
CS780/880 Programming Assignment 1
September 10, 2014

Due: Wednesday, September 17 at midnight. (Submission details will follow.)
This assignment is intended to provide you a vehicle for learning and experimenting with

some of the basic features of the Granite system. The goal is for you to modify and extend some
Granite file utilities.
Startup: download files from cs.unh.edu/~rdb/cs880/granite

1. granite.jar: You should not need to un-jar this file, but you must put it in some
“standard” location (like in you a lib file in your file system home. You must add the jar
file at this location to your CLASSPATH. Caveat: Last year, some people using
Windows could only get this to work by un-jarring granite.jar and putting the resulting
directory into their CLASSPATH. I no longer remember whether this problem was
connected to whatever IDE they were using. Try it first as a simple jar file.

2. SimpleStats.java: This is a simple program that reads any Granite datasource and
computes and prints the min and max values of all attributes in the file. It does this by
reading each datum for every location in the domain (array) that is defined by the
datasource. You will be editing this file.

3. BasicDemo.java: This is a rather complicated, but still basic, Granite demo that uses
multiple different data access methods to compute the same results as SimpleStats.

4. data.tar.gz: A tar ball of a variety of mostly small data sets with different attributes.
Some are 2D; some are 3D. Many have multiple attributes. There is also one “real” data
set: a version of an MRI image of a head.

Tasks
1. Extend SimpleStats.java to also compute min/max using the minMaxByAllInPointOrder

method in BasicDemo. You may just copy it into your solution – and make sure that it
works by adding a call to it right after the existing call to minMaxByDatumThenAttribute.
This is the most efficient option in most cases, but it breaks down for very large data sets
since it requires that all data be stored in primary memory at once.

2. Create a third method for computing min/max values that you can call minMaxByChunk.
This approach will by a variation on minMaxByAllInPointOrder. Instead of reading the
entire data set at once, you will read it one slice at a time. This approach only makes
sense for 3D data sets: demo, demoBig, head64, and head-float-w1. You may simply
return with an error message if you are called with a datasource that is not 3D. See details
below about this method. Add a call to this method after previous minMax calls.

3. Surround the 3 calls to minMax methods with the simple Java timing code as used in
BasicDemo in its minMaxTests method. Don’t copy that method’s structure, just insert
copies of the timing code and printouts between your calls.

minMaxByChunk
1. This version must read 1 slice at a time from the 3D data set using the subblock Granite

method and update the min/max values based on each slice.
2. Keep the method simple; define other methods to share code and to keep any one method

from getting too large.

