EUROGRAPHICS 2000

Tutorial

Volume Visualization and Volume Rendering Techniques

M. MeiBner! ,H. Pfister? ,R. Westermann® ,and C.M. Wittenbrink T

Abstract

There is a wide range of devices and scientific simulation generating volumetric data. Visualizing such data,
ranging from regular data sets to scattered data, is a challenging task.

This course will give an introduction to the volume rendering transport theory and the involved issues such as
interpolation, illumination, classification and others. Different volume rendering techniques will be presented
illustrating their fundamental features and differences as well as their limitations. Furthermore, acceleration
techniques will be presented including pure software optimizations as well as utilizing special purpose hardware
as VolumePro but also dedicated hardware such as polygon graphics subsystems.

1. Introduction

Volume rendering is a key technology with increasing im-
portance for the visualization of 3D sampled, computed, or
modeled datasets. The task is to display volumetric data as
a meaningful two-dimensional image which reveals insights
to the user. In contrast to conventional computer graphics
where one has to deal with surfaces, volume visualization
takes structured or unstructured 3D data which is the ren-
dered into two-dimensional image. Depending on the struc-
ture and type of data, different rendering algorithms can be
applied and a variety of optimization techniques are avail-
able. Within these algorithms, several rendering stages can
be used to achieve a variety of different visualization results
at differen cost. These stages might change their order from
algorithm to algorithm or might even not be used by certain
approaches.

In the following section, we will give a general introduc-
tion to volume rendering and the involved issues. Section 3
then presents a scheme to classify different approaches to

T WSI/GRIS, University of Tiibingen, Auf der Morgenstelle 10/C9,
Germany, e-Mail: meissner@gris.uni-tuebingen.de

i MERL - A Mitsubishi Electric Research Laboratory, 201 Broad-
way, Cambridge, MA 02139, USA, e-Mail: pfister@merl.com

§ Computer Graphics Group, University of Stuttgart,
something road 4711, 74711 Stuttgart, Germany, e-Mail:
Ruediger.Westermann@informatik .uni-stuttgart.de

9 Hewlett-Packard Laboratories, PaloAlto, CA 94304-1126, USA,
e-Mail: craig_wittenbrink@hpl.hp.com

(© The Eurographics Association 2000.

volume rendering in categories. Acceleration techniques to
speed up the rendering process in section 4. Section 3 and 4
are a modified version of tutorial notes from R. Yagel which
we would like to thankfully acknowledge.

A side by side comparison of the four most common vol-
ume rendering algorithms is given in section 5. Special pur-
pose hardware achieving interactive or real-time frame-rates
is presented in section 6 while section 7 focuses on applica-
tions based on 3D texture mapping. Finally, we present ren-
dering techniques and approaches for volume data not rep-
resented on rectilinear cartesian grids but on curvilinear and
unstructured grids.

2. Volume rendering

Volume rendering differs from conventional computer
graphics in many ways but also shares rendering techniques
such as shading or blending. Within this section, we will give
a short introduction into the types of data and where it origi-
nates from. Furthermore, we present the principle of volume
rendering, the different rendering stages, and the issues in-
volved when interpolating data or color.

2.1. Volume data acquisition

Volumetric data can be computed, sampled, or modeled
and there are many different areas where volumetric data
is available. Medical imaging is one area where volumet-
ric data is frequently generated. Using different scanning
techniques, internals of the human body can be acquired
using MRI, CT, PET, or ultrasound. Volume rendering can

Meifiner et al./ Volume Rendering

be applied to color the usually scalar data and visualize
different structures transparent, semi-transparent, or opaque
and hence, can give useful insights. Different applications
evolved within this area such as cancer detection, visual-
ization of aneurisms, surgical planning, and even real-time
monitoring during surgery.

Nondestructive material testing and rapid prototyping is
another example where frequently volumetric data is gener-
ated. Here, the structure of an object is of interest to either
verify the quality or to reproduce the objects. Industrial CT
scanners and ultrasound are mainly used for these applica-
tions.

The disadvantage of the above described acquisition de-
vices is the missing color information which needs to be
added during the visualization process since each acquisi-
tion techniques generates scalar values representing density
(CT), oscillation (MRI), echoes (ultrasound), and others. For
educational purposes where destructing the original object
is acceptable, one can slice the material and take images of
each layer. This reveals color information which so far can-
not be captured by other acquisition devices. A well-known
example is the visible human project where this technique
has been applied to a male and a female cadaver.

Microscopic analysis is yet another application field of
volume rendering. With confocal microscopes, it is possible
to get high-resolution optical slices of a microscopic object
without having to disturb the specimen.

Geoseismic data is probably one of the sources that gen-
erates the largest junk of data. Usually, at least 1024% voxels
(1 GByte and more) are generated and need to be visualized.
The most common application field is oil exploration where
the costs can be tremendously reduced by finding the right
location where to drill the whole.

Another large source of volumetric data is physical sim-
ulations where fluid dynamics are simulated. This is often
done using particles or sample points which move around
following physical laws resulting in unstructured points.
These points can either be visualized directly or resampled
into any grid structure possibly sacrificing quality.

Besides all the above mentioned areas, there are many oth-
ers. For further reading we recommend ©'.

2.2. Grid structures

Depending on the source where volumetric data comes from
it might be given as a cartesian rectilinear grid, or as a curvi-
linear grid, or maybe even completely unstructured. While
scanning devices mostly generate rectilinear grids (isotropic
or anisotropic), physical simulations mostly generate un-
structured data. Figure 1 illustrates these different grid types
for the 2D case. For the different grid structures different al-
gorithms can be used to visualize the volumetric data. Within
the next sections, we will focus on rectilinear grids before
presenting approaches for the other grid types in section 8.

() (b) ()

Figure 1: Different grid structures: Rectilinear (a), curvilin-
ear (b), and unstructured (c).

2.3. Absorption and emission

In contrast to conventional computer graphics where objects
are represented as surfaces with material properties, volume
rendering does not directly deal with surfaces even though
surfaces can be extracted from volumetric data in a pre-
processing step.

Each element of the volumetric data (voxel) can emit light
as well as absorb light. The emission of light can be quite dif-
ferent depending on the model used. I.e., one can implement
models where voxels simply emit their own light or where
they additionally realize single scattering or even multiple
scattering. Depending on the model used, different visual-
ization effects can be realized. Generally, scattering is much
more costly to realize than a simple emission and absorp-
tion model, one of the reasons why they are hardly used
in interactive or real-time applications. While the emission
determines the color and intensity a voxel is emitting, the
absorption can be expressed as opacity of a voxel. Only a
certain amount of light will be passed through a voxel which
can be expressed by 1 — opacity and is usually referred to as
the transparency of a voxel.

The parameters of the emission (color and inten-
sity) as well as the parameters of the absorption (opac-
ity/transparency) can be specified on a per voxel-value base
using classification. This is described in more detail in the
following section. For different optical models for volume
rendering refer to 0.

24. Classification

Classification enables the user to find structures within vol-
ume data without explicitly defining the shape and extent of
that structure. It allows the user to see inside an object and
explore its inside structure instead of only visualizing the
surface of that structure as done in conventional computer
graphics.

In the classification stage, certain properties are assigned
to a sample such as color, opacity, and other material proper-
ties. Also shading parameters indicating how shiny a struc-
ture should appear can be assigned. The assignment of opac-
ity to a sample can be a very complex operation and has a
major impact on the final 2D image generated. In order to
assign these material properties it is usually helpful to use

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

histograms illustrating the distribution of voxel values across
the dataset.

The actual assignment of color, opacity, and other proper-
ties can be based on the sample value only but other values
can be as well taken as input parameters. Using the gradient
magnitude as further input parameter, samples within homo-
geneous space can be interpreted differently than the ones
with heterogeneous space. This is a powerful technique in
geoseismic data where the scalar values only change notice-
ably in between different layers in the ground.

2.5. Segmentation

Empowering the user to see a certain structure using classifi-
cation is not always possible. A structure can be some organ
or tissue but is represented as a simple scalar value. When
looking at volumetric data acquired with a CT scanner, dif-
ferent types of tissue will result in same density values due
to the nature of CT. Therefore, no classification of density
values can be found such that structures which similarly ab-
sorb X-rays could be separated. To separate such structures,
they need to be labeled or segmented such that they can be
differentiated from each other. Depending on the acquisition
method and the scanned object, it can be relatively easily,
hard, or even impossible to segment some of the structures
automatically. Most algorithms are semi-automatic or opti-
mized for segmenting a specific structure.

Once a volumetric dataset is segmented, for each segment
a certain classification can be assigned and applied during
rendering.

2.6. Shading

Shading or illumination refer to a well-know technique used
in conventional computer graphics to greatly enhance the ap-
pearance of a geometric object that is being rendered. Shad-
ing tries to model effects like shadows, light scattering, and
absorption in the real world when light falls on an object.
Shading can be classified into global methods, direct meth-
ods, and local methods. While global illumination computes
the light being exchanged between all objects, direct illu-
mination only accounts for the light the directly falls onto
an object. Unfortunately, both methods depend on the com-
plexity of the objects to be rendered and are usually not in-
teractive. Therefore, the local illumination method has been
widely used. Figure 2 shows a skull rendered with local and
with direct illumination. While direct illumination takes into
account how much light is present at each sample (figure
2(b)), local illumination is much cheaper to compute but
still achieves reasonable image quality (figure 2(a)). Local
illumination consists of an ambient, a diffuse and a specu-
lar component. While ambient component is available ev-
erywhere, the diffuse component can be computed using the
angle between the normal vector at the given location and the
vector to the light. The specular component depends on the

(© The Eurographics Association 2000.

Figure 2: Comparison of shading: Local illumination (a)
and direct illumination (b).

angle to the light and the angle to the eye position. All three
components can be combined by weighting each of them dif-
ferently using material properties. While tissue is less likely
to have specular components, teeth might reflect more light.
Figure 3 shows a skull without and with shading.

(@ (b)

Figure 3: Comparison of shading: No shading (a) and local
shading (b).

For further reading refer to ' 6.

2.7. Gradient computation

As mentioned in the previous section, a normal is required
to be able to integrate shading effects. However, volumetric
data itself does not explicitly consist of surfaces with associ-
ated normals but of sampled data being available on grid po-
sitions. This grid of scalar values can be considered as a grey
level volume and several techniques have been investigated
in the past to compute grey-level gradients from volumetric
data.

A frequently used gradient operator is the central differ-
ence operator. For each dimension of the volume, the cen-
tral difference of the two neighbouring voxels is computed
which gives an approximation of the local change of the gray
value. It can be written as Gradienty,y; =[—1 0 1].Gen-
erally, the central difference operator is not the necessarily
the best one but very cheap to compute since it requires only

Meifiner et al./ Volume Rendering

six voxels and three subtractions. A disadvantage of the cen-
tral difference operator is that it produces anisotropic gradi-
ents.

The intermediate difference operator is similar to the cen-
tral difference operator but has a smaller kernel. It can be
written as Gradientyy, = [—1 1]. The advantage of this
operator is that it detects high frequencies which can be lost
when using the central difference operator. However, when
flipping the orientation a different gradient is computed for
the identical voxel position which can cause undesired ef-
fects.

A much better gradient operator is the Sobel operator
which uses all 26 voxels that surround one voxel. This gra-
dient operator was developed for 2D imaging but volume
rendering borrows many techniques from image processing
and the Sobel operator can easily be extended to 3D. A nice
property of this operator is that it produces nearly isotropic
gradients but it is fairly complex to compute ©'.

2.8. Compositing

All samples taken during rendering need to be combined into
a final image which means that for each pixel of the image
we need to combine the color of the contributing samples.
This can be done in random order if only opaque samples
are involved but since we deal with semi-transparent data,
the blending needs to be performed in sorted order which
can be accomplished in two ways: Front to back or back to
front. For front to back, the discrete ray casting integral can
then be written as:

Trans = 1.0; - full
Inten = I[0]; - initial value
for (i=0; i<n; i++) {

Trans *= T[i-1];

Inten += Trans * I[i];

}

The advantage is that the computation can be terminated
once the transparency reaches a certain threshold where no
further contribution will be noticeable, i.e. 0.01.

For back to front, compositing is much less work since
we do not need to keep track of the remaining transparency.
However, then all samples need to be processed and no early
termination criteria can be exploited:

Inten = I[0]; - initial value
for (i=0; i<n; i++) {
Inten = Inten + T[i] * I[i];

}

Instead of accumulating the color for each pixel over all
samples using the above described blending operations, one
can chose other operators. Another famous operator sim-
ply takes the maximum density value of all samples of a
pixel, known as maximum intensity projection (MIP). This is
mostly used in medical applications dealing with MRI data

(magnetic resonance angiography) visualizing arteries that
have been acquired using contrast agents.

Figure 4: Compositing operators: Blending shaded samples
of skull (a) and arteries (c) and maximum intensity projec-
tion of skull (b) and arteries (d).

2.9. Filtering

Many volume rendering algorithms resample the volumetric
data in a certain way using rays, planes, or random sample
points. These sample points seldomly coincide with the ac-
tual grid positions and require the interpolation of a value
based on the neighbouring values at grid position.

There are numerous different interpolation methods. Each
of them is controlled by an interpolation kernel. The shape
of the interpolation kernel provides the coefficients for the
weighted interpolation sum. Interpolation kernels can be
thought of as overlays. When a value needs to be interpo-
lated, the kernel is placed onto of the neighbouring values.
The kernel is centered at the interpolation point and every-
where the interpolation kernel intersects with the voxels, the
values are multiplied. One dimensional interpolation kernels
can be applied to interpolate in two, three, and even more
dimensions if the kernel is separable. All of the following
interpolation kernels are separable.

The nearest neighbour interpolation method is the sim-
plest and crudest method. The value of the closest of all
neighbouring voxel values is assigned to the sample. Hence,
it is more a selection than a real implementation. There-
fore, when using nearest neighbour interpolation, the image

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

quality is fairly low and when using magnification, a blobby
structure appears.

Trilinear interpolation assumes a linear relation between
neighbouring voxels and it is separable. Therefore, it can be
decomposed into seven linear interpolations. The achievable
image quality is much higher than with nearest neighbour
interpolation. However, when using large magnification fac-
tors, three dimensional diamond structures or crosses appear
due to the nature of the trilinear kernel.

Better quality can be achieved using even higher order in-
terpolation methods such as cubic convolution or B-spline
interpolation. However, there is a trade-off between quality
and computational cost as well as memory bandwidth. These
filters require a neighbourhood of 64 voxels and a significant
larger amount of computations than trilinear interpolation. It
depends on the application and the requirements which in-
terpolation scheme should be used.

2.10. Color filtering

The previously mentioned techniques can be performed in
different order resulting in different image quality as well as
being prone to certain artifacts. Interpolation of scalar values
is usually prone to aliasing since depending on the classifi-
cation used, high frequency details might be missed. On the
other side, color interpolation by the means of classification
and shading of available voxel values and interpolation of the
resulting color values is prone to color bleeding when inter-
polating color and a-value independent from each other 9.
A simple example of this is bone surrounded by flesh where
the bone is classified opaque white and the flesh is transpar-
ent but red. When sampling this color volume one needs to
chose the appropriate interpolation scheme. Simply interpo-
lating the neighbouring color and opacity values results in
color bleeding as illustrated in figure 5. To obtain the correct

Figure 5: Color bleeding: Independent interpolation of
color and opacity values (left) and opacity weighted color
interpolation (right).

color and opacity, one needs to mulitply each color with the
corresponding opacity value before interpolating the color.
While it can easily be noticed in figure 5 due to the chosen
color scheme, it is less obvious in monochrome images.

(© The Eurographics Association 2000.

Figure 6 illustrates another example where darkening ar-
tifacts can be noticed. This example is a volumetric dataset

Figure 6: Darkening and aliasing: Independent interpola-
tion of color and opacity values (left) and opacity weighted
color interpolation (right).

from image based rendering that originates as color (red,
green, and blue) at each grid position. Therefore, it illustrates
what would happen when visualizing the visible human with
and without opacity weighted color interpolation. The arti-
facts are quite severe and disturbing.

2.11. Summary

Within this section, we provided an overview of the different
types of grids as well as sources of volume data. Using clas-
sification, gradient estimation, shading, and compositing,
extremly different visualization results can be achieved. Also
the selection of the filter used to interpolate data or color
has a strong influence on the resulting image. Therefore, one
has to carefully choose depending on the application require-
ments which of the described techniques schemes should be
integrated and which interpolation scheme used.

3. Volume Viewing Algorithms

The task of the rendering process is to display the primi-
tives used to represent the 3D volumetric scene onto a 2D
screen. Rendering is composed of a viewing process which
is the subject of this section, and the shading process. The
projection process determines, for each screen pixel, which
objects are seen by the sight ray cast from this pixel into the
scene. The viewing algorithm is heavily dependent on the
display primitives used to represent the volume and whether
volume rendering or surface rendering are employed. Con-
ventional viewing algorithms and graphics engines can be
utilized to display geometric primitives, typically employing
surface rendering. However, when volume primitives are dis-
played directly, a special volume viewing algorithm should
be employed. This algorithm should capture the contents of
the voxels on the surface as well as the inside of the volumet-
ric object being visualized. This section surveys and com-
pares previous work in the field of direct volume viewing.

Meifiner et al./ Volume Rendering

3.1. Introduction

The simplest way to implement viewing is to traverse all the
volume regarding each voxel as a 3D point that is trans-
formed by the viewing matrix and then projected onto a
Z-buffer and drawn onto the screen. Some methods have
been suggested in order to reduce the amount of computa-
tions needed in the transformation by exploiting the spatial
coherency between voxels. These methods are described in
more details in Section 4.1.

The back-to-front (BTF) algorithm is essentially the same
as the Z-buffer method with one exception that is based on
the observation that the voxel array is presorted in a fashion
that allows scanning of its component in an order of decreas-
ing or increasing distance from the observer. Exploiting this
presortedness of the voxel arrays, traversal of the volume in
the BTF algorithm is done in order of decreasing distance to
the observer. This avoids the need for a Z-buffer for hidden
voxel removal considerations by applying the painter’s algo-
rithm by simply drawing the current voxel on top of previ-
ously drawn voxels or by compositing the current voxel with
the screen value *.

The front-to-back (FTB) algorithm is essentially the same
as BTF only that now the voxels are traversed in increasing
distance order. Front-to-back has the potential of a more ef-
ficient implementation by employing a dynamic data struc-
ture for screen representation 87 in which only un-lit pixels
are processed and newly-lit pixels are efficiently removed
from the data structure. It should be observed that while in
the basic Z-buffer method it is impossible to support the ren-
dition semi-transparent materials since voxels are mapped to
the screen in arbitrary order. Compositing is based on a com-
putation that simulates the passage of light through several
materials. In this computation the order of materials is cru-
cial. Therefore, translucency can easily be realized in both
BTF and FTB in which objects are mapped to the screen in
the order in which the light traverses the scene.

Another method of volumetric projection is based on first
transforming each slice from voxel-space to pixel-space us-
ing 3D affine transformation (shearing) 33°%52 and then
projecting it to the screen in a FTB fashion, blending it
with the projection formed by previous slices 22. Shear-warp
rendering 52 is currently the fastest software algorithm. It
achieves 1.1 Hz on a single 150MHz R4400 processor for a
256 x 256 x 225 volume with 65 seconds of pre-processing
time 5'. However, the 2D interpolation may lead to alias-
ing artifacts if the voxel values or opacities contain high fre-
quency components .

Westover 107108 has introduced the splatting technique in
which each voxel is transformed into screen space and then
shaded. Blurring, based on 2D lookup tables is performed to
obtain a set of points (footprint) that spreads the voxels en-
ergy across multiple pixels. These are then composited with
the image array. Sobierajski et al. have described ** a simpli-
fied splatting for interactive volume viewing in which only

voxels comprising the object’s surface are maintained. Ren-
dering is based on the usage of a powerful transformation
engine that is fed with multiple points per voxel. Additional
speedup is gained by culling voxels that have a normal point-
ing away from the observer and by adaptive refinement of
image quality.

The ray casting algorithm casts a ray from each pixel on
the screen into the volume data along the viewing vector un-
til it accumulates an opaque value + 99 100.56 L evoy 5 57 has
used the term ray tracing of volume data to refer to ray cast-
ing and compositing of even-spaced samples along the pri-
mary viewing rays. However, more recently, ray tracing is
referred to as the process where reflected and transmitted
rays are traced, while ray casting solely considers primary
rays, and hence, does not aim for “photorealistic” imaging.
Rays can be traced through a volume of color as well as data.
Ray casting has been applied to volumetric datasets, such as
those arising in biomedical imaging and scientific visualiza-
tion applications (e.g., 2> 190).

We now turn to classify and compare existing volume
viewing algorithms. In section 4 we survey recent advances
in acceleration techniques for forward viewing (section 4.1),
backward viewing (section 4.2) and hybrid viewing (sec-
tion 4.3).

3.2. Classification of Volume Viewing Methods

Projection methods differ in several aspects which can be
used for a their classification in various ways. First, we have
to observe whether the algorithm traverses the volume and
projects its components onto the screen (called also forward,
object-order, or voxel-space projection) 2+ 107.29 does it tra-
verse the pixels and solve the visibility problem for each one
by shooting a sight ray into the scene (called also backward,
image-order, or pixel-space projection) 46: 54 88,99,100, 120,124
or does it perform some kind of a hybrid traversal 40 100,52,50,

Volume rendering algorithms can also be classified ac-
cording to the partial voxel occupancy they support. Some
algorithms 8635 87,99,125, 124 agsume uniform (binary) occu-
pancy, that is, a voxel is either fully occupied by some object
or it is devoid of any object presence. In contrast to uniform
voxel occupancy, methods based on partial voxel occupancy
utilize intermediate voxel values to represent partial voxel
occupancy by objects of homogeneous material. This pro-
vides a mechanism for the display of objects that are smaller
than the acquisition grid or that are not aligned with it. Partial
volume occupancy can be used to estimate occupancy frac-
tions for each of a set of materials that might be present in
a voxel 22, Partial volume occupancy is also assumed when-
ever gray-level gradient 3¢ is used as a measure for the sur-
face inclination. That is, voxel values in the neighborhood of
a surface voxel are assumed to reflect the relative average of
the various surface types in them.

Volume rendering methods differ also in the way they re-

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

gard the material of the voxels. Some methods regarded all
materials as opaque 27-2%37.87,98,99 while others allow each
voxel to have an opacity attribute 2234 88,100,107,120, 124,52
Supporting variable opacities models the appearance of
semi-transparent jello and requires composition of multiple
voxels along each sight ray.

Yet another aspect of distinction between rendering meth-
ods is the number of materials they support. Early meth-
ods supported scenes consisting of binary-valued voxels
while more recent methods usually support multi-valued
voxels. In the first case objects are represented by occu-
pied voxels while the background is represented by void
voxels 24358799 Tn the latter approach, multi-valued vox-
els are used to represent objects of non-homogeneous mate-
rial 27:36:98 Tt should be observed that given a set of voxels
having multiple values we can either regard them as fully
occupied voxels of various materials (i.e., each value repre-
sents a different material) or we can regard the voxel value as
an indicator of partial occupancy by a single material, how-
ever we can not have both. In order to overcome this limita-
tion, some researchers adopt the multiple-material approach
as a basis for a classification process that attaches a material-
label to each voxel. Once each voxel has a material label,
these researchers regard the original voxel values as partial
occupancy indicators for the labeled material 22.

Finally, volume rendering algorithms can also be classi-
fied according to whether they assume constant value across
the voxel extent 46 or do they assume (trilinear) variation of
the voxel value>*.

A severe problem in the voxel-space projection is that at
some viewing points, holes might appear in the scene. To
solve this problem one can regard each voxel in our im-
plementation as a group of points (depending on the view-
point) % or maintain a ratio of 1 : \/§ between a voxel a
pixel 3. Another solution is based on a hybrid of voxel-
space and pixel-space projections that is based on traversing
the volume in a BTF fashion but computing pixel colors by
intersecting the voxel with a scan line (plane) and then in-
tegrating the colors in the resulting polygon ', Since this
computation is relatively time consuming it is more suitable
to small datasets. It is also possible to apply to each voxel
a blurring function to obtain a 2D footprint that spreads the
sample’s energy onto multiple image pixels which are lat-
ter composed into the image '°%. A major disadvantage in
the splatting approach is that it tends to blur the edges of
objects and reduce the image contrast. Another deficiency in
the voxel-space projection method is that it must traverse and
project all the voxels in the scene. Sobierajski et al. have sug-
gested the use of a normal based culling in order to reduce
(possibly by half) the amount of processed voxels 9. On the
other hand, since voxel-space projection operates in object-
space, it is most suitable to various parallelization schemes
based on object space subdivision 2879 107,

The main disadvantages of the pixel-space projection

(© The Eurographics Association 2000.

scheme are aliasing (specially when assuming uniform value
across voxel extent) and the difficulty to parallelize it. While
the computation involved in tracing rays can be performed
in parallel, memory becomes the bottleneck. Since rays tra-
verse the volume in arbitrary directions it seems to be no way
to distribute voxels between memory modules to guarantee
contention free access >°.

Before presenting a side by side comparison of the four
most popular volume rendering algorithms, we will intro-
duce general acceleration techniques that can be applied to
forward and backward viewing algorithms.

4. Acceleration Techniques

Either forward projection or backward projection requires
the scanning of the volume buffer which is a large buffer
of size proportional to the cubic of the resolution. Con-
sequently, volume rendering algorithms can be very time-
consuming algorithms. This section focuses on techniques
for expediting these algorithms.

4.1. Expediting Forward Viewing

The Z-buffer projection algorithm, although surprisingly
simple, is inherently very inefficient and when naively im-
plemented, produces low quality images. The inefficiency
attribute of this method is rooted in the N° vector-by-matrix
multiplications it calculates and the N? accesses to the Z-
buffer it requires. Inferior image quality is caused by this
method’s inability to support compositing of semitranspar-
ent materials, due to the arbitrary order in which voxels
are transformed. In addition, transforming a set of discrete
points is a source for various sampling artifacts such as holes
and jaggies.

Some methods have been suggested to reduce the amount
of computations needed for the transformation by exploiting
the spatial coherency between voxels. These methods are:
recursive “divide and conquer” 2799, pre-calculated tables
24 and incremental transformation 44 65,

The first method exploits coherency in voxel space by rep-
resenting the 3D volume by an octree. A group of neighbor-
ing voxels having the same value (or similar, up to a thresh-
old value) may, under some restrictions, be grouped into a
uniform cubic subvolume. This aggregate of voxels can be
transformed and rendered as a uniform unit instead of pro-
cessing each of its voxels. In addition, since each octree node
has eight equally-sized octants, given the transformation of
the parent node, the transformation of its sub-octants can be
efficiently computed. This method requires, in 3D, three di-
visions and six additions per coordinate transformation.

The table-driven transformation method 24 is based on the
observation that volume transformation involves the multi-
plication of the matrix elements with integer values which

Meifiner et al./ Volume Rendering

are always in the range [1...N] where N is the volume reso-
lution. Therefore, in a short preprocessing stage each matrix
element #; is stored in table tab;;[N] such that tab;;[k] =
tjj X k,1 < k < N. During the transformation stage, coordi-
nate by matrix multiplication is replaced by table lookup.
This method requires, in 3D, nine table lookup operations
and nine additions, per coordinate transformation.

Finally, the incremental transformation method is based
on the observation that the transformation of a voxel can be
incrementally computed given the transformed vector of the
voxel. To begin the incremental process we need one ma-
trix by vector multiplication to compute the updated posi-
tion of the first grid point. The remaining grid points are
incrementally transformed, requiring three additions per co-
ordinate. However, to employ this approach, all volume el-
ements, including the empty ones, have to be transformed.
This approach is therefore more suitable to parallel archi-
tecture where it is desired to keep the computation pipeline
busy 5.

So far we have been looking at methods that ease the com-
putation burden associated with the transformation. How-
ever, consulting the Z-buffer N3 times is also a source of
significant slow down. The back-to-front (BTF) algorithm is
essentially the same as the Z-buffer method with one excep-
tion the order in which voxels are scanned. It is based on the
observation that the voxel array is spatially presorted. This
attribute allows the renderer to scan the volume in an order
of decreasing distance from the observer. By exploiting this
presortedness of the voxel arrays, one can draw the volume
in a back-to-front order, that is, in order of decreasing dis-
tance to the observer. This avoids the need for a Z-buffer for
hidden voxel removal by applying the painter’s algorithm.
That is, the current voxel is simply drawn on top of previ-
ously drawn voxels. If compositing is performed, the current
voxel is composited with the screen value 2324, The front-to-
back (FTB) algorithm is essentially the same as BTF, only
that now the voxels are traversed in increasing distance or-
der.

As mentioned above in the basic Z-buffer method it is im-
possible to support the rendition of semitransparent materi-
als because voxels are mapped to the screen in an arbitrary
order. In contrast, translucency can easily be realized in both
BTF and FTB because in these methods objects are mapped
to the screen in viewing order.

Another approach to forward projection is based on first
transforming the volume from voxel-space to pixel-space by
employing a decomposition of the 3D affine transformation
into five 1D shearing transformations 33. Then, the trans-
formed voxel is projected onto the screen in an FTB order,
which supports the blending of voxels with the projection
formed by previous (farther) voxels ?2. The major advantage
of this approach is its ability (using simple averaging tech-
niques) to overcome some of the sampling problems causing
the production of low quality images. In addition, this ap-

proach replaces the 3D transformation by five 1D transfor-
mations which require only one floating-point addition each.

Another solution to the image quality problem mentioned
above is splatting 198, in which each voxel is transformed
into screen space and then it is shaded. Blurring, based on 2D
lookup tables, is performed to obtain a set of points (a cloud)
that spreads the voxel’s energy across multiple pixels called
footprint. These are then composited with the image array.
However this algorithm which requires extensive filtering is
time consuming.

Sobierajski et al. have described ** a simplified approxi-
mation to the splatting method for interactive volume view-
ing in which only voxels comprising the object’s surface are
maintained. Each voxel is represented by several 3D points
(a 3D footprint). Rendering is based on the usage of a con-
temporary geometry engine that is fed with those multiple
points per voxel. Additional speedup is gained by culling
voxels that have a normal pointing away from the observer.
Finally, adaptive refinement of image quality is also sup-
ported: when the volume is manipulated only one point per
voxel is rendered, interactively producing a low quality im-
age. When the volume remains stationary and unchanged,
for some short period, the rendering system renders the rest
of the points to increase image quality.

Another efficient implementation of the splatting algo-
rithm, called hierarchical splatting 53 uses a pyramid data
structure to hold a multiresolution representation of the vol-
ume. For volume of N3 resolution the pyramid data structure
consists of a sequence of logN volumes. The first volume
contains the original dataset, the next volume in the sequence
is half the resolution of the previous one. Each of its voxels
contains the average of eight voxels in the higher resolution
volume. According to the desired image quality, this algo-
rithm scans the appropriate level of the pyramid in a BTF
order. Each element is splatted using the appropriate sized
splat. The splats themselves are approximated by polygons
which can efficiently be rendered by graphics hardware.

4.2. Expediting Backward Viewing

Backward viewing of volumes, based on casting rays, has
three major variations: parallel (orthographic) ray casting,
perspective ray casting, and ray tracing. The first two are
variations of ray casting, in which only primary rays, that
is, rays from the eye through the screen, are followed.
These two methods have been widely applied to volumet-
ric datasets, such as those arising in biomedical imaging and
scientific visualization applications (e.g., 2> 19). Levoy 5738
has used the term ray tracing of volume data to refer to ray
casting and compositing of even-spaced samples along the
primary viewing rays.

Ray casting can further be divided into methods that sup-
port only parallel viewing, that is, when the eye is at in-
finity and all rays are parallel to one viewing vector. This

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

viewing scheme is used in applications that could not bene-
fit from perspective distortion such as biomedicine. Alterna-
tively, ray casting can be implemented to support also per-
spective viewing.

Since ray casting follows only primary rays, it does not
directly support the simulation of light phenomena such as
reflection, shadows, and refraction. As an alternative, Yagel
et al. have developed the 3D raster ray tracer (RRT) 22 that
recursively considers both primary and secondary rays and
thus can create “photorealistic” images. It exploits the voxel
representation for the uniform representation and ray tracing
of sampled and computed volumetric datasets, traditional
geometric scenes, or intermixing thereof.

The examination of existing methods for speeding up the
process of ray casting reveals that most of them rely on
one or more of the following principles: (1) pixel-space co-
herency (2) object-space coherency (3) inter-ray coherency
and (4) space-leaping.

We now turn to describe each of those in more detail.

1. Pixel-space coherency: There is a high coherency be-
tween pixels in image space. That is, it is highly prob-
able that between two pixels having identical or similar
color we will find another pixel having the same (or sim-
ilar) color. Therefore it is observed that it might be the
case that we could avoid sending a ray for such obviously
identical pixels.

2. Object-space coherency: The extension of the pixel-
space coherency to 3D states that there is coherency be-
tween voxels in object space. Therefore, it is observed that
it should be possible to avoid sampling in 3D regions hav-
ing uniform or similar values.

3. Inter-ray coherency: There is a great deal of coherency
between rays in parallel viewing, that is, all rays, although
having different origin, have the same slope. Therefore,
the set of steps these rays take when traversing the volume
are similar. We exploit this coherency so as to avoid the
computation involved in navigating the ray through voxel
space.

4. Space-leaping: The passage of a ray through the volume
is two phased. In the first phase the ray advances through
the empty space searching for an object. In the second
phase the ray integrates colors and opacities as it pene-
trates the object (in the case of multiple or concave ob-
jects these two phases can repeat). Commonly, the second
phase involves one or a few steps, depending on the ob-
ject’s opacity. Since the passage of empty space does not
contribute to the final image it is observed that skipping
the empty space could provide significant speed up with-
out affecting image quality.

The adaptive image supersampling, exploits the pixel-
space coherency. It was originally developed for traditional
ray-tracing 7 and later adapted to volume rendering 37 .
First, rays are cast from only a subset of the screen pixels
(e.g., every other pixel). “Empty pixels” residing between

(© The Eurographics Association 2000.

pixels with similar value are assigned an interpolated value.
In areas of high image gradient additional rays are cast to
resolve ambiguities.

Van Walsum et al. ' have used the voxel-space co-
herency. In his method the ray starts sampling the volume
in low frequency (i.e., large steps between sample points).
If a large value difference is encountered between two ad-
jacent samples, additional samples are taken between them
to resolve ambiguities in these high frequency regions. Re-
cently, this basic idea was extended to efficiently lower the
sampling rate in either areas where only small contributions
of opacities are made, or in regions where the volume is ho-
mogeneous 2°. This method efficiently detects regions of low
presence or low variation by employing a pyramid of vol-
umes that decode the minimum and maximum voxel value
in a small neighborhood, as well as the distance between
these measures.

The template-based method 2% 124 utilizes the inter-ray
coherency. Observing that, in parallel viewing, all rays have
the same form it was realized that there is no need to reacti-
vate the discrete line algorithm for each ray. Instead, we can
compute the form of the ray once and store it in a data struc-
ture called ray-template. All rays can then be generated by
following the ray template. The rays, however, differ in the
exact positioning of the appropriate portion of the template,
an operation that has to be performed very carefully. For this
purpose a plane that is parallel to one of the volume faces is
chosen to serve as a base-plane for the template placement.
The image is projected a by sliding the template along that
plane emitting a ray at each of its pixels. This placement
guarantees complete and uniform tessellation of the volume.
The regularity and simplicity of this efficient algorithm make
it very attractive for hardware implementation '2!.

So far we have seen methods that exploit some type of
coherency to expedite volumetric ray casting. However, the
most prolific and effective branch of volume rendering accel-
eration techniques involve the utilization of the fourth princi-
ple mentioned above — speeding up ray casting by providing
efficient means to traverse the empty space.

The hierarchical representation (e.g., octree) decomposes
the volume into uniform regions that can be represented by
nodes in a hierarchical data structure. An adjusted ray traver-
sal algorithm skips the (uniform) empty space by maneuver-
ing through the hierarchical data structure 37-%. It was also
observed that traversing the hierarchical data structure is in-
efficient compared to the traversal of regular grids. A com-
bination of the advantages of both representations is the uni-
form buffer. The “uniformity information” decoded by the
octree can be stored in the empty space of a regular 3D raster.
That is, voxels in the uniform buffer contain either a data
value or information indicating to which size empty octant
they belong. Rays which are cast into the volume encounter
either a data voxel, or a voxel containing “uniformity infor-
mation” which instructs the ray to perform a leap forward

Meifiner et al./ Volume Rendering

that brings it to the first voxel beyond the uniform region 6.
This approach saves the need to perform a tree search for
the appropriate neighbor — an operation that is the most time
consuming and the major disadvantage in the hierarchical
data structure.

When a volume consists of one object surrounded by
empty space, a common and simple method to skip most
of this empty space uses the well known technique of
bounding-boxes. The object is surrounded by a tightly fit
box (or other easy-to-intersect object such as sphere). Rays
are intersected with the bounding object and start their ac-
tual volume traversal from this intersection point as opposed
to starting from the volume boundary. The PARC (Polygon
Assisted Ray Casting) approach 3 strives to have a better fit
by allowing a convex polyhedral envelope to be constructed
around the object. PARC utilizes available graphics hard-
ware to render the front faces of the envelope (to determine,
for each pixel, the ray entry point) and back faces (to de-
termine the ray exit point). The ray is then traversed from
entry to exit point. A ray that does not hit any object is not
traversed at all.

It is obvious that the empty space does not have to be sam-
pled — it has only to be crossed as fast as possible. There-
fore, Yagel et al. have proposed 123122 to utilize one fast and
crude line algorithm in the empty space (e.g., 3D integer-
based 26-connected line algorithm) and another, slower but
more accurate (e.g., 6-connected integer or 3D DDA floating
point line algorithm), in the vicinity and interior of objects.
The effectiveness of this approach depends on its ability to
efficiently switch back and forth between the two line algo-
rithm, and its ability to efficiently detect the proximity of oc-
cupied voxels. This is achieved by surrounding the occupied
voxels by a one-voxel-deep “cloud” of flag-voxels, that is, all
empty voxels neighboring an occupied voxel are assigned, in
a preprocessing stage, a special “vicinity flag”. A crude ray
algorithm is employed to rapidly traverse the empty space
until it encounters a vicinity voxel. This flags the need to
switch to a more accurate ray traversal algorithm. Encoun-
tering later an empty voxel (i.e., unoccupied and not carrying
the vicinity flag) can signal a switch back to the rapid traver-
sal of empty space.

The proximity-clouds method !¢ 128 is based on the exten-
sion of this idea even further. Instead of having a one-voxel-
deep vicinity cloud this method computes, in a preprocess-
ing stage, for each empty voxel, the distance to the closest
occupied voxel. When a ray is sent into the volume it can
either encounter an occupied voxel, to be handled as usual,
or a “proximity voxel” carrying the value . This suggests
that the ray can take a -step leap for-n n ward, being assured
that there is no object in the skipped span of voxels. The ef-
fectiveness of this algorithm is obviously dependent on the
ability of the line traversal algorithm to efficiently jump ar-
bitrary number of steps °.

Yagel and Shi '7 have reported on a method for speeding

up the process of volume rendering a sequence of images.
It is based on exploiting coherency between consecutive im-
ages to shorten the path rays take through the volume. This is
achieved by providing each ray with the information needed
to leap over the empty space and commence volume traver-
sal at the vicinity of meaningful data. The algorithm starts
by projecting the volume into a C-buffer (Coordinate-buffer)
which stores, at each pixel location, the object-space coordi-
nates of the first non empty voxel visible from that pixel. For
each change in the viewing parameters, the C-buffer is trans-
formed accordingly. In the case of rotation the transformed
C-buffer goes through a process of eliminating coordinates
that possibly became hidden 3°. The remaining values in the
C-buffer serve as an estimate of the point where the new rays
should start their volume traversal.

4.3. Hybrid Viewing

The most efficient rendering algorithm uses a ray-casting
technique with hybrid object/image-order data traversal
based on the shear-warp factorization of the viewing ma-
trix 1249152 The volume data is defined in object coordi-
nates (u,v,w), which are first transformed to isotropic ob-
ject coordinates by a scale and shear matrix L. This allows
to automatically handle anisotropic data sets, in which the
spacing between voxels differs in the three dimensions, and
gantry tilted data sets, in which the slices are sheared, by
adjusting the warp matrix. A permutation matrix P trans-
forms the isotropic object to permuted coordinates (x,y,z).
The origin of permuted coordinates is the vertex of the vol-
ume nearest to the image plane and the z axis is the edge of
the volume most parallel to the view direction. A shear ma-
trix S represents the rendering operation that projects points
in the permuted volume space onto points on the base plane,
which is the face of the volume data that is most parallel to
the viewing plane.

In the shear-warp implementation by Lacroute and
Levoy 32, the volume is stored three times, run-length en-
coded along the major viewing direction. The projection
is performed using bi-linear interpolation and back-to-front
compositing of volume slices parallel to the base plane.
Pfister et al. 83 perform the projection using ray-casting.
This prevents view-dependent artifacts when switching base
planes and accommodates supersampling of the volume
data. Instead of casting rays from image space, rays are sent
into the data set from the base plane. This approach guaran-
tees that there is a one-to-one mapping of sample points to
voxels 12491,

The base plane image is transformed to the image plane
using the warp matrix W = M x L~'x P xs7! Tore-
sample the image, one can use 2D texture mapping with bi-
linear interpolation on a companion graphics card. The ad-
ditional 2D image resampling results in a slight degradation
of image quality. It enables, however, an easy mapping to an
arbitrary user-specified image size.

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

The main advantage of the shear-warp factorization is that
voxels can be read and processed in planes of voxels, called
slices, that are parallel to the base plane. Slices are processed
in positive z direction. Within a slice, scanline of voxels
(called voxel beams) are read from memory in top to bot-
tom order. This leads to regular, object-order data access. In
addition, it allows parallelism by having multiple rendering
pipelines work on several voxels in a beam at the same time.

44. Progressive Refinement

One practical solution to the rendering time problem is the
generation of partial images that are progressively refined as
the user interacts with the crude image. Both forward and
backward approach can support progressive refinement. In
the case of forward viewing this technique is based on a
pyramid data structure. First, the smaller volume in the pyra-
mid is rendered using large-footprint splats. Later, higher
resolution components of the pyramid are rendered 3.

Providing progressive refinement in backward viewing is
achieved by first sampling the screen in low resolution. The
regions in the screen where no rays were emitted from re-
ceive a value interpolated from some close pixels that were
assigned rays. Later more rays are cast and the interpolated
value is replaced by the more accurate result . Addition-
ally, rays that are intended to cover large screen areas can be
traced in the lower-resolution components of a pyramid 7.

Not only screen-space resolution can be progressively in-
creased. Sampling rate and stopping criteria can also be re-
fined. An efficient implementation of this technique was re-
ported by Danskin and Hanrahan 2.

5. The four most popular Approaches

As we have seen in the previous sections, there are numer-
ous approachs that can be taken in volume visualization. A
side by side comparison of all these approaches would cover
many pages and would probably not give many insights due
to the overwhelming amount of information and the large
parameter set. Generally, there are two avenues that can be
taken:

1. The volumetric data are first converted into a set of polyg-
onal iso-surfaces (i.e., via Marching Cubes 3) and subse-
quently rendered with polygon rendering hardware. This
is referred to as indirect volume rendering (IVR).

2. The volumetric data are directly rendered without the in-
termediate conversion step. This is referred to as direct
volume rending (DVR) 20. 88,100

The former assumes (i) that a set of extractable iso-surfaces
exists, and (ii) that with the infinitely thin surface the poly-
gon mesh models the true object structures at reasonable
fidelity. Neither is always the case, as illustrative exam-
ples may serve: (i) amorphous cloud-like phenomena, (ii)
smoothly varying flow fields, or (iii) structures of varying

(© The Eurographics Association 2000.

depth (and varying transparencies of an isosurface) that at-
tenuate traversing light corresponding to the material thick-
ness. But even if both of these assumptions are met, the com-
plexity of the extracted polygonal mesh can overwhelm the
capabilities of the polygon subsystem, and a direct volume
rendering may prove more efficient 8!, especially when the
object is complex or large, or when the isosurface is interac-
tively varied and the repeated polygon extraction overhead
must be figured into the rendering cost 3.

Within this section, we concern ourselves solely with the
direct volume rendering approach, in which four techniques
have emerged as the most popular: Raycasting %34, Splat-
ting 108, Shear-warp 32, and 3D texture-mapping hardware-
based approaches °.

5.1. Introduction

Over the years, many researchers have worked indepen-
dently on refining these four methods, and due to this mul-
tifarious effort, all methods have now reached a high level
of maturity. Most of this development, however, has evolved
along separate paths (although some fundamental scientific
progress has benefited all methods such as advances in fil-
ter design %673 or efficient shading '93.105). A number of
frequently used and publicly available datasets exists (e.g.,
the UNC CT / MRI heads or the CT lobster), however, due
to the large number of parameters that were not controlled
across presented research, it has so far been difficult to as-
sess the benefits and shortcomings of each method in a deci-
sive manner. The generally uncontrolled parameters include
(apart from hardware architecture, available cache, and CPU
clock speed): shading model, viewing geometry, scene illu-
mination, transfer functions, image sizes, and magnification
factors. Further, so far, no common set of evaluation crite-
ria exists that enables fair comparisons of proposed methods
with existing ones. Within this section, we will address this
problem, and present an appropriate setup for benchmarking
and evaluating different direct volume rendering algorithms.
Some work in this direction has already been done in the
past: Bartz > has compared DVR using raycasting with IVR
using marching cubes for iso-surface extraction, while Tiede
97 has compared gradient filters for raycasting and march-
ing cubes. However, a clear answer to which algorithm is
best cannot be provided for the general case but the results
presented here are aimed at providing certain guidelines to
determine under what conditions and premises each volume
rendering algorithm is most adequately chosen and applied.

5.2. Common Theoretical Framework

We can write all four investigated volume rendering meth-
ods as approximations of the well-known low-albedo vol-
ume rendering integral, VRI 848 41,66 The VRI analytically
computes I 1 (x,r), the amount of light of wavelength 1 com-
ing from ray direction r that is received at location x on the

Meifiner et al./ Volume Rendering

image plane:

L s
L(x,r) = /0 C;\(s)],t(s)e(ffd”(t)dt)ds (D

Here, L is the length of ray r. If we think of the volume as
being composed of particles with certain densities (or light
extinction coefficients) y, then these particles receive light
from all surrounding light sources and reflect this light to-
wards the observer according to their specular and diffuse
material properties. In addition, the particles may also emit
light on their own. Thus, in (1), G, is the light of wavelength
1 reflected and/or emitted at location s in the direction of r.
To account for the higher reflectance of particles with larger
densities, we must weigh the reflected color by the particle
density. The light scattered at s is then attenuated by the den-
sities of the particles between s and the eye according to the
exponential attenuation function.

At least in the general case, the VRI cannot be com-
puted analytically %. Hence, practical volume rendering al-
gorithms discretize the VRI into a series of sequential inter-
vals i of width As:

L/As i—

1
G (Si)M(S,')AS e_ﬂ(x’)A‘Y) (2)
§crnmein]

L(x,r) =

Using a Taylor series approximation of the exponential term
and dropping all but the first two terms, we get the familiar
compositing equation 37:

L/As i—1

x,r) = s;)ou(s; —a(s; 3
L(x,r) ;0 Gy (si)a)j];L(l a(s)) 3)

We denote this expression as discretized VRI (DVRI), where
o = 1.0 —transparency. Expression 3 represents a common
theoretical framework for all surveyed volume rendering al-
gorithms. All algorithms obtain colors and opacities in dis-
crete intervals along a linear path and composite them in
front to back order or back to front order, see section 2.8.
However, the algorithms can be distinguished by the pro-
cess in which the colors C(s;) and opacities a(s;) are calcu-
lated in each interval i, and how wide the interval width As
is chosen. The position of the shading operator in the vol-
ume rendering pipeline also affects C(s;) and a(s;). For this
purpose, we distinguish the pre-shaded from the post-shaded
volume rendering pipeline. In the pre-shaded pipeline, the
grid samples are classified and shaded before the ray sample
interpolation takes place. We denote this as Pre-DVRI (pre-
shaded DVRI) and its mathematical expression is identical
to formula 3. Pre-DVRI generally leads to blurry images, es-
pecially in zoomed viewing, where fine object detail is often
lost 377,

The blurriness is eliminated by switching the order of
classification/shading and ray sample interpolation. Then,
the original density volume f is interpolated and the result-
ing sample values f (i) are classified, via transfer functions,
to yield material, opacity, and color. All blurry parts of the

edge image can be clipped away using the appropriate classi-
fication function 77. Shading follows immediately after clas-
sification and requires the computation of gradients from the
density grid. The resulting expression is termed Post-DVRI
(post-shaded DVRI) and is written as follows:

L/As i—1
L (x,r) = Gy (f(si))oa(f(si 1—a(f(s; 4
n(x,r) ;0 2. (f(si))a(f())LL((f(sj))) 4

C and o are now transfer functions, commonly implemented
as lookup-tables. Since in Post-DVRI the raw volume densi-
ties are interpolated and used to index the transfer functions
for color and opacity, fine detail in these transfer functions is
readily expressed in the final image. One should note, how-
ever, that Post-DVRI is not without problems: Due to the
partial volume effect, a density might be interpolated that
is classified as a material not really present at the sample
location, which can lead to false colors in the final image.
This can be avoided by prior segmentation, which, however,
can add severe staircasing artifacts due to introduced high-
frequency. Based on formulas 3 and 4, we will now present
the four surveyed algorithms in detail.

5.3. Distinguishing Features of the different algorithms

Our comparison will focus on the conceptual differences be-
tween the algorithms, and not so much on ingenious mea-
sures that speed runtime. Since numerous implementations
for each algorithm exist — mainly providing acceleration —
we will select the most general implementation for each,
employing the most popular components and parameter set-
tings. More specific implementations can then use the bench-
marks introduced later to compare the impact of their im-
provements. We have summarized the conceptual differ-
ences of the four algorithms in Table 1.

5.3.1. Raycasting

Of all volume rendering algorithms, Raycasting has seen the
largest body of publications over the years. Researchers have
used Pre-DVRI 57:54 as well as Post-DVRI %3897 The den-
sity and gradient (Post-DVRI), or color and opacity (Pre-
DVRI), in each DVRI interval are generated via point sam-
pling, most commonly by means of a trilinear filter from
neighboring voxels (grid points) to maintain computational
efficiency, and subsequently composited. Most authors space
the ray samples apart in equal distances As, but some ap-
proaches exist that jitter the sampling positions to eliminate
patterned sampling artifacts, or apply space-leaping 2% 127 for
accelerated traversal of empty regions. For strict iso-surface
rendering, recent research analytically computes the loca-
tion of the iso-surface, when the ray steps into a voxel that
is traversed by one #'. But in the general case, the Nyquist
theorem needs to be followed which states that we should
choose As < 1.0 (i.e., one voxel length) if we do not know
anything about the frequency content in the sample’s local

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

neighborhood. Then, for Pre-DVRI and Post-DVRI raycast-
ing, the C(s;), a(s;),and f(s;) terms in equations 3 and 4, re-
spectively, are written as:

C;\(S,') = C)»(ZAS)
a(iAs) 3)
f(si) = flis)

Note that a needs to be normalized for As # 1.0 2. In the
used implementation, we use early ray termination, which
is a powerful acceleration method of raycasting where rays
can be terminated when the accumulated opacity has reached
a value close to unity. Furthermore, all samples and corre-
sponding gradient components are computed by trilinear in-
terpolation of the respective grid data.

2
[

5.3.2. Splatting

Splatting was proposed by Westover 198 and it works by rep-
resenting the volume as an array of overlapping basis func-
tions, commonly Gaussian kernels with amplitudes scaled
by the voxel values. An image is then generated by project-
ing these basis functions to the screen. The screen projec-
tion of these radially symmetric basis function can be effi-
ciently achieved by the rasterization of a precomputed foot-
print lookup table. Here, each footprint table entry stores the
analytically integrated kernel function along a traversing ray.
A major advantage of splatting is that only voxels relevant to
the image must be projected and rasterized. This can tremen-
dously reduce the volume data that needs to be both pro-
cessed and stored 7®. However, depending on the zooming
factor, each splat can cover up to hundreds of pixels which
need to be processed.

The preferred splatting approach ' summed the voxel
kernels within volume slices most parallel to the image
plane. This was prone to severe brightness variations in an-
imated viewing and also did not allow the variation of the
DVRI interval distance As. Mueller 7¢ eliminated these draw-
backs by processing the voxel kernels within slabs of width
As, aligned parallel to the image plane — hence the approach
was termed image-aligned splatting: All voxel kernels that
overlap a slab are clipped to the slab and summed into a sheet
buffer, followed by compositing the sheet with the sheet be-
fore. Efficient kernel slice projection is achieved by analyt-
ical pre-integration of an array of kernel slices and using
fast slice footprint rasterization methods 78. Both Pre-DVRI
and Post-DVRI 77 are possible, and the C(s;), a(s;), and f (s;)
terms in equations 3 and 4 are now written as:

_ fA(Aij])AS Cy.(s)ds

Gulsr) =
(i+])As

afs) = Jas G ©
‘(i+])As (§)ds

fls) = due SO

(© The Eurographics Association 2000.

We observe that splatting replaces the point sample of ray-
casting by a sample average across As. This introduces an
additional low-pass filtering step that helps to reduce alias-
ing, especially in isosurface renderings and when As > 1.0.
Splatting also typically uses rotationally symmetric Gaus-
sian kernels, which have better anti-aliasing characteristics
than linear filters, with the side effect of performing some
signal smoothing. However, when splatting data values and
not color, classification is an unsolved problem since the
original data value, i.e. density, is smoothed, accumulated,
and then classified. This aggravates the so-called partial vol-
ume effect and solving this remains future research.

Splatting can use a concept similar to early ray termina-
tion: early splat elimination, based on a dynamically com-
puted screen occlusion map, that (conservatively) culls in-
visible splats early from the rendering pipeline 78. The main
operations of splatting are the transformation of each rele-
vant voxel center into screen space, followed by an index
into the occlusion map to test for visibility, and in case it is
visible, the rasterization of the voxel footprint into the sheet-
buffer. The dynamic construction of the occlusion map re-
quires a convolution operation after each sheet-buffer com-
posite, which, however, can be limited to buffer tiles that
have received splat contributions in the current slab 78. It
should be noted that, although early splat elimination saves
the cost of footprint rasterization for invisible voxels, their
transformation must still be performed to determine their oc-
clusion. This is different from early ray termination where
the ray can be stopped and subsequent voxels are not pro-
cessed.

5.3.3. Shear-Warp

Shear-warp was proposed by Lacroute and Levoy 2 and has
been recognized as the fastest software renderer to date. It
achieves this by employing a clever volume and image en-
coding scheme, coupled with a simultaneous traversal of vol-
ume and image that skips opaque image regions and trans-
parent voxels. In a pre-processing step, voxel runs are RLE-
encoded based on pre-classified opacities. This requires the
construction of a separate encoded volume for each of the
three major viewing directions. The rendering is performed
using a raycasting-like scheme, which is simplified by shear-
ing the appropriate encoded volume such that the rays are
perpendicular to the volume slices. The rays obtain their
sample values via bilinear interpolation within the traversed
volume slices. A final warping step transforms the volume-
parallel baseplane image into the screen image. The DVRI
interval distance A s is view-dependent, since the interpola-
tion of sample values only occurs in sheared volume slices.
It varies from 1.0 for axis-aligned views to 1.41 for edge-
on views to 1.73 to corner-on views, and it cannot be varied
to allow for supersampling along the ray. Thus the Nyquist
theorem is potentially violated for all but the axis-aligned
views.

The Volpack distribution from Stanford (a volume render-

Meifiner et al./ Volume Rendering

Sampling rate freely selectable freely selectable fixed [1.0,1.73] freely selectable
Interpolation kernel trilinear Gaussian bilinear trilinear
Acceleration early ray termination early splat elimination =~ RLE opacity encoding graphics hardware
Voxels considered all relevant mostly relevant all

Table 1: Distinguishing features and commonly used parameters of the four different algorithms.

ing package that uses the shear warp algorithm) only pro-
vides for Pre-DVRI (with opacity weighted colors), but con-
ceptually Post-DVRI is also feasible, however, without opac-
ity classification if shear-warp’s fast opacity-based encoding
is used. The C(s;), a(s;), and f(s;) terms in equations 3 and
4 are written similar to raycasting, but with the added con-
straint that As is dependent on the view direction:

Ci(si) = Gy (is)
a(si)) = a(iAs) 0
flsi) = f(iAs)

_ dx\? dy 2
As = \/(d—z) +(d—z> +1 ®)

where [dx,dy, dz]T is the normalized viewing vector, re-
ordered such that dz is the major viewing direction. In Vol-
pack, the number of rays sent through the volume is limited
to the number of pixels in the base plane (i.e., the resolu-
tion of the volume slices in view direction). Larger viewports
are achieved by bilinear interpolation of the resulting image
(after back-warping of the base plane), resulting in a very
low image quality if the size of the view-port is significantly
larger than the volume resolution. This can be fixed by using
a scaled volume with a higher volume resolution.

5.3.4. 3D Texture-Mapping Hardware

This is a short introduction to 3D texture mapping and more
details are disclosed in section 7./ The use of 3D texture
mapping was popularized by Cabral for non-shaded vol-
ume rendering. The volume is loaded into texture memory
and the hardware rasterizes polygonal slices parallel to the
viewplane. The slices are then blended back to front, due to
the missing accumulation buffer for a. The interpolation fil-
ter is a trilinear function (on SGI’s RE 2 and IR architectures,
quadlinear interpolation is also available, where it addition-
ally interpolates between two mipmap levels), and the slice
distance A s can be chosen freely. A number of researchers
have added shading capabilities 1%70.26,106 ~and both Pre-
DVRI 2¢ and Post-DVRI 9:70:106 are possible. Usually, the
rendering is brute-force, without any opacity-based termi-
nation acceleration, but some researchers have done this 1°.
The drawbacks of 3D texture mapping is that larger vol-
umes require the swapping of volume bricks in and out of

the limited-sized texture memory (usually a few MBytes for
smaller machines). Fortunately, 3D texture mapping recently
became popular in PC based graphics hardware. Texture-
mapping hardware interpolates samples in similar ways to
raycasting and hence the C(s;), a(s;), and f(s;) terms in
equations 3 and 4 are written as:

Cp(si) = Gy (iAs)
a(s;) = a(iAs) €
f(si) = f(ihs)

5.4. Comparison

For a fair comparison of the presented four algorithms, one
needs to define identical viewing and rendering parameters.
The first one can be accomplished using a common camera
model, i.e. like OpenGL while the latter includes multiple
parameters such as filtering method, classification, shading,
blending, and so forth. Some of these properties are illus-
trated in table 1. Others such as shading, classification, and
blending need to be adopted accross the algorithms such that
all use the same operations.

It is difficult to evaluate rendering quality in a quantitative
manner. Often, researchers simply put images of competing
algorithms side by side, appointing the human visual system
(HVS) to be the judge. It is well known that the HVS is less
sensitive to some errors (stochastic noise) and more to others
(regular patterns), and interestingly, sometimes images with
larger numerical errors, e.g., RMS, are judged similar by a
human observer than images with lower numerical errors.
So it seems that the visual comparison is more appropriate
than the numerical, since after all we produce images for the
human observer and not for error functions. In that respect,
an error model that involves the HVS characteristics would
be more appropriate than a purely numerical one. But never-
theless, to perform such a comparison we still need the true
volume rendered image, obtained by analytically integrat-
ing the volume via equation (1) (neglecting the prior reduc-
tion of the volume rendering task to the low-albedo case).
As was pointed out by Max %, analytical integration can be
done when assuming that C(s) and (s) are piecewise lin-
ear. This is, however, somewhat restrictive on our transfer
functions, so in the following we employ visual quality as-
sessment only.

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

Ray casting Splatting Shear-warp 3D texture mapping
post-shaded DVRI post-shaded DVRI pre-shaded DVRI pre-shaded DVRI
opacity weighted not opacity weighted
color interpolation color interpolation

'-‘lm’|
Wity 11" lisd
| rnf|

i

i

Figure 7: Comparison of the four algorithms. Columns from left to right: Ray casting, splatting, shear-warp, and 3D texture
mapping. Rows from top to bottom: CT scan of a human skull, zoomed view of the teeth, CT scan of brain arteries showing
an aneurism, Marschner-Lobb function containing high frequencies, and simulation of the potential distribution of electrons
around atoms.

(© The Eurographics Association 2000.

Meifiner et al./ Volume Rendering

5.5. Results

All presented results were generated on the same platform
(SGI Octane). The graphics hardware was only used by the
3D texture mapping approach. Figure 7 shows representative
still frames of different datasets that we rendered. We ob-
serve that the image quality achieved with texture mapping
hardware shows severe color-bleeding artifacts due to inter-
polation of colors independent from the a-value '? (see sec-
tion 2.10, as well as staircasing. Furthermore, highly trans-
parent classification results in darker images, due to limited
precision of the RGBA-channels of the hardware (8 bit).

Volpack shear-warp performs much better, with quality
similar to raycasting and splatting whenever the resolution
of the image matches the resolution of the baseplane. For
the other images, the rendered baseplane image was of lower
resolution than the screen image and had to be magnified
using bilinear interpolation in the warping step. This leads
to excessive blurring, especially for the Marschner-Lobb
dataset, where the magnification is very high. A more funda-
mental draw-back can be observed in the 45 degree neghip
view in Figure 7, where — in addition to the blurring — signif-
icant aliasing in the form of staircasing is present. This is due
to the ray sampling rate being less than 1.0, and can be dis-
turbing in animated viewing of some datasets but is less no-
ticeable in still images. The Marschner-Lobb dataset render-
ings for raycasting and splatting demonstrate the differences
of point sampling (raycasting) and sample averaging (splat-
ting). While raycasting’s point sampling misses some detail
of the function at the crests of the sinusoidal waves, splatting
averages across the waves and renders them as blobby rims.
For the other datasets the averaging effect is more subtle, but
still visible. For example, raycasting renders the skull and
the magnified blood with crisper detail than splatting does,
but can suffer from aliasing artifacts, if the sampling rate is
not chosen appropriately (Nyquist rate). However, the qual-
ity is quite comparable, for all practical purposes.

5.6. Summary

Generally, 3D texture mapping and shear-warp have sub-
second rendering times for moderately-sized datasets. While
the quality of the display obtained with our mainstream
texture mapping approach is limited and can be improved
as demonstrated in section 7, the quality of shear-warp ri-
vals that of the much more expensive raycasting and splat-
ting when the object magnification is about unity. Handling
higher magnifications is possible by relaxing the condition
that the number of rays must match the resolution of the vol-
ume. Although higher interpolation costs will be the result,
the rendering frame rate will most likely still be high (es-
pecially if view frustum culling is applied). A more serious
concern is the degradation of image quality at off-axis views.
In these cases, one could use a volume with extra interpo-
lated slices, which is Volpack’s standard solution for higher
image resolutions. But the fact that shear-warp requires an

opacity-encoded volume makes interactive transfer function
variation a challenge. In applications where these limitations
do not apply, shear-warp proves to be a very useful algorithm
for volume rendering. The side-by-side comparison of splat-
ting and raycasting yielded interesting results as well: We
saw that image-aligned splatting offers a rendering quality
similar to that of raycasting. It, however, produces smoother
images due to the z-averaged kernel and the anti-aliasing ef-
fect of the larger Gaussian filter. It is hence less likely to miss
high-frequency detail. Raycasting is faster than splatting for
datasets with a low number of non-contributing samples. On
the other hand, splatting is better for datasets with a small
number of relevant voxels and sheetbuffers. Since the qual-
ity is so similar and the same transfer functions yield simi-
lar rendering results, one could build a renderer that applies
either raycasting or splatting, depending on the number of
relevant voxels and the level of compactness of the dataset.
One could even use different renderers in different portions
of the volume, or for the rendering of disconnected objects
of different compactness.

More details on this comparison can be found in 7'.

6. The VolumePro Real-Time Ray-Casting System

Software based volume rendering approaches can be acceler-
ated such that interactive frame-rates can be achieved. How-
ever, this requires certain trade-offs in quality or parameters
that can be changed interactively. In order to achieve interac-
tive or even real-time frame-rates at highest quality and full
flexibility, dedicated hardware is necessary. Within this sec-
tion we will have a closer look at special purpose hardware,
i.e. the VolumePro system.

6.1. Introduction

Special purpose hardware for volume rendering has been
proposed by various researchers, but only a few machines
have been implemented. VIRIM was built at the University
of Mannheim, Germany 3!'. The hardware consists of four
VME boards and implements ray-casting. VIRIM achieves
2.5 frames/sec for 256° volumes.

The first PCI based volume rendering accelerator has
been built by the University of Tiibingen, Germany. Their
VIZARD system implements true perspective ray-casting
and consists of two PCI accelerator cards 47. An FPGA-
based system achieves up to 10 frames/sec for 256° volumes.
To circumvent the lossy data compression and the limitations
of changes in classification or shading parameters due to the
pre-processing, a follow-up system is currently under devel-
opment 7>2!. This VIZARD II system will be capable of up
to 20 frames per second for datasets of 256 voxels. The
strength of this system is its ray traversal engine with an op-
timized memory interface that allows for fly throughs which
is mandatory for immersive applications. The system uses a

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

single ray processing pipeline (RPU) and exploits algorith-
mic optimizations such as early ray termination and space
leaping.

Within this section, we will describe VolumePro, the first
single-chip real-time volume rendering system for consumer
PCs #. The first VolumePro board was operational in April
1999 (see Figure 8).

Figure 8: The VolumePro PCI card.

The VolumePro system is based on the Cube-4 volume
rendering architecture developed at SUNY Stony Brook 84.
Mitsubishi Electric licensed the Cube-4 technology and de-
veloped the Enhanced Memory Cube-4 (EM-Cube) archi-
tecture 3. The VolumePro system, an improved commercial
version of EM-Cube, is commercially available since May
1999 at a price comparable to high-end PC graphics cards.
Figure 9 shows several images rendered on the VolumePro
hardware at 30 frames/sec.

6.2. Rendering Algorithm

VolumePro implements ray-casting >, one of the most com-
monly used volume rendering algorithms. Ray-casting offers
high image quality and is easy to parallelize. The current ver-
sion of VolumePro supports parallel projections of isotropic
and anisotropic rectilinear volumes with scalar voxels.

VolumePro is a highly parallel architecture based on the
hybrid ray-casting algorithm shown in Figure 10 124.91.52,
Rays are sent into the dataset from each pixel on a base

Volume

Dat /

Warp

Image Plane

VAN
VAN

ARARN
AN

LA

/ﬁel Slice

Base Plane

—

Figure 10: Template-based ray-casting.

plane, which is co-planar to the face of the volume data that
is most parallel and nearest to the image plane. Because the
image plane is typically at some angle to the base-plane, the
resulting base-plane image is warped onto the image plane.

(© The Eurographics Association 2000.

The main advantage of this algorithm is that voxels can be
read and processed in planes of voxels (so called slices) that
are parallel to the base-plane. Within a slice, voxels are read
from memory a scanline of voxels at a time, in top to bottom
order. This leads to regular, object-order data access.

In contrast to the shear-warp implementation by Lacroute
and Levoy 2, VolumePro performs tri-linear interpolation
and allows rays to start at sub-pixel locations. This prevents
view-dependent artifacts when switching base planes and ac-
commodates supersampling of the volume data.

6.3. VolumePro System Architecture

VolumePro is implemented as a PCI card for PC class
computers. The card contains one volume rendering ASIC
(called the vg500) and 128 or 256 MBytes of volume mem-
ory. The warping and display of the final image is done on an
off-the-shelf 3D graphics card with 2D texture mapping. The
vg500 volume rendering ASIC, shown in Figure 11, contains
four identical rendering pipelines, arranged side by side, run-
ning at 125 MHz each. It is an application specific integrated
circuit (ASIC) with approximately 3.2 million random logic
transistors and 2 Mbits of on-chip SRAM. The vg500 also
contains interfaces to voxel memory, pixel memory, and the
PCI bus.

e [l
SDRAM SDRAM SDRAM SDRAM
ASIC _ _ _ _
v v v ¥

v

E \ Voxel Memory Interface \ " | Interpolation |-,

= ,

g :

a Gradient »
H Estimation s
(] o
— ¥ =]
= Shading & %
= Classification | | 5
g0l =

Q

5

L@

\ Pixel Memory Interface |1~ | Compositing |-~

vy vy ry ry ~
e
SDRAM SDRAM SDRAM SDRAM

Figure 11: The vg500 volume rendering ASIC with four
identical ray-casting pipelines.

Each pipeline communicates with voxel and pixel mem-
ory and two neighboring pipelines. Pipelines on the far left
and right are connected to each other in a wrap-around fash-
ion (indicated by grey arrows in Figure 11). A main charac-
teristic of VolumePro is that each voxel is read from volume
memory exactly once per frame. Voxels and intermediate re-
sults are cached in so called slice buffers so that they become
available for calculations precisely when needed.

Each rendering pipeline implements ray-casting and sam-
ple values along rays are calculated using tri-linear interpo-
lation. A 3D gradient is computed using central differences
between tri-linear samples. The gradient is used in the shader
stage, which computes the sample intensity according to the

Meifiner et al./ Volume Rendering

Figure 9: Several volumes rendered on the VolumePro hardware at 30 frames per second.

Phong illumination model. Lookup tables in the classifica-
tion stage assign color and opacity to each sample point.
Finally, the illuminated samples are accumulated into base
plane pixels using front-to-back compositing.

Volume memory uses 16-bit wide synchronous DRAMs
(SDRAMs) for up to 256 MBytes of volume storage. 2 X
2 x 2 cells of neighboring voxels, so called miniblocks, are
stored linearly in volume memory. Miniblocks are read and
written in bursts of eight voxels using the fast burst mode
of SDRAMs. In addition, VolumePro uses a linear skew-
ing of miniblocks 4. Skewing guarantees that the rendering
pipelines always have access to four adjacent miniblocks in
any of the three slice orientations. A miniblock with position
[xyz] in the volume is assigned to the memory module k as
follows:

k:([%J+[%J+L§J)mod4. (10)

6.4. VolumePro PCI Card

The VolumePro board is a PCI Short Card with a 32-bit
66 MHz PCI interface (see Figure 8). The board contains
a single vg500 rendering ASIC, twenty 64 Mbit SDRAMs
with 16-bit datapaths, clock generation logic, and a voltage
converter to make it 3.3 volt or 5 volt compliant. Figure 12
shows a block diagram of the components on the board and
the busses connecting them.

Voxel Memory
ModuleO Modulel Module2 Module3

| ISDRAM | ISDRAM | ISDRAM | ISDRAM‘
[I [y A

1] 1]
V-Bus

Section Memory

ez

Pixel Memory

——»| SDRAM]

S-Bus

PCI-Bus

Figure 12: VolumePro PCI board diagram.

The vg500 ASIC interfaces directly to the system PCI-
Bus. Access to the vg500’s internal registers and to the off-
chip memories is accomplished through the 32-bit 66 MHz
PCI bus interface. The peak burst data rate of this interface is
264 MB/sec. Some of this bandwidth is consumed by image
upload, some of it by other PCI system traffic.

6.5. Supersampling

Supersampling 32 improves the quality of the rendered im-
age by sampling the volume data set at a higher frequency
than the voxel spacing. In the case of supersampling in the x
and y directions, this would result in more samples per beam
and more beams per slice, respectively. In the z direction, it
results in more sample slices per volume.

VolumePro supports supersampling in hardware only in
the z direction. Additional slices of samples are interpolated
between existing slices of voxels. The software automati-
cally corrects the opacity according to the viewing angle and
sample spacing by reloading the opacity table.

Figure 13 shows the CT scan of a foot (152 x 261 x 200)
rendered with no supersampling (left) and supersampling in
z by 3 (right). The artifacts in the left image stem from the
insufficient sampling rate to capture the high frequencies of
the foot surface. Notice the reduced artifacts in the super-
sampled image. VolumePro supports up to eight times su-
persampling.

Figure 13: No supersampling (left) and supersampling in z
(right).

6.6. Supervolumes and Subvolumes

Volumes of arbitrary dimensions can be stored in voxel
memory without padding. Because of limited on-chip

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

buffers, however, the VolumePro hardware can only render
volumes with a maximum of 256 voxels in each dimension
in one pass. In order to render a larger volume (called a
supervolume), software must first partition the volume into
smaller blocks. Each block is rendered independently, and
their resulting images are combined in software.

The VolumePro software automatically partitions super-
volumes, takes care of the data duplication between blocks,
and blends intermediate base planes into the final image.
Blocks are automatically swapped to and from host mem-
ory if a supervolume does not fit into the 128 MB of volume
memory on the VolumePro PCI card. There is no limit to the
size of a supervolume, although, of course, rendering time
increases due to the limited PCI download bandwidth.

Volumes with less than 256 voxels in each dimension are
called subvolumes. VolumePro’s memory controller allows
reading and writing single voxels, slices, or any rectangular
slab to and from Voxel Memory. Multiple subvolumes can
be pre-loaded into volume memory. Subvolumes can be up-
dated in-between frames. This allows dynamic and partial
updates of volume data to achieve 4D animation effects. It
also enables loading sections of a larger volume in pieces, al-
lowing the user to effectively pan through a volume. Subvol-
umes increase rendering speed to the point where the frame
rate is limited by the base plane pixel transfer and driver
overhead, which is currently at 30 frames/sec.

6.7. Cropping and Cut Planes

VolumePro provides two features for clipping the volume
data set called cropping and cut planes. These make it possi-
ble to visualize slices, cross-sections, or other portions of the
volume, thus providing the user an opportunity to see inside
in creative ways. Figure 14(a) shows an example of cropping
on the CT foot of the visible man. Figure 14(b) shows a cut
plane through the engine data.

(b)
Figure 14: (a) Cropping. (b) Cut plane.

6.8. VolumePro Performance

Each of the four SDRAM:s provides burst-mode access at up
to 125 MHz, for a sustained memory bandwidth of 4 x 125 x

(© The Eurographics Association 2000.

10% = 500 million 16-bit voxels per second. Each rendering
pipeline operates at 125 MHz and can accept a new voxel
from its SDRAM memory every cycle. 500 million tri-linear
samples per second is sufficient to render 256 volumes at
30 frames per second.

6.9. VLI - The Volume Library Interface

Figure 15 shows the software infrastructure of the Volume-
Pro system. The VLI API is a set of C++ classes that pro-

Figure 15: Software infrastructure of the VolumePro sys-
tem.

vide full access to the vg500 chip features. VLI does not
replace an existing graphics API. Rather, VLI works cooper-
atively with a 3D graphics library, such as OpenGL, to man-
age the rendering of volumes and displaying the results in a
3D scene. Higher level toolkits (such as vtk — The Visualiza-
tion Toolkit) and scene graphs on top of the VLI will likely
become the primary interface layer to applications. The VLI
classes can be grouped as follows:

e Volume data handling. VLIVolume manages voxel data
storage, voxel data format, and transformations of the vol-
ume data such as shearing, scaling, and positioning in
world space.

e Rendering elements. There are several VLI classes that
provide access to the VolumePro features, such as color
and opacity lookup tables, cameras, lights, cut planes,
clipping, and more.

e Rendering context. The VLI class VLIContext is a con-
tainer object for all attributes needed to render the volume.
It is used to specify the volume data set and all render-
ing parameters (such as classification, illumination, and
blending) for the current frame.

The VLI automatically computes reflectance maps based on
light placement, sets up a-correction based on viewing angle
and sample spacing, supports anisotropic and gantry-tilted
data sets by correcting the viewing and image warp matri-
ces, and manages supervolumes, supersampling, and partial
updates of volume data. In addition, there are VLI functions
that provide initialization, configuration, and termination for
the VolumePro hardware.

6.10. Summary

This section describes the algorithm, architecture, and fea-
tures of VolumePro, the world’s first single-chip real-time
volume rendering system. The rendering capabilities of Vol-
umePro — 500 million tri-linear, Phong illuminated, compos-
ited samples per second — sets a new standard for volume
rendering on consumer PCs. Its core features, such as on-
the-fly gradient estimation, per-sample Phong illumination
with arbitrary number of light sources, 4K RGBA classifi-
cation tables, a-blending with 12-bit precision, and gradient

Meifiner et al./ Volume Rendering

magnitude modulation, put it ahead of any other hardware
solution for volume rendering. Additional features, such as
supersampling, supervolumes, cropping and cut planes, en-
able the development of feature-rich, high-performance vol-
ume visualization applications.

Some important limitations of VolumePro are the restric-
tion to rectilinear scalar volumes, the lack of perspective
projections, and no support for intermixing of polygons and
volume data. Mixing of opaque polygons and volume data
can be achieved by first rendering geometry, transferring z
buffer values from the polygon card to the volume renderer,
and then rendering the volume starting from these z values.
Future versions of the system will support perspective pro-
jections and several voxel formats, including pre-classified
material volumes and RGBA volumes. The limitation to rec-
tilinear grids is more fundamental and hard to overcome.

7. 3D Texture Mapping

So far, we have seen different volume rendering tech-
niques and algorithmic optimizations that can be exploited
to achieve interactive frame-rates. Real-time frame-rates can
be accomplished by special purpose hardware such as pre-
sented in the previous section (VolumePro). Another avenue
that can be taken is based on 2D and 3D texture mapping
hardware which currently migrates into the commodity PC
graphics hardware and allows for mixing polygons and vol-
umes.

7.1. Introduction

With fast 3D graphics hardware becoming more and more
available even on low end platforms, the focus in developing
new algorithms is beginning to shift towards higher qual-
ity rendering and additional functionality instead of sim-
ply higher performance implementations of the traditional
graphics pipeline.

Graphics libraries like OpenGL and its extensions provide
access to advanced graphics operations in the geometry and
the rasterization stage and therefore allow for the design and
implementation of completely new classes of rendering al-
gorithms. Prominent examples can be found in realistic im-
age synthesis (shading, bump/environment mapping, reflec-
tions) and scientific visualization applications (volume ren-
dering, vector field visualization, data analysis).

In this respect, the goal of this session is twofold: To give
both a state-of-the-art overview of volume rendering algo-
rithms using the extended OpenGL graphics library and to
present a number of selected and advanced volume rendering
algorithms in which access to dedicated graphics hardware
is paramount. The first part of this section summarizes the
most important fundamentals and features of the graphics li-
brary OpenGL with respect to the practical and efficient de-
sign of volume rendering algorithms. The second part is ded-
icated to the efficient use of multi-texture register combiners

as available on low-cost PCs in volume rendering applica-
tions. In each of both parts hardware accelerated graphics
operations are used thus allowing interactive, high quality
rendering and analysis of large-scale volume data sets.

7.2. Advanced volume rendering techniques

OpenGL and its extensions provide access to advanced per-
pixel operations available in the rasterization stage and in
the frame buffer hardware of modern graphics workstations.
With these mechanisms, completely new rendering algo-
rithms can be designed and implemented in a very particular
way.

Over the past few years workstations with hardware sup-
port for the interactive rendering of complex 3D polygonal
scenes consisting of directly lit and shaded triangles have
become widely available. The last two generations of high-
end graphics workstations 7>, however, besides providing
impressive rates of geometry processing, also introduced
new functionality in the rasterization and frame buffer hard-
ware, like texture and environment mapping, fragment tests
and manipulation as well as auxiliary buffers. The ability
to exploit these features through OpenGL and its extensions
allows completely new classes of rendering algorithms to
be developed. Anticipating similar trends for the more ad-
vanced imaging functionality of todays high-end machines
graphics researchers are actively investigating possibilities
to accelerate expensive visualization algorithms by using
these extensions.

In this session we will summarize various approaches that
make extensive use of graphics hardware for the rendering of
volumetric data sets. In particular, the goal of this session is
to provide participants with dedicated knowledge concern-
ing the application of 3D textures in volume rendering ap-
plications and to demonstrate how to exploit the processing
power and functionality of the rasterization and texture sub-
system of advanced graphics hardware. Although at this time
hardware accelerated 3D texture mapping is only supported
on a few particular architectures we expect the same func-
tionality to be available on low-end architectures like PCs in
the near future thus leading to an increasing need for hard-
ware accelerated algorithms as will be presented. Nonethe-
less, we will also demonstrate how to efficiently exploit ex-
isting PC graphics hardware on which only 2D textures are
available in order to achieve high image quality at interactive
frame rates.

Hereafter we will first describe the basic concepts of vol-
ume rendering via 3D textures thereby focusing on the po-
tential benefits and advantages compared to software based
solutions. We will further outline extensions that enable
flexible and interactive editing and manipulation of large
scale volume data. We will introduce the concept of clip-
ping geometries by means of stencil buffer operations, and
we will review the use of 3D textures for the rendering of

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

lighted and shaded iso-surfaces in real-time without extract-
ing any polygonal representation. Additionally, we will de-
scribe novel approaches for the rendering of scalar volume
data using 2D textures and multi-texture register combiners
as available on Nvidia’s GeForce 256 PC graphics processor.
The intention here is to streamline general directions how to
bring high quality volume rendering to the consumer market
by exploiting dedicated but affordable graphics hardware.

Our major concern in this session is to outline techniques
for the efficient generation of a visual representation of
the information present in volumetric data sets. For scalar-
valued volume data two standard techniques, the rendering
of iso-surfaces, and the direct volume rendering, have been
developed to a high degree of sophistication. However, due
to the huge number of volume cells which have to be pro-
cessed and to the variety of different cell types only a few
approaches allow parameter modifications and navigation at
interactive rates for realistically sized data sets. To overcome
these limitations a basis for hardware accelerated interactive
visualization of both iso-surfaces and direct volume render-
ing has been provided in 1%,

Direct volume rendering tries to convey a visual impres-
sion of the complete 3D data set by taking into account the
emission and absorption effects as seen by an outside viewer.
The underlying theory of the physics of light transport is
simplified to the well known volume rendering integral when
scattering and frequency effects are neglected 414968, 112 A
few standard algorithms exist for computing the intensity
contribution along a ray of sight, enhanced by a wide vari-
ety of optimization strategies 57685320, 52 But only recently,
since hardware supported 3D texture mapping is available,
has direct volume rendering become interactively feasible
on graphics workstations % '8 115, This approach has been ex-
tended further on with respect to flexible editing options and
advanced mapping and rendering techniques.

The major goal is the manipulation and rendering of large-
scale volumetric data sets at interactive rates within one
application on standard graphics architectures. In this ses-
sion we focus on scalar-valued volumes and show how to
accelerate the rendering process by exploiting features of
advanced graphics hardware implementations through stan-
dard APIs like OpenGL. The presented approach is pixel ori-
ented, takes advantage of rasterization functionality such as
color interpolation, texture mapping, color manipulation in
the pixel transfer path, various fragment and stencil tests,
and blending operations. In this way it is possible to

o extend volume rendering via 3D textures with respect
to arbitrary clipping geometries

o render shaded iso-surfaces at interactive rates combin-
ing 3D textures and fragment operations thus avoiding
any polygonal representation

o extend volume rendering via 2D textures with respect
to view independent texture resampling and advanced
shading and lighting models

(© The Eurographics Association 2000.

7.3. Volume rendering via 3D textures

When 3D textures became available on graphics worksta-
tions their benefit in volume rendering applications was soon
recognized '39. The basic idea is to interpret the 3D scalar
voxel array as a 3D texture defined over [0,1]* and to un-
derstand 3D texture mapping as the trilinear interpolation of
the volume data set at an arbitrary point within this domain.
The data is re-sampled on clipping planes that are oriented
orthogonal to the viewing plane with the plane pixels trilin-
early interpolated from the 3D scalar texture. This operation
is successively performed for multiple planes that have to
be clipped against the parametric texture domain (see Fig-
ure 16). These polygons are rendered from front-to-back or
back-to-front and the resulting texture slices are blended ap-
propriately into the frame buffer thereby approximating the
continuous volume rendering integral.

Figure 16: Volume rendering by 3D texture slicing.

Dedicated graphics hardware is exploited for trilinearly
interpolating within the texture and for blending the gener-
ated fragments on a per-pixel basis. However, the real po-
tential of volume rendering via 3D textures just turned out
after texture lookup tables became available. Scalar sam-
ples that are reconstructed from the 3D texture are converted
into RGAa pixels by a lookup-up table prior to their draw-
ing. The possibility to directly manipulate the transfer func-
tions necessary to perform the mapping from scalar values
to RGBa values without the need for reloading the entire
texture allows the user to interactively find meaningful map-
pings of material values to visual quantities. In this way ar-
bitrary parts of the data can be highlighted or suppressed and
visualized using different colors and transparencies.

Nevertheless, besides interactive frame rates, in many
practical applications editing the data in a free and easy way
is of particular interest. Although texture lookup tables can
be modified in order to extract portions of the data, the use
of additional clipping geometries often allows separating the
relevant structures in a much more convenient and intuitive
way. Planar clipping planes available as core OpenGL mech-
anisms may be utilized, but from the user’s point of view
more complex geometries are necessary.

7.4. Clipping geometries and Stenciling

A straightforward approach which is implemented quite of-
ten is the use of multiple clipping planes to construct more

Meifiner et al./ Volume Rendering

complex geometries. However, notice that even the simple
task of clipping an arbitrarily scaled box cannot be realized
in this way. More flexibility and ease of manipulation can
be achieved by taking advantage of the per-pixel operations
provided in the rasterization stage. As will be outline, as long
as the object against which the volume is to be clipped is a
closed surface represented by a list of triangles it can be ef-
ficiently used as the clipping geometry.

The basic idea is to determine for all slicing planes those
pixels which are covered by the cross-section between the
object and this plane (see Figure 17). Then, these pixels are
locked, thus preventing the textured polygon from getting
drawn to these locations. The locking mechanism is imple-
mented by exploiting the OpenGL stencil test. It allows pixel
updates to be accepted or rejected based on the outcome of a
comparison between a user defined reference value and the
value of the corresponding entry in the stencil buffer. Before
the textured polygon gets rendered the stencil buffer has to
be initialized in such a way that all color values written to
pixels inside the cross-section will be rejected.

g . w‘[lf'”’d'

Figure 17: The use of arbitrary clipping geometries is
demonstrated for the case of a sphere. In regions where
the object intersects the actual slice the stencil buffer is
locked. The intuitive approach of rendering only the back
faces might result in the patterned erroneous region.

In order to determine for a certain plane whether a pixel
is covered by a cross-section or not the clipping object is
rendered in polygon mode. However, since one is only in-
terested in setting the stencil buffer none of the frame buffer
values altered. At first, an additional clipping plane is en-
abled which has the same orientation and position as the slic-
ing plane. All back faces with respect to the actual viewing
direction are drawn, and everything in front of the plane is
clipped. Wherever a pixel would have been drawn the sten-
cil buffer is set. Finally, by changing the stencil test appro-
priately, rendering the textured polygon, now, only affects
those pixels where the stencil buffer is unchanged.

In general, however, depending on the clipping geometry
this procedure fails in determining the cross-section exactly
(see rightmost image in Figure 17). Therefore, before the
textured polygon is rendered all stencil buffer entries which
are set improperly have to be updated. Notice that in front of
a back face which was written erroneously there is always
a front face due to the topology of the clipping object. The

front faces are thus rendered into those pixels where the sten-
cil buffer is set and the stencil buffer is cleared where a pixel
also passes the depth test. Now the stencil buffer is correctly
initialized and all further drawing operations are restricted to
those pixels where it is set or vice versa. Clearing the stencil
buffer each time a new slice is to be rendered can be avoided
by using different stencil planes. Then the number of slices
that can be processed without clearing the buffer depends on
the number of stencil bits provided by the current visual.

Since this approach is independent of the used geome-
try it allows arbitrary shapes to be specified. In particular it
turns out that transformations of the geometry can be han-
dled without any additional overhead, thus providing a flex-
ible tool for carving portions out of the data in an intuitive
way.

In Figure 18 two images are shown, which should demon-
strate the extended functionality of 3D texture based volume
rendering. In the first image a simple box was used to mask
the interior of a MRI-scan by means of the stencil buffer
approach. The second images was generated by explicitly
clipping the slicing planes against the box and by tesselating
the resulting contours. Note that only the region of interest
needs to be textured in this way.

(a) Box clipping with the
stencil buffer.

(b) Inverse box clipping
with OGL tesselation.

Figure 18: Box clipping using the stencil test (left) and the
OGL tesselation (right).

7.5. Rendering iso-surfaces via 3D textures

So far we described extensions to texture mapped direct vol-
ume rendering that have been introduced in order to define
a general hardware accelerated framework for adaptive ex-
ploration of volumetric data sets. In practice, however, the
display of shaded iso-surfaces has been shown as one of the
most dominant visualization options, which is particularly
useful to enhance the spatial relationship between structures.
Moreover, this kind of representation often meets the physi-
cal characteristics of the real object in a more natural way.

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

Different algorithms have been proposed for efficiently re-
constructing polygonal representations of iso-surfaces from
scalar volume data 37492111 'but none of these approaches
can effectively be used in interactive applications. This is
due to the effort that has to be made to fit the surface and
also to the enormous amount of triangles produced. For re-
alistically sized data sets interactively manipulating the iso-
value seems to be quite impossible, and also rendering the
surface at acceptable frame rates can hardly be achieved. In
contrast to these polygonal approaches, in ' an algorithm
was designed that completely avoids any polygonal repre-
sentation by combining 3D texture mapping and advanced
pixel transfer operations in a way that allows the iso-surface
to be rendered on a per-pixel basis.

Recently, first approaches for combining hardware accel-
erated volume rendering via 3D texture maps with lighting
and shading were presented. In 192 the sum of pre-computed
ambient and reflected light components is stored in the tex-
ture volume and standard 3D texture composition is per-
formed. On the contrary, in 3 the orientation of voxel gra-
dients is stored together with the volume density as the 3D
texture map. Lighting is achieved by indexing into an ap-
propriately replicated color table. The inherent drawbacks to
these techniques is the need for reloading the texture mem-
ory each time any of the lighting parameters change (includ-
ing changes in the orientation of the object) 192, and the diffi-
culty to achieve smoothly shaded surfaces due to the limited
quantization of the normal orientation and the intrinsic hard-
ware interpolation problems 3.

Basically, the non-polygonal 3D texture based approach
is similar to the one used in traditional volume ray-casting
for the display of shaded iso-surfaces. Let us consider that
the surface is hit if the material values along the ray of sight
do exceed the iso-value for the first time. At this location
the material gradient is computed, which is then used in the
lighting calculations.

By recognizing that texture interpolation is already ex-
ploited to re-sample the data, all that needs to be evaluated
is how to capture those texture samples above the iso-value
that are nearest to the image plane. Therefore the OpenGL
alpha test can be employed, which is used to reject pixels
based on the outcome of a comparison between their alpha
component and a reference value.

Each element of the 3D texture gets assigned the material
value as its alpha component. Then, texture mapped volume
rendering is performed as usual, but pixel values are only
drawn if they pass the depth test and if the alpha value is
larger than or equal to the selected iso-value. In any of the
affected pixels in the frame buffer, now, the color present at
the first surface point is being displayed.

In order to obtain the shaded iso-surface from the pixel
values already drawn into the frame buffer two different ap-
proaches should be outlined:

(© The Eurographics Association 2000.

e Gradient shading: A four component 3D texture is
stored which holds in each element the material gradi-
ent as well as the material value. Shading is performed in
image space by means of matrix multiplication using an
appropriately initialized color matrix.

e Gradientless shading: Shading is simulated by simple
frame buffer arithmetic computing forward differences
with respect to the light source direction. Pixel texturing
is exploited to encompass multiple rendering passes.

Both approaches account for diffuse shading with respect
to a parallel light source positioned at infinity. Then the dif-
fuse term reduces to the scalar product between the surface
normal, N, and the direction of the light source, L, scaled by
the material diffuse reflectivity, k.

The texture elements in gradient shading each consist of
an RGBa quadruple which holds the gradient components in
the color channels and the material value in the alpha chan-
nel. Before the texture is stored and internally clamped to
the range [0,1] the gradient components are being scaled and
translated by a factor of 0.5.

By slicing the texture thereby exploiting the alpha test as
described the transformed gradients at the surface points are
finally displayed in the RGB frame buffer components (see
left image in Figure 19). For the surface shading to proceed
properly, pixel values have to be scaled and translated back
to the range [-1,1]. In order to account for changes in the
orientation of the object the normal vectors have to be trans-
formed by the model rotation matrix. Finally, the diffuse
shading term is calculated by computing the scalar product
between the light source direction and the transformed nor-
mals.

Figure 19: On the left, for an iso-surface the gradient com-
ponents are displayed in the RGB pixel values. On the right,
for the same iso-surface the coordinates in texture space are
displayed in the RGB components.

All three transformations can be applied simultaneously
using one 4x4 matrix. It is stored in the currently se-
lected color matrix which post-multiplies each of the four-
component pixel values if pixel data is copied within the
active frame buffer. For the color matrix to accomplish the

Meifiner et al./ Volume Rendering

transformations it has to be initialized as follows:

Ly Ly L; 0 2.0 0 —1I
|k Ly L O 02 0 -1
CM_LxLyLZOM'”tOOZ—l
0 0 0 1 00 0 1

By just copying the frame buffer contents onto itself each
pixel gets multiplied by the color matrix. In addition, it is
scaled and biased in order to account for the material diffuse
reflectivity and the ambient term. The resulting pixel values
are

1, kg R ka{L,Nror) +Ia

Iy kg G kg{L,Nrot) + I
CM =

AR B| ™ |ky{L,Nrot) + 1

0 1 o o

where obviously different ambient terms and reflectivities
can be specified for each color component.

Figure 20 illustrates the quality of the described render-
ing technique for shaded iso-surfaces. The surface on the left
image was rendered in roughly 9 seconds using a software
based ray-caster. 3D texture based gradient shading was run
with about 6 frames per second on the next image. The dis-
tance between successive slices was chosen to be equal to
the sampling intervals used in the software approach. The
surface on the right appears somewhat brighter with a little
less contrast due to the limited frame buffer precision, but
basically there can hardly be seen any differences.

Figure 20: Iso-surface rendering by direct ray-casting (left)
and by using a gradient texture (right).

To circumvent the additional amount of memory that is
needed to store the gradient texture a second technique can
be employed which applies concepts borrowed from 82 but
in an essentially different scenario. The diffuse shading term
can be simulated by simple frame buffer arithmetic if the
surface is assumed to be locally orthogonal to the surface
normal and the normal as well as the light source direction
are orthonormal vectors.

Notice that the diffuse shading term is then proportional
to the directional derivative towards the light source. Thus,

it can be simulated by taking forward differences toward the
light source with respect to the material values:
X - - 7
Ii = — =X(Po) —X(Po+ A-L)
aL
By rendering the scalar material values twice, once those
that correspond to the original surface points and then those
that correspond to the surface points shifted towards the light
source, OpenGL blending operations can be exploited to
compute the forward differences.

In order to obtain the coordinates of the surface points it
is taken advantage of the alpha test as proposed and pixel
textures are applied to re-sample the material values. There-
fore it is important to know that each vertex comes with a
texture coordinate as well as a color value. Usually the color
values provide a base color and opacity in order to modulate
the interpolated texture samples.

By considering that to each vertex the computed texture
coordinate (u,v,w) is assigned as RGB color value. Tex-
ture coordinates are supposed to be within the range [0,1]
since they are computed in parametric texture space. More-
over, the color values interpolated during rasterization corre-
spond to the texture space coordinates of points on the slic-
ing plane. As a consequence we now have the position of
surface points available in the frame buffer rather than the
material gradients.

In order to display the correct color values they must
not be modulated by the texture samples. However, remem-
ber that in gradientless shading the same texture format is
used as in traditional texture slicing. Each element comprises
a single-valued color entry which is mapped via a RGBa
lookup table. This allows one to temporarily set all RGB val-
ues in the lookup table to one thus avoiding any modulation
of color values.

At this point, the real strength of pixel textures can be
exploited. The RGB entries of the texture lookup table are
reset in order to produce the original scalar values. Then, the
pixel data is read into main memory and it is drawn twice
into the frame buffer with enabled pixel texture. In the sec-
ond pass pixel values are shifted towards the light source by
means of the OpenGL pixel bias. By changing the blending
equation appropriately all values get subtracted from those
already in the frame buffer thus yielding the approximated
diffuse lighting.

In Figure 21 illustrates the difference between gradient
shading and gradientless shading. Obviously, surfaces ren-
dered by the latter one exhibit low contrast and even incor-
rect results are produced especially in regions where the vari-
ation of the gradient magnitude across the surface is high.
Although the material distribution in the example data is al-
most iso-metric, at some points the differences can be eas-
ily recognized. At these surface points the step size used to
compute the forward difference has to be increased, which,
of course, can not be realized by the presented approach.

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

However, only one fourth of the memory needed in gradi-
ent shading is used in gradientless shading but the rendering
times, on the other hand, only differ insignificantly. The only
difference lies in the way the shading is finally computed. In
gradient shading the whole frame buffer is copied once. In
gradientless shading the pixel data has to be read and written
twice with enabled pixel texturing. On the other hand, since
the overhead does not depend on the data resolution but on
the size of the viewport, its relative contribution to the over-
all rendering time can be expected to decrease rapidly with
increasing data size.

N N

Figure 21: Comparison of iso-surface rendering using a
gradient texture (left) and frame buffer arithmetic (right).

7.6. Volume rendering via 2D textures using register
combiners

In order to exploit 2D textures for volume rendering, the vol-
ume data set is represented by three object-aligned texture
stacks. The stack to be used for rendering has to be chosen
according to the view direction in order to avoid degenerated
projected polygons (see Figure 22). For a particular stack,
the textured polygons are rendered in back-to-front order,
and the generated fragments are composited with the pix-
els already in the frame buffer by a-blending. Due to vary-
ing view direction the distance between consecutive sample
points that are blend into a certain pixel varies accordingly.
Consequently, the opacity of slices should be adapted with
respect to this distance in order to account for the thickness
these samples represent. In addition, only bilinear interpo-
lation within the original slices is performed thus leading
to visually less pleasant results. Both drawbacks, however,
can be avoided quite efficiently using multi-texture register
combiners as available in the Nvidia GeForce 256 graphics
processor.

Multi-texturing is an optional extension available in
OpenGL 1.2, which allows one polygon to be texture
mapped using color and opacity information from multiple
textures. OpenGL 1.2 specifies multi-texturing as a sequence
of stages, in which the result of one stage can be combined
with the result of the previous one.

Unfortunately, in general this concept turns out to be
too static for many desired applications. Therefore, recent

(© The Eurographics Association 2000.

PC graphics boards support multi-stage rasterization in or-
der to explicitly control how color-, opacity- and texture-
components are combined to form the resulting fragment.
By means of this extension rather complex calculations can
be performed in a single rendering pass.

Although multiple rasterization stages are supported by
PC graphics boards from different vendors, until now these
features are optional extensions to the OpenGL standard
and thus hardware-dependent. Since every manufacturer
of graphics hardware defines its own extensions, we will
restrict our description to graphics boards with NVidia’s
GeForce 256 processor. In this respect we strictly focus on
the work of 8%, where most of the ideas that will be presented
hereafter have been introduced.

As an OpenGL extension that enables one to gain explicit
control over per-fragment information, NVidia has provided
the NV_register_combiners % which completely by-
passs the standard OpenGL texturing units (see Fig. 23). It
consists of two flexible general rasterization stages and one
final combiner stage. The general combiner stage is divided
into an RGB-portion and a separate Alpha-portion as dis-
played in Figure 24.

A number of input registers can be programmed and com-
bined with each other quite flexibly (see Fig. 24). The output
registers of the first combiner stage are then used as the in-
put registers for the next stage. Fixed point color components
that are usually clamped to a range of [0, 1] can internally be
expanded to a signed range of [—1,1]. Vector components,
for example, can be handled in this way, which significantly
simplifies the computation of local diffuse illumination for
the methods described below.

The output registers of the second general stage are di-
rected into a final combiner stage with restricted function-
ality. Once multi-stage rasterization is performed in the de-
scribed way the standard OpenGL per-fragment operations

Point
Rasterization
i
bl ine v
Primitive P
Assembly Rasterization Texture

Texture
Fetching

7]
g Environment Register &
4+ | Application Combiners E
Polygon [+
5 Sy
g Texture Unit 1 g‘ﬁ
Pixel Rect n [T
Draw Rasterization Final stage | [3% X
Pixels N we
~ | Color Sum T To
o (_5| PFragment
" itmap rocessing
Bitmap S
o Coverage
,m_.l orage |y
8‘ | Fog I‘ Application

Figure 23: Since the multi-texture model of OpenGL 1.2
turns out to be too limiting, NVidia’s GeForce 256 proces-
sor provides multi-stage register combiners that completely
bypass the standard texturing unit.

Meifiner et al./ Volume Rendering

Viewport-Aligned Slices

Object-Aligned Slices

Figure 22: Viewport-aligned slices (left) in comparison to object aligned slices (right) for a spinning volume object.

input registers output registers
RGB A RGB A
primary color — primary color
secondary color secondary color
texture 0 L] textre0
texture 1 AB+CD texture 1
-or-
spare 0 ABmuxCD spare 0
spare 1 spare 1
AB scale
o9 uﬂ*** —or- and 9
constant color 0 AeB bias 1 constant color 0
constant color 1 constant color 1
co
zero —or- zer0
- cep
ot readable

computations

Figure 24: The RGB-portion of the general combiner stage
supports arbitrary register mappings and complex computa-
tion like dot products and component-wise weighted sum.

input registers m
map
RGB A
E F

| EF
|

primary color

secondary color

texture 0

‘ t! spare 0+
texture 1 y color
spare 0
input | | input | | input | | input input
spare 1 map || map || map || map map
fog

A B C D G

fragment RGB out
AB + (1-A)C 4D |—>g
zero fragment Alpha out

computations

constant color 0

constant color 1

Figure 25: The final combiner stage is used to compute the
resulting fragment output for RGB and Alpha.

are performed. We should note here, that in contrast to the
SGI texture color tables the GeForce architecture supports
paletted textures that allow for interpolation of pre-shaded
texture values.

7.7. Multi-Texture Interpolation

In order to achieve view independent distances between
sample points intermediate slices are trilinearly interpolated
on the fly from the original slices. The missing third inter-
polation step is performed within the rasterization hardware
using multi-textures, as outlined in Figure 26).

Any intermediate slice S;1 can be obtained by blending
between adjacent slices S; and S;4 from the original stack:

S,‘+q:(l—(l)-S,'+OL-Si+]. (11)

With each slice image stored in a separate 2D-texture, the fi-
nal interpolation between bilinearly interpolated samples is
computed by blending the results. As displayed in Figure 26,
blending is computed by a single general combiner stage,
where the original slices S; and S;; are specified as multi-
textures texture 0 and texture 1. The combiner is
setup to compute a component-wise weighted sum AB+CD
with the interpolation factor a stored in one of the constant
color registers. The contents of this register is mapped to in-
put variable A, and at the same time it is inverted and mapped
to variable C. In the RGB-portion, variables B and C are as-
signed the RGB components of texture 0 and texture
1 respectively. Analogously, the Alpha-portion interpolates
between the alpha-components. Now, the output of this first
combiner stage is combined in with the pixel values already
in the frame buffer using a-blending.

All that remains to be done is to choose the location of
intermediate slices depending on the actual view direction
in order to guarantee dquidistant sample distances. Thus, we
completely avoid adapting the opacity for every view by se-
lecting the number of slices to be reconstructed appropri-
ately.

7.8. Shaded iso-surfaces

As mentioned in the first part of this section, in '% an ef-
ficient algorithm was introduced that exploits rasterization
hardware to display shaded iso-surfaces using a 3D gradi-
ent map. Using multi-stage rasterization, this method can be
efficiently adapted to the GeForce graphics processor. The
voxel gradient is computed as before and written into the
RGB components of a set of 2D-textures that represent the
volume. Analogously, the material is coded in the alpha-
component. The register combiner are then programmed as
illustrated in Fig. 27. The first general combiner stage is ap-
plied as described in Section 7.7 to interpolate intermediate
slices. The second general combiner now computes the dot
product A e B between , where variable A is mapped to the
RGB output of the first combiner stage (the interpolated gra-
dient 7)) and variable B is mapped to the second constant

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

: : general final :
input registers combiner 0 combiner output register
slice i > A il roopaen RGE A
color
B |4
slice (i +1) ¢ AB+CD
CH .
interpolation >’—'—‘ INVERT nterporated
tactor o, I Lconst collor 1] fLmvenr] | D H| MePmes

RGB A

D
‘B
i Bl

Figure 26: Combiner setup for interpolation of intermediate slices.

input registers general general final .
RGB A combiner 0 combiner 1 combiner output register
slice i (RGB and Alpha portion) (RGB portion only)
gradient I texture O I
intensity | torture 0. | Apha portion [G]
irrtensity
slice (i +1) I
gradient — ' texture 1 I 1 AB+CD '
i i RGB 5
intensity - e boiatad . dot
1 normal product
ertton f[ooty] wee ||
N Al
directior [const color 2]
color of : (1-A)C '
diffuse light | Primary color] CH +p
RGB A
color of D H
ambiagtog A sesond coor |

Figure 27: Combiner setup for fast rendering of shaded isosurfaces

color register, that contains the light vector I. The alpha-
component is not modified by the second combiner stage.
Note that the general combiner stages support signed fixed
point values, so there is no need to scale and bias the vector
components to positive range.

Since the final combiner is capable of computing AB +
(1 —A)C + D, when storing the color of diffuse and ambi-
ent light in the registers for primary and secondary color,
the final combiner can be used for compositing all involved
terms. Therefore variable A is assigned to primary color (1)
and is multiplied with variable B which is mapped to the dot
product, computed by the RGB-portion of the second gen-
eral combiner. Variable C is set to zero and variable D is
mapped to secondary color (/).

Note that this particular implementation is a single-pass
rendering technique, since all computations are performed
in the register combiners before fragments are going to be
combined. In this way, the copy operation in order to mul-
tiply pixel values with the properly initialized color matrix
can be avoided.

Moreover, by using the same combiner setup multiple
transparent iso-surfaces can be displayed. Therefore, the a-
lookup-table is set up in such a way, that the material ranges
to be displayed are represented by a-values larger than zero.
For all other materials the alpha value is set to zero. Now,

(© The Eurographics Association 2000.

the alpha test discards everything equal to zero, the depth
test is disabled and a-blending is performed. Rendering the
slices in back-to-front order yields the semi-transparent iso-
surfaces correctly accumulated with respect to the selected
attenuation.

8. Unstructured Volume Rendering

Figure 28 shows four types of volume datasets: regular, recti-
linear, curvilinear, and unstructured. Interactive volume ren-
dering has always been a challenging problem. So far, we
have seen how a combination of algorithm developments
and hardware advances can created interactive rendering so-
lutions for regular rectilinear datasets, see previous sections
and 7. These solutions provide changing viewpoints with
interactivity 1-30 frames/second. In this portion of the tuto-
rial, we focus on unstructured data. Such datasets are com-
puted in computational fluid dynamics and finite element
analysis.

8.1. Introduction

Providing interactivity requires applying optimally tuned
graphics hardware and software to accelerate the features of
interest. Many researchers in the past *> have commented
that creation of special purpose hardware would solve the

Meifiner et al./ Volume Rendering

arbitrary height locations
fixed grid spacings
dx.dy.dz

e

Regular Rectilinear Rectilinear

Structured

world space of grid warped

GFE

Curvilinear Tetrahedral

fluid flow finite element simulation

Unstructured

Figure 28: Example grid types.

slowness of handling unstructured grids. And, general pur-
pose hardware is not adequate, because the operations per
second requirement is simply too high. Within the last year
special purpose graphics hardware is now fast enough to
make the existing algorithms interactive — if only the proper
optimizations are made. Current graphics hardware is inter-
active, using our optimizations, for moderate sized datasets
of thousands to millions of cells. Special purpose volume
hardware or reprogrammable graphics hardware are addi-
tional ways to further accelerate unstructured volume ren-
dering algorithms.

In order to achieve the highest possible performance for
interactive rendering of unstructured data, many software
optimizations are necessary. In this section of the tutorial,
we explore software optimizations using OpenGL triangle
fans, customized quicksort, memory organization for cache
efficiency, display lists, tetrahedral culling, and multithread-
ing. The optimizations can vastly improve the performance
of projected tetrahedra rendering to provide interactive ren-
dering on datasets of hundreds of thousands of tetrahedra.
These results are an order of magnitude faster than the best in
the literature for unstructured volume rendering 26 191, The
sorting is also an order of magnitude faster than the fastest
sorting timing reported for Williams MPVONC 7.

Momentum for unstructured rendering, cellular based ren-
dering, and ray tracing of irregular grids was created at the
Volume Visualization Symposium 67-93.25. Peter Williams
developed extensions to Shirley et al. *3 tetrahedral renderer,
and provided simplified cell representations to give greater
interactivity !13. Ray tracing has been used for rendering of
irregular data as well 2. Most recently there has been work
on multiresolutional irregular volume representations '! dis-

tributed volume rendering algorithms on massively paral-
lel computers %, And, optimization using texture mapping
hardware 126, Software scan conversion implementations are
also being researched 1.

The rendering of unstructured grids can be done by sup-
porting cell primitives, at a minimum tetrahedra, which
when drawn in the appropriate order, can be accumulated
into the frame buffer for volume visualization. There is a
disadvantage of using only tetrahedral cells to support the
hexahedral and other cells, mainly a 5x explosion in data as
a hexahedral cube requires 5 tetrahedra at a minimum to be
represented, and the tiling of adjacent cells when subdivid-
ing may cause problems in matching edges including crack-
ing, where a small crack may appear between hexahedral
cells that have been subdivided into tetrahedra 3.

For proper compositing either the cells viewpoint ordering
can be determined from the grid or a depth sorting is per-
formed. For regular grids the viewpoint ordering is straight-
forward. For unstructured data, the viewpoint ordering must
be determined for each viewpoint by comparing the depth
of cells. Schemes that use cell adjacency data structures can
help to reduce the run time complexity of the sort 1493,

The basic approach to compute cell’s contributions is
three dimensional scan conversion. Several variants were in-
vestigated in Wilhelms and Van Gelder '%°. The first vari-
ant is averaging opacity and color of front and back faces
then using a nonlinear approximation to the exponent. The
second variant is averaging opacity and color of front and
back faces, then exactly computing the exponential. And, the
third variant is, using numerical linear integration of color
and opacity between front and back faces, and exactly com-

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

puting the exponentials. Gouraud shading hardware is used
by interpolating colors and opacities across faces which is
possible if the exponential approximation is evaluated at the
vertices %3.

8.2. Projected Tetrahedra

This tutorial shows how to make unstructured rendering as
interactive as possible on available hardware platforms. The
projected tetrahedra algorithm of Shirley and Tuchman 3
uses the geometry acceleration and rasterization of poly-
gon rendering to maximum advantage. The majority of the
work, the scan conversion and compositing, are accelerated
by existing graphics hardware. In earlier work, we inves-
tigated hardware acceleration with parallel compositing on
PixelFlow 6. OpenGL hardware acceleration is now widely
available in desktop systems, and using the earlier imple-
mentation as a starting point we investigated further opti-
mizations to improve desktop rendering performance. Figure
29 provides pseudo-code of Shirley and Tuchman’s % pro-
jected tetrahedra algorithm, where tetrahedra are projected
at the screen plane, and subdivided into triangles. Figure 31
shows the four classes of projections that result in one to four
triangles.

I. Preprocess dataset
for a new viewpoint:
ITI. Visibility sort cells
for every cell (sorted back-to-front)
III. Test plane equations to determine
class (1,2,3,4)
IV. Project and split cell unique
frontback faces
V. Compute color and opacity for thick
vertex
VI. (H) Scanconvert new triangles

Figure 29: Projected tetrahedra pseudo-code

Preprocessing is necessary to calculate colors and opac-
ities from input data, setup for visibility sorting of primi-
tives, and creation of plane equations used for determining
the class a tetrahedra belongs to for a viewpoint. Cells are
visibility sorted (step II) for proper compositing for each
viewpoint 4. Figure 31 shows that new vertices are intro-
duced during steps III and IV. The new vertex requires a
color and opacity to be calculated in step V. Then the tri-
angles are drawn and scan converted in step VI. Figure 30
shows the output of our renderer for the Phoenix, NASA
Langley Fighter, and F117 datasets.

8.3. Acceleration Techniques
8.3.1. Triangle strips.
Triangle strips can greatly improve the efficiency of an ap-

plication since they are a more compact way of describing,

(© The Eurographics Association 2000.

storing, and transferring a set of neighbouring triangles. Cre-
ating triangle strips from triangular meshes of data can be
done through greedy algorithms. But, in projected tetrahe-
dra, the split cases illustrated in Figure 31 can directly create
triangle fans. Each new vertex given with g/ Vertex specifies a
new triangle, instead of redundantly passing vertices. Figure
31 gives triangle strips for the four classes of projections.

4 versus 9
Class 1: vertices
oD 5 versus 12
Class 2: vertices
4 versus 6
Class 3: vertices

Class 4: i same

Figure 31: Number of vertices for fan versus triangles.

In experiments on the NASA Langley fighter dataset, with
70,125 tetrahedra, there are an average of 3.4 triangles per
tetrahedra (a sum of the percentage of Class 1-60% 3 trian-
gles, 2-40% 4 triangles, 3, and 4). Fewer vertices are trans-
mitted for the same geometry and many fewer procedure
calls are made to OpenGL. For 7 tetrahedra there are 10.8n
procedure calls with fans versus 20.4n procedure calls with-
out fans, a factor of 2 reduction. Williams also investigated
triangle stripping using Iris-GL.

8.3.2. Display Lists For Static Geometry.

Display lists allow the graphics drivers to optimize vertices,
colors, and triangle strips for the hardware. I converted all
static geometry into display lists. Figure 32 shows exam-
ples of vertices, surfaces, and a background mesh. The pri-
mary impact of these changes is to eliminate any slowdown
when these auxiliary data are also rendered. Unfortunately,
the projected tetrahedra recomputes the thick vertex for ev-
ery new viewpoint so that the volume data cannot be placed
in display lists. Also, because the thick vertex is recalculated
for each new view, vertex arrays cannot be used.

8.3.3. Visibility Sorting— Customized Quicksort.

Visibility sorting of cells is done through Cignoni et al. and
Karasick et al.’s 1242 technique of sorting the tangential dis-
tances to circumscribing spheres. We have compared a cus-

Meifiner et al./ Volume Rendering

Figure 30: Unstructured volume rendering of Phoenix (left), NASA Langley Fighter (middle), and F117 (right).

Figure 32: Points (left) surfaces (middle) and mesh (right)
stored in display lists.

tom coded quicksort to the C library utility gsorz#() an im-
provement of 75% to 89%. A generic sorting routine cannot
as efficiently handle the data structures that are to be sorted.
Two values, the tangential squared distance (float) and the
tetrahedral index are moved.

8.3.4. Taking advantage of view coherence.

The proper choice of pivots gives an efficient sorting of
sorted and nearly sorted lists. We previously resorted the
same input for each view. But, using the sorted values from
the previous view speeds up the sorting. The program was
also modified to use smaller viewpoint changes, and run
times were improved by an additional 18%. Both sorts are
much faster on sorted data. This property is exploited for
view coherence. The rate for the custom quicksort varies be-
tween 600,000 to 2 million cells per second depending on
how sorted the list is. For comparison, recently reported re-
sults for MPVONC !4 are from 185,000 to 266,000 cells
per second 7. In our earlier work, we showed that quick-
sort achieved 109,570 cells/second on a PA RISC 7200 (120
MHz) 16, without the the view coherence and data structure
optimizations discussed here.

8.3.5. Cache coherency.

Because the tetrahedral data structures are randomly ac-
cessed, a high percentage of time is spent in the first fetch of
each tetrahedra’s data. Tetrahedra are accessed by their view

and not memory storage order. Reordering the tetrahedra
when performing the view sort eliminated cache stalls when
rendering data, but the sorting routine was slowed down by
moving more data. There was an overall slowdown, so future
work is needed to find effective caching strategies.

8.3.6. Culling.

Tetrahedra whose opacity are zero are removed from sorting
and rendering. This is classification dependent, but yields
20% and 36% reduction in tetrahedra for the Langley Fighter
and F117 datasets. The runtime decreases accordingly.

8.3.7. Multithreading.

Many desktop systems now have two CPU’s. We multi-
threaded the renderer on Windows NT to explore additional
speedup available. Profiling of the code showed that spare
CPU cycles were available, and that the graphics perfor-
mance was not yet saturated. Two threads for the compute in-
tensive floating point work of testing and splitting cells, were
used, and the sorting and OpenGL calls were separated into
separate threads. The sorting was done for the next frame,
for a pipeline parallelism. The partitioning for the cell sort-
ing and splitting was done on a screen based partition using
the centroid of the visible or nonculled tetrahedra. Such a
dynamic partitioning provided a fast decision, yet gave good
load balancing in most cases. The multithreading provided
an additional 14% to 25% speedup.

8.4. Summary

Unstructured volume rendering is now truly interactive due
to a combination of advances in software algorithms for sort-
ing of cells in depth and graphics hardware improvements.
To implement an interactive unstructured renderer requires
understanding how to exploit the special purpose graphics
hardware, and the CPU’s available in today’s desktop ma-
chines. We have shown the key elements needed to opti-
mize a renderer including use of triangle fans for reduc-
ing the bandwidth bottleneck, culling of unseen data, mul-

(© The Eurographics Association 2000.

Meifsner et al./ Volume Rendering

tithreading for lowly parallelism, and making OpenGL state
changes as infrequently as possible. Display lists are possi-
ble only for the nonvolume data, because of the nature of
the projected tetrahedra, requires recomputing different tri-
angles from the tetrahedra for every new viewpoint. We did
show that placing surfaces, points, and auxilliary visualiza-
tion planes in display lists literally adds these capabilities
for free. For rendering performance results, please see our
papers 116117 118 The next step in reaching even higher visu-
alization rates over what commodity graphics hardware and
desktop systems provide will be to add important extensions
and capabilities to the hardware to directly support volume
primitives.

9. Acknowledgments

Data sets are thankfully acknowledged: for the skull
Siemens, Germany; for the blood vessels Philips Research,
Hamburg; for the NASA Langley Fighter, Neely and Batina;
for the Super Phoenix Nuclear reactor, Bruno Nitrosso, Elec-
tricite de France; for the F117, Robert Haimes, MIT;

We also would like to thank Bruce Culbertson, Tom
Malzbender, Greg Slabaugh, Jian Huang, Klaus Mueller,
Roger Crawfis, Dirk Bartz, Dean Brederson, Claudio Silva,
Vivek Verma, and Peter Williams for help in getting images,
data, and classifications.

References

1. K. Akeley. RealityEngine graphics. In Computer
Graphics, Proceedings of SIGGRAPH 93, pages 109—
116, August 1993.

2. R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister,
C. Silva, L. Sobierajski, and S. Wang. VolVis: A di-
versified system for volume visualization research and
development. In Proceedings of Visualization 94, pages
31-38, Washington, DC, October 1994.

3. R. Avila, L. Sobierajski, and A. Kaufman. Towards a
comprehensive volume visualization system. In Pro-
ceedings of Visualization 92, pages 13-20, Boston,
MA, October 1992.

4. R. Bakalash and A. Kaufman. 3D visualization
of biomedical data. In Proc. 6th Annual Interna-
tional Electronic Imaging Conference, pages 1034—
1036, Boston, MA, October 1989.

5. D. Bartz and M. Meifner. Voxels versus Polygons: A
Comparative Approach for Volume Graphics. Proc. of
1st Workshop on Volume Graphics, March 1999.

6. M. Bentum. Frequency analysis of gradient estimators
in volume rendering. IEEFE Transactions of Visualiza-
tion and Computer Graphics, 2(3):242-254,1996.

7. L. Bergman, H. Fuchs, E. Grant, and S. Spach. Im-
age rendering by adaptive refinement. In Computer

(© The Eurographics Association 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Graphics, pages 29-37. Proceedings of SIGGRAPH
86, November 1986.

J. F. Blinn. Light refelction functions for simulation
of clouds and dusty surfaces. Computer Graphics,
16(3):21-29, July 1982.

B. Cabral, N. Cam, and J. Foran. Accelerated volume
rendering and tomographic reconstruction using tex-
ture mapping hardware. In /1994 Workshop on Volume
Visualization, pages 91-98, Washington, DC, October
1994.

I. Carlbom. Optimal filter design for volume recon-
struction. In Proc. of IEEE Visualization, San José, CA,
USA, October 1993. IEEE Computer Society Press.

P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and
R. Scopigno. Multiresolution modeling and visualiza-
tion of volume data based on simplicial complexes. In
Proceedings of the Symposium on Volume Visualiza-
tion, pages 19-26, 1994.

Paolo Cignoni, Claudio Montani, D. Sarti, and Roberto
Scopigno. On the optimization of projective volume
rendering. In R. Scaneni, J. van Wijk, and P. Zanarini,
editors, Proceedings of the Eurographics Workshop, Vi-
sualization in Scientific Computing’95, pages 59-71,
Chia, Italy, May 1995.

H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Craw-
ford, and B. C. Teeter. Two algorithms for the three-
dimensional reconstruction of tomograms. Medical
Physics, 15(3):320-327, May 1988.

D. Cohen. 3D scan conversion of geometric objects.
Doctoral Dissertation, Department of Computer Sci-
ence, SUNY at Stony Brook, December 1991.

D. Cohen and A. Kaufman. Scan conversion algorithms
for linear and quadratic objects. In A. Kaufman, editor,
Volume Visualization, pages 280-301. IEEE Computer
Society Press, Los Alamitos, CA, 1990.

D. Cohen and Z. Shefer. Proximity clouds - an acceler-
ation technique for 3D grid traversal. Technical Report
FC 93-01, Department of Mathematics and Computer
Science, Ben Gurion University of the Negev, February
1993.

J. Comba, J. T. Klosowski, N. Max, J. S.B. Mitchell,
C. T. Silva, and P. L. Williams. Fast polyhedral
cell sorting for interactive rendering of unstructured
grids. In Proceedings of Eurographics’99, Milan, Italy,
September 1999.

T.J. Cullip and U. Neumann. Accelerating Volume Re-
construction with 3D Texture Hardware. Technical Re-
port TR93-027, University of North Carolina, Chapel
Hill N.C., 1993.

F. Dachille, K. Kreeger, B. Chen, I. Bitter, and

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Meifiner et al./ Volume Rendering

A. Kaufman. High-Quality Volume Rendering Us-
ing Texture Mapping Hardware. In Proc. of Eu-
rographics/SIGGRAPH Workshop on Graphics Hard-
ware, pages 69-76, Lisboa, Portugal, August 1998.

J. Danskin and P. Hanrahan. Fast algorithms for vol-
ume ray tracing. In A. Kaufman and W. L. Lorensen,
editors, Workshop on Volume Visualization, pages 91—
98, Boston, MA, October 1992.

M. C. Doggett, M. MeiBiner, and U. Kanus. A low-cost
memory architecture for volume rendering. In Proc.
of Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 7-14, August 1999.

R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume
rendering. Computer Graphics, 22(4):65-74, August
1988.

E. J. Farrell and R. A. Zappulla. Three-dimensional
data visualization and biomedical applications.
CRC Critical Reviews in Biomedical Engineering,
16(4):323-363, 1989.

G. Frieder, D. Gordon, and R. A. Reynolds. Back-to-
front display of voxel-based objects. IEEE Computer
Graphics & Applications, 5(1):52—-60, January 1985.

M. P. Garrity. Raytracing irregular volume data. In
Symposium on Volume Visualization, San Diego, CA,
November 1990.

A. Van Gelder and K. Kim. Direct Volume Render-
ing With Shading via Three-Dimensional Textures. In
Symposium on Volume Visualization, pages 23-30, San
Francisco, CA, USA, October 1996.

S. M. Goldwasser and R. A. Reynolds. Techniques for
the Rapid Display and Manipulation of 3D Biomedical
Data. Dept. of Computer and Info. Science, Univ. of
Pennsylvania Report MS-CIS-86-14, GRASP LAB 60.,
Philadelphia, July 1986.

S.M. Goldwasser, R.A. Reynolds, D.A. Talton, and E.S.
Walsh. High performance graphics processors for med-
ical imaging applications. In Proc. International Con-
ference on Parallel Processing for Computer Vision and
Display, Leeds, UK, January 1988.

D. Gordon and R. A. Reynolds. Image space shading
of 3-dimensional objects. Computer Vision, Graphics,
and Image Processing,29:361-376, 1985.

B. Gudmundsson and M. Randen. Incremental gener-
ation of projections of CT-volumes. In Proceedings
of the First Conference on Visualization in Biomedi-
cal Computing, pages 27-34, Atlanta, GA, May 1990.
IEEE Computer Society Press, Los Alamitos, Califor-
nia.

T. Guenther, C. Poliwoda, C. Reinhard, J. Hesser,
R. Maenner, H.-P. Meinzer, and H.-J. Baur. VIRIM: A

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

massively parallel processor for real-time volume visu-
alization in medicine. In Proceedings of the 9th Euro-
graphics Workshop on Graphics Hardware, pages 103—
108, Oslo, Norway, September 1994.

P. Haeberli and K. Akeley. The accumulation buffer;
hardware support for high-quality rendering. In Com-
puter Graphics, volume 24 of Proceedings of SIG-
GRAPH 90, pages 309-318, Dallas, TX, August 1990.

P. Hanrahan. Three-pass affine transforms for volume
rendering. Computer Graphics, 24(5):71-78, Novem-
ber 1990.

M. Haubner, Ch. Krapichler, A. Losch, K.-H. En-
glmeier, and van Eimeren W. Virtual Reality
in Medicine - Computer Graphics and Interaction
Techiques. IEEE Transactions on Information Technol-
ogy in Biomedicine, 1996.

G. T. Herman and H. K. Liu. Three-dimensional
display of human organs from computed tomograms.
Computer Graphics and Image Processing, 9:1-21,
1979.

K. H. Hohne and R. Bernstein. Shading 3D-images
from CT using gray-level gradients. I[EEE Transactions
on Medical Imaging, MI-5(1):45-47, March 1986.

K. H. Hohne, M. Bomans, A. Pommert, M. Riemer,
C. Schiers, U. Tiede, and G. Wiebecke. 3D-
visualization of tomographic volume data using the
generalized voxel model. The Visual Computer,
6(1):28-37, February 1990.

K. H. Hohne, B. Pfiesser, A. Pommert, M. Riemer,
T. Schiemann, R. Schubert, and U. Tiede. A virtual
body model for surgical education and rehearsal. I[EEE
Computer, 29(1):45-47, 1996.

J. Huang, K. Mueller, N. Shareef, and R. Crawfis. Edge
preservation in volume rendering using splatting. pages
63-69, Research Triangle Park, NC, USA, October
1998.

D. Jackel and W. Strafler. Reconstructing solids
from tomographic scans - the PARCUM II system.
In AL AM. Kuijk and W. StraBer, editors, Advances
in Computer Graphics Hardware 1I, pages 209-227.
Springer-Verlag, Berlin, 1988.

J. T. Kajiya and T. Von Herzen. Ray tracing volume
densities. Computer Graphics, 18(3):165-173, July
1984.

M.S. Karasick, D. Lieber, L.R. Nackman, and V.T.

Rajan. Visualization of three-dimensional delaunay
meshes. Algorithmica, 19(1-2):114-128, Sept.-Oct.
1997.

A. Kaufman. An algorithm for 3D scan-conversion of
polygons. Proc. EUROGRAPHICS’87, pages 197-208,
August 1987.

(© The Eurographics Association 2000.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Meifsner et al./ Volume Rendering

A. Kaufman. The voxblt engine: A voxel frame buffer
processor. In A.A.M. Kuijk and W. StraBler, editors,
Advances in Graphics Hardware IIl. Springer-Verlag,
Berlin, 1989.

A. Kaufman and R. Bakalash. Memory and processing
architecture for 3D voxel-based imagery. IEEE Com-
puter Graphics & Applications, 8(6):10-23, November
1988.

A. Kaufman and R. Bakalash. Parallel processing for
3D voxel-based graphics. In Proc. International Con-
ference on Parallel Processing for Computer Vision and
Display, Leeds, UK, January 1988.

G. Knittel and W. StraBler. Vizard — visualization accel-
erator for real-time display. In Proceedings of the Sig-
graph/Eurographics Workshop on Graphics Hardware,
pages 139-146, Los Angeles, CA, August 1997.

W. Krueger. The application of transport theory to the
visualization of 3d scalar fields. Computers in Physics
5, pages 397-406, 1991.

W. Kriiger. The Application of Transport Theory to
the Visualization of 3-D Scalar Data Fields. In IEEE
Visualization *90, pages 273-280, 1990.

P. Lacroute. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transform. PhD
thesis, Stanford University, Computer Systems Labora-
tory, Departments of Electrical Engineering and Com-
puter Science, Stanford, CA 94305-4055, 1995. CSL-
TR-95-678.

P. Lacroute. Analysis of a parallel volume rendering
system based on the shear-warp factorization. IEEE
Transactions on Visualization and Computer Graphics,
2(3):218-231, September 1996.

P. Lacroute and M. Levoy. Fast volume rendering us-
ing a shear-warp factorization of the viewing transform.
In Computer Graphics, Proceedings of SIGGRAPH 94,
pages 451-457, July 1994.

D. Laur and P. Hanrahan. Hierarchical splatting: A pro-
gressive refinement algorithm for volume renderi ng.
Computer Graphics, 25(4):285-288, July 1991.

M. Levoy. Display of surfaces from volume data. I[EEE
Computer Graphics & Applications, 8(5):29-37, May
1988.

M. Levoy. Design for real-time high-quality volume
rendering workstation. In C. Upson, editor, Proceed-
ings of the Chapel Hill Workshop on Volume Visualiza-
tion, pages 85-92, Chapel Hill, NC, May 1989. Univer-
sity of North Carolina at Chapel Hill.

M. Levoy. Display of surfaces from volume data. Ph.D.
Dissertation, Department of Computer Science, The
University of North Carolina at Chapel Hill, May 1989.

(© The Eurographics Association 2000.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

M. Levoy. Efficient ray tracing of volume data. ACM
Transactions on Graphics, 9(3):245-261, July 1990.

M. Levoy. A hybrid ray tracer for rendering polygon
and volume data. IEEE Computer Graphics & Appli-
cations, 10(2):33—40, March 1990.

M. Levoy. A taxonomy of volume visualization algo-
rithms. In SIGGRAPH 90 Course Notes, pages 6—12,
1990.

M. Levoy. Volume rendering by adaptive refinement.
The Visual Computer, pages 2-7, July 1990.

B. Lichtenbelt. Design of a High Performance Vol-
ume Visualization System. In Proc. of the Euro-
graphics/SIGGRAPH Workshop on Graphics Hard-
ware, pages 111-119, Los Angeles, CA, USA, July
1997.

B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction
to volume rendering. Hewlett-Packard Professional
Books, Prentice-Hall, Los Angeles, USA, 1998.

W. E. Lorensen and H. E. Cline. Marching—cubes: A
high resolution 3D surface construction algorithm. In
Computer Graphics, Proceedings of SIGGRAPH 87,
pages 163-169, 1987.

Kwan-Liu Ma. Parallel volume ray-casting for
unstructured-grid data on distributed-memory architec-
tures. In Proceedings of the Parallel Rendering Sympo-
sium, pages 23-30, Atlanta, GA, Oct 1995. IEEE.

R. Machiraju, R. Yagel, and L. Schwiebert. Parallel
algorithms for volume rendering. OSU-CISRC-10/92-
R29,, Department of Computer and Information Sci-
ence, The Ohio State University, October 1992.

N. Max. Optical models for direct volume render-
ing. IEEE Transactions on Visualization and Computer
Graphics, 1(2):99-108, June 1995.

N. Max, P. Hanrahan, and R. Crawfis. Area and volume
coherence for efficient visualization of 3D scalar func-
tions. ACM Computer Graphics (Proceedings of the
1990 Workshop on Volume Visualization), 24(5):27-33,
1990.

N. Max, P. Hanrahan, and R. Crawfis. Area and Vol-
ume Coherence for Efficient Visualization of 3D Scalar
Functions. In ACM Workshop on Volume Visualization
"91, pages 27-33,1991.

D. Meagher. Efficient synthetic image generation of
arbitrary 3D objects. In Proceedings of IEEE Computer
Society Conference on Pattern Recognition and Image
Processing, June 1982.

M. MeiBner, U. Hoffmann, and W. Strafler. Enabling
Classification and Shading for 3D Texture Mapping
based Volume Rendering using OpenGL and Exten-
sions. In Proc. of IEEE Visualization, pages 207-214,

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Meifiner et al./ Volume Rendering

San Franisco, CA, USA, October 1999. IEEE Com-
puter Society Press.

M. MeifBner, J. Huang, D. Bartz, K. Mueller, and
R. Crawfis. A practical evaluation of four popular vol-
ume rendering algorithms. In Symposium on Volume
Visualization, Salt Lake City, UT, USA, October 2000.

M. MeiBner, U. Kanus, and W. Straer. VIZARD
II, A PCI-Card for Real-Time Volume Rendering.
In Proc. of Eurographics/SIGGRAPH Workshop on
Graphics Hardware, pages 61-68, Lisboa, Portugal,
August 1998.

T. Moeller, R. Machiraju, K. Mueller, and R. Yagel.
Evaluation and design of filters using a taylor series ex-
pansion. IEEE Transactions of Visualization and Com-
puter Graphics, 3(2):184-199, 1997.

C. Montani, R. Scateni, and R. Scopigno. Discretized
Marching Cubes. In IEEE Visualization’94, pages 281—
287,1994.

J. Montrym, D. Baum, D. Dignam, and C. Migdal. Infi-
nite Reality: A Real-Time Graphics System. Computer
Graphics, Proc. SIGGRAPH 97, pages 293-303, July
1997.

K. Mueller and R. Crawfis. Elminating popping ar-
tifacts in sheet buffer-based splatting.
IEEE Visualization, pages 239-246, Triangle Research
Park, NC, USA, October 1998. IEEE Computer Society
Press.

K. Mueller, T. Moeller, and R. Crawfis. Splatting with-
out the blur. In Proc. of IEEE Visualization, pages
363-371, San Franisco, CA, USA, October 1999. IEEE
Computer Society Press.

H. Miiller, N. Shareef, J. Huang, and R. Crawfis.
High-quality splatting on rectilinear grids with efficient
culling of occluded voxels. IEEE Transactions on Visu-
alization and Computer Graphics, 5(2):116-134,1999.

T. Ohashi, T. Uchiki, and M. Tokoro. A three-
dimensional shaded display method for voxel-based
representation. In Proceedings EUROGRAPHICS ’85,
pages 221-232, Nice, France, September 1985.

R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gib-
son, W. Hiatt, and T. Ohkami. EM-Cube: An architec-
ture for low-cost real-time volume rendering. In Pro-
ceedings of the Siggraph/Eurographics Workshop on
Graphics Hardware, pages 131-138, Los Angeles, CA,
August 1997.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan.
Interactive ray tracing for isosurface rendering. In Proc.
of IEEE Visualization, pages 233-238, Triangle Re-
search Park, NC, USA, October 1998. IEEE Computer
Society Press.

In Proc. of

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

M. Peercy, J. Airey, and B. Cabral. Efficient bump map-
ping hardware. In Computer Graphics, Proceedings of
SIGGRAPH °97, pages 303-306, August 1997.

H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and
L. Seiler. The volumepro real-time ray-casting system.
In Computer Graphics, SIGGRAPH 99 Proceedings,
pages 251-260, Los Angeles, CA, August 1999.

H. Pfister and A. Kaufman. Cube-4 — A scalable ar-
chitecture for real-time volume rendering. In 7996
ACM/IEEE Symposium on Volume Visualization, pages
47-54, San Francisco, CA, October 1996.

C. Reszk-Salama, K. Engel, T. Bauer, T. Ertl, and
G. Greiner. Interactive volume rendering on standard pc
graphics hardware using multi-textures and multi-stage
rasterization. EG Hardware Workshop’2000, 2000.

R. A. Reynolds, G. Frieder, and D. Gordon. Back-to-
front display of voxel-based objects. IEEE Computer
Graphics & Applications, pages 52-59, January 1985.

R.A.Reynolds,D. Gordon, and L.-S. Chen. A dynamic
screen technique for shaded graphics display of slice-
represented objects. Computer Vision, Graphics, and
Image Processing, 38(3):275-298, 1987.

P. Sabella. A rendering algorithm for visualizing 3D
scalar fields. Computer Graphics, 22(4):59-64, August
1988.

H. Samet. The quadtree and related hierarchical data
structures. Computing Surveys, 16(2):187-260, June
1984.

P. Schroder and J. B. Salem. Fast rotation of volume
data on data parallel architectures. In Proceedings of
Visualization ’91, pages 50-57, San Diego, CA, Octo-
ber 1991. IEEE CS Press.

P. Schréder and G. Stoll. Data parallel volume render-
ing as line drawing. In 71992 Workshop on Volume Vi-
sualization, pages 25-31, Boston, MA, October 1992.

H. Shen and C. Johnson. Sweeping Simplices: A
Fast Iso-Surface Axtraction Algorithm for Unstruc-
tured Grids. In JIEEE Visualization ’95, pages 143-150,
1995.

P. Shirley and A. Tuchman. A polygonal approximation
to direct scalar volume rendering. In /990 Workshop
on Volume Visualization, pages 63-70, San Diego, CA,
December 1990.

L. Sobierajski, D. Cohen, A. Kaufman, R. Yagel, and
D. Acker. Trimmed voxel lists for interactive surgi-
cal planning. TR 90.05.22, SUNY Stony Brook, May
1990.

L. Sobierajski, D. Cohen, A. Kaufman, R. Yagel, and
D. Acker. Fast display method for interactive volume
rendering. The Visual Computer, 1993.

(© The Eurographics Association 2000.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

Meifsner et al./ Volume Rendering

J. Spitzer. GeForce 256 and RIVA TNT Combiners.
http://www.nvidia.com/Developer.

U. Tiede, K. H. Hohne, M. Bomans, A. Pommert,
M. Riemer, and G. Wiebecke. Investigation of medical
3D-rendering algorithms. IEEE Computer Graphics &
Applications, 10(2):41-53, March 1990.

Y. Trousset and F. Schmitt. Active-ray tracing for 3D
medical imaging. In G. Marechal, editor, Proceedings
of EUROGRAPHICS’87, pages 139-149. Elsevier Sci-
ence Publishers, 1987.

H. K. Tuy and L. T. Tuy. Direct 2-D display of 3D
objects. [EEE Computer Graphics & Applications,
4(10):29-33, November 1984.

C. Upson and M. Keeler. V-BUFFER: Visible volume
rendering. Computer Graphics, 22(4):59-64, August
1988.

A. Van Gelder, V. Verma, and J. Wilhelms. Volume dec-
imation of irregular tetrahedral grids. In Proceedings of
Computer Graphics International, pages 222-230,247,
Canmore, Alta., Canada, June 1999.

A. Van Geldern and K. Kwansik. Direct Volume Ren-
dering with Shading via Three-Dimensional Textures.
In R. Crawfis and Ch. Hansen, editors, ACM Sympo-
sium on Volume Visualization 96, pages 23-30, 1996.

J. Terwisscha van Scheltinga, J. Smit, and M. Bosma.
Design of an on Chip Reflectance Map. In Proc. of the
10th EG Workshop on Graphics Hardware, pages 51—
55, Maastricht, The Netherlands, August 1995.

T. van Walsum, A. J. S. Hin, J. Versloot, and F. H.
Post. Efficient hybrid rendering of volume data and
polygons. Second EUROGRAPHICS Workshop on Vi-
sualization in Scientific Computing, April 1991.

D. Voorhies and J. Foran. State of the art in data visu-
alization. pages 163-166, July 1994.

R. Westermann and T. Ertl. Efficiently Using Graph-
ics Hardware in Volume Rendering Applications. In
Computer Graphics, Proc. of ACM SIGGRAPH, pages
169-177, Orlando, FL, USA, August 1998.

L. Westover. Interactive volume rendering. In C. Up-
son, editor, Proceedings of the Chapel Hill Workshop
on Volume Visualization, pages 9-16, Chapel Hill, NC,
May 1989. University of North Carolina at Chapel Hill.

L. Westover. Footprint evaluation for volume ren-
dering. In Computer Graphics, Proceedings of SIG-
GRAPH 90, pages 367-376, August 1990.

J. Wilhelms. Decisions in volume rendering. In State
of the Art in Volume Visualization, volume 8, pages
I.1-1.11. ACM SIGGRAPH, Las Vegas, NV, Jul./Aug.
1991.

(© The Eurographics Association 2000.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122

J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs.
Hierarchical and parallelizable direct volume rendering
for irregular and multiple grids. In Proceedings of Vi-
sualization, pages 57-64, San Francisco, CA, October
1996.

J. Wilhelms and A. Van Geldern. Octrees for faster Iso-
Surface Generation. ACM Transactions on Graphics,
11(3):201-297, July 1992.

P. Williams and N. Max. A Volume Density Optical
Model. In ACM Workshop on Volume Visualization 92,
pages 61-69, 1992.

P. L. Williams. Interactive splatting of nonrectilinear
volumes. In Proceedings Visualization, pages 37-44,
Boston, October 1992.

P. L. Williams. Visibility ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103-126, 1992.

O. Wilson, A. Van Geldern, and J. Wilhelms. Direct
Volume Rendering via 3D Textures. Technical Re-
port UCSC-CRL-94-19, University of California, Santa
Cruz, 1994.

C. M. Wittenbrink. Irregular grid volume render-
ing with composition networks. In Proceedings of
IS&T/SPIE Visual Data Exploration and Analysis V,
volume 3298, pages 250-260, San Jose, CA, January
1998. SPIE. Available as Hewlett-Packard Laborato-
ries Technical Report, HPL-97-51-R1.

C. M. Wittenbrink. Cellfast: Interactive unstruc-
tured volume rendering. Technical Report HPL-1999-
81(R1), Hewlett-Packard Laboratories, July 1999. Ap-
peared in 1999 IEEE Visualization-Late Breaking Hot
Topics.

C. M. Vittenbrink, M. E. Goss, H. Wolters, and
T. Malzbender. Interactive unstructured volume render-
ing and classification. Technical Report HPL-2000-13,
Hewlett-Packard Laboratories, January 2000.

C. M. Vittenbrink, T. Malzbender, and M. E. Goss.
Opacity-Weighted Color Interpolation For Volume
Sampling. In Symposium on Volume Visualization,
pages 135-142, Research Triangle Park, NC, USA, Oc-
tober 1998.

R. Yagel. Efficient Methods for Volumetric Graph-
ics. PhD thesis, State Univeristy of New York at Stony
Brook, December 1991.

R. Yagel. The flipping CUBE: A device for rotat-
ing 3D rasters. 6th Eurographics Hardware Workshop,
September 1991.

.R.Yagel,D. Cohen, and A. Kaufman. Discrete ray trac-

ing. IEEE Computer Graphics & Applications, pages
19-28, September 1992.

123.

124.

125.

126.

127.

128.

Meifiner et al./ Volume Rendering

R. Yagel, D. Cohen, A. Kaufman, and Q. Zhang. Vol-
umetric ray tracing. TR 91.01.09, Computer Science,
SUNY at Stony Brook, 1991.

R. Yagel and A. Kaufman. Template-based volume
viewing. Computer Graphics Forum, Proceedings Eu-
rographics, 11(3):153-167, September 1992.

R. Yagel, A. Kaufman, and Q. Zhang. Realistic volume
imaging. In Proceedings Visualization *90, pages 226—
231, San Diego, CA, October 1991. IEEE Computer
Society Press.

R. Yagel, D. M. Reed, A. Law, Po-Wen Shih, and
N. Shareef. Hardware assisted volume rendering of un-
structured grids by incremental slicing. In ACM/IEEE
Symposium on Volume Visualization, pages 55-62, San
Francisco, CA, October 1996.

R. Yagel and Z. Shi. Accelerating volume animation by
space-leaping. OSU-CISRC-3/93- R10,, Department
of Computer and Information Science, The Ohio State
University, March 1993.

K.Z.Zuiderveld, A. H.J. Koning, and M. A. Viergever.
Acceleration of ray casting using 3D distance trans-
form. In R. A. Robb, editor, Proceedings of Visualiza-
tion in Biomedical Computing, pages 324-335, Chapel
Hill, NC, October 1992. SPIE, Vol. 1808.

(© The Eurographics Association 2000.

