Broadcast

- Motivation
 - don’t have unicast routing
 - need to inform everyone
 - it’s “natural” for the underlying network
 - starting point for multicast

- Methods
 - flooding
 - reverse path forwarding
 - (minimum) spanning tree
Flooding

- **Trivial flooding**
 - resend every received packet to all neighbors

- **Limited flooding**
 - add sequence numbers (packet resent only once)
 - (if possible) don’t send packet where it came from

- **Characteristics**
 - no need for any coordination among nodes
 - (first copy of the) packet delivered over the shortest path (!)
 - state has to be kept in nodes
Reverse Path Forwarding

- Requires unicast routes

- Node X accepts a packet from source S via neighbor N only if it is the neighbor you would forward to in order to reach S.

![Diagram showing unicast path from X to S, with packet accepted and rejected scenarios.]
Spanning Tree

- Find minimum spanning tree
- Forward and copy packets along a spanning tree

Characteristics

- requires broader coordination among nodes to calculate the spanning tree
- nodes have to maintain state
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Flooding</th>
<th>Reverse path forwarding</th>
<th>Minimum spanning tree (MST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needs unicast routes</td>
<td>No</td>
<td>Yes</td>
<td>No (uses MST knowledge)</td>
</tr>
<tr>
<td>Involves multiple nodes</td>
<td>No</td>
<td>Yes (to get unicast routes)</td>
<td>Yes</td>
</tr>
<tr>
<td>State kept in nodes</td>
<td>Sequence #’s</td>
<td>Unicast routes</td>
<td>MST links</td>
</tr>
</tbody>
</table>