections: (1) entity links, (2) hyperlinks inserted by the article editor, and (3) manually
assessed benchmark.

τRPrec τMAP τnDCG ρRPrec ρMAP ρnDCG

Using Entity Linking versus Manual Assessments 0.74 0.67 0.81 0.90 0.86 0.93
Using Editor’s Hyperlinks versus Manual Assessments 0.63 0.78 0.85 0.80 0.90 0.94
Entity Linking versus Editor’s Hyperlinks 0.74 0.85 0.89 0.90 0.94 0.96

A-
-3

A-
-1

B-
-1

A-
-2

C-
-1

B-
-2

B-
-3

C-
-2

D-
-2

D-
-3

D-
-1

0.00

0.05

0.10

0.15

Rp
re

c

(a) Entity Linking Tool

A-
-3

B-
-1

A-
-1

A-
-2

B-
-2

B-
-3

C-
-1

D-
-1

D-
-3

D-
-2

C-
-2

0.00

0.02

0.04

0.06

0.08

0.10

Rp
re

c

(b) Editor’s Hyperlinks

Fig. 3: Entity ranking leaderboard under the automatic test collection for the Wiki-18 subset. The relevance of
entities is determined with an entity linking tool (left) versus Wikipedia hyperlinks created by the article editor
(right).

This evaluation is based on automatic test collections
derived from fewer than 150 manually selected input
pages, an alternative train/test set for TREC CAR was
derived from 285,000 input pages.

4.5 RQ3: Evaluation of Entity Rankings

Finally, we evaluate the quality of the automatic entity
test collection. Queries in TREC CAR year 2 are de-
rived from two different sources of input pages, Wiki-18
and TQA, which discuss similar topics, but their pages
have different characteristics. TQA pages explain the
topic to school children and use simplified language,
where Wikipedia pages often mention specific entities
and many technical details.

Figure 2 shows that for both query subsets, auto-
matic and manual relevance data result in a very sim-
ilar leaderboard. No significant difference could be de-
tected between most system pairs that swapped ranks
(using a paired-t-test with α = 5%). Even without cor-
recting for non-significant system swaps, relatively high
rank correlation of Kendall’s τ and Spearman’s ρ are
obtained (cf. Table 4). We conclude that automatic rel-
evance data is suitable for evaluating entity rankings.

Moreover, we find that the leaderboards of both the
Wiki-18 and TQA subsets does not change much un-

der the automatic test collection (cf. Figure 2e and 2f).
The main difference is that system C--1 moved by two
ranks. In comparison, we observe many more system
swaps under the corresponding manual leaderboards
(cf. Figure 2b and 2c).

The automatic relevance data is based on entity
links on input pages; which are also manually assessed.
For TQA, 80% of positive automatic data was manu-
ally confirmed as relevant; 70% for Wiki-18. The dis-
crepancy arises as the entity linking method does not
distinguish between central and circumstantial entities.
We suspect that when a large number of queries is used,
all entity ranking systems are equally penalized by such
false positive relevance assessments.

A large fraction of positive automatic data is rated
by manual assessors with the highest relevance grade of
“must be mentioned” (40% for TQA and 27% for Wiki-
18). This means that of all confirmed relevant entities,
about half are very central to the query.

4.6 RQ4: Entity Linking versus Edited Hyperlinks

Entity Linking algorithms such as Tagme provide pos-
sibly noisy annotations. Furthermore, an entity linking
tools will link any detectable entity, while an editor
writing an article would embellish the most informa-
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Table 6: Two example entity rankings for the query facet “Zika fever/ Epidemiology” from middle (A--2) and
the end (D--1) of the leaderboard of the Wiki-18 subset. Entities marked with “X” are relevant as automatically
derived from the corresponding Wikipedia page section via entity linking (EL) or the hyperlinks included by
the page editor (HL). While most entities are relevant for Zika fever, only few are relevant in the context of
Epidemiology.

Rank A--2 EL HL D--1 EL HL
1 Guillain-Barre syndrome X X Yellow fever X X
2 Microcephaly X Radial glial cell
3 Zika virus X Mosquito-borne disease
4 Dengue fever X Aedes africanus
5 Yellow fever X X Aedes apicoargenteus
6 Fever Zika virus X
7 Zika fever Dengue fever
8 Arthralgia Zika virus outbreak timeline
9 Conjunctivitis X Neonatal infection
10 Vertically transmitted infection 2013-2014 Zika virus outbreaks in Oceania

tive entities with hyperlinks to their Wikipedia pages.
But editorial policies may influence the manually cre-
ated hyperlinks in unexpected ways: Wikipedia editors
only include a hyperlink at the first entity mention.

In Figure 3, we compare the entity ranking test col-
lection derived with an entity linking toolkit versus hy-
perlinks that were manually included by the Wikipedia
editors. This analysis is only conducted on the Wiki-
18 subset of the entity ranking task, because the TQA
subset does not include hyperlinks. While the absolute
value of the evaluation measure is lower for editorial hy-
perlinks, we find that relative performance results are
comparable overall. The most significant difference is
that methods C--1 and C--2 moved from the middle of
the field to the end of the leaderboard.

We use the manual assessments as a gold standard
leaderboard and analyze the correlation of both auto-
matic leaderboards with Kendall’s τ and Spearman’s
rank correlation ρ. Results are presented in Table 5. We
find that both entity linking and editorial hyperlinks
correlate reasonably well with the manual assessments,
where entity linking demonstrates a slightly lower cor-
relation for MAP, which is possibly due to limitations
of the manual benchmark with respect to recall. The
strength of correlation between automatic and manual
approaches is very similar to the correlation between
both automatic test collections.

Table 6 provides entity rankings of two entity rank-
ing systems for example query facet “Zika fever/ Epi-
demiology”.10 We see that the higher position of A--2
on the leaderboard is due to a larger number of rel-
evant entities in the top ranks. This is the case both
when using entity links (EL) and hyperlinks from the

10 https://en.wikipedia.org/wiki/Zika_fever#
Epidemiology

page editor (HL). While most entities in both rankings
are relevant for the page title “Zika fever”, many are
not specific for its epidemiology.

5 Conclusion

This work examines an approach for automatic test col-
lection creation that does not require any human assess-
ments, which provides affordable access to large-scale
test collections for passages and entities with useful ad-
ditions, such as query facets and the possibility to de-
rive a benchmark for entity-support passage retrieval
or sub-topic clustering.

We demonstrate the validity of this approach for
entity and passage ranking with the help of human as-
sessors, who agree on the leaderboard of systems, ob-
taining Spearman’s rank correlations that are consis-
tently above 0.85. Furthermore, human assessors agree
on the relevance of automatic passage relevance data
which contains only 1% of false positives. However, the
automatic test collection is stricter than the manually
created benchmark, containing only about a third of
positive assessments. We discuss and experimentally
evaluate that this difference does not affect its relia-
bility of distinguishing systems by rank quality. In con-
trast, the automatic benchmark provides the opportu-
nity to study the marginal relevance of the ranking, by
the nature of its construction. Another advantage of
our approach is that it is less influenced by a particu-
lar selection of systems from which the assessment pool
is built—a problem pointed out by Jayasinghe et al.
(2014). Anecdotally, many participants reported that
automatic collections are very effective for method de-
velopment and machine learning, since performance on
train and test splits are often nearly identical.
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The experimental evaluation includes automatic test
collections constructed from Wikipedia pages and mid-
dle school textbooks from the TQA corpus. We be-
lieve that this approach can also be applied to cre-
ate test collections for many related tasks, such as en-
tity support-passage retrieval and entity-based answer-
passage retrieval. Our approach relies on the availabil-
ity of a corpus of input pages, where titles and headings
correspond to information needs and the content repre-
sents the desired response. A debate for future work is
whether manual assessment time is better spent assess-
ing pools or creating a corpus of suitable input pages.

We believe that this open-source test collection al-
lows the IR community to gain a better understand-
ing on how relevance is manifested in natural language.
This understanding leads to better ad hoc retrieval mod-
els to which research on user models and interaction
data should be applied. Our test collection approach
was motivated by system evaluation rather than train-
ing. Nevertheless, the release of a very large automatic
test collection for passage ranking made it possible to
train data-hungry neural networks for this task (MacA-
vaney et al., 2019; Nogueira and Cho, 2019).
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