Iniversity of New Hampshire

Interactive Visualization of Very Large Multiresolution Scientific Data Sets

R. Daniel Bergeron

Modern Science Research

- Much of today's science research is driven by 3 principal components:
 - Data
 - generation
 - Data
 - accessing/visualizing/analyzing
 - Data
 - understanding

9/2/14 22:55

3

Modern Science Research

- Much of today's science research is driven by 3 principal components[†]:
 - Data
 - sampled data or simulation output
 - Data
 - many Gb, even Tb too much to visualize
 - Data
 - many Tb, even Pb how to store and access it

[†]Taken from the realtor's mantra: location, location, location 9/2/14 22:55 Scientific Data Modeling

Data Visualization

• Visualization goal

- presentational visualization
 - how do you show something in the data
- exploratory visualization
 - how do you learn something from the data
- Exploratory visualization mantra[†]
 - overview then focus

[†]Due to Ben Schneiderman

9/2/14 22:55

Scientific Data Modeling

4

Overview then Focus

- Use a low resolution data representation to get an *overview* visualization
- Zoom in to regions of interest
 - visual zoom and

simultaneous

– resolution zoom

data size stays constant (more or less)

Case Study Overview

Challenges of visualizing simulation data
Focus on unsteady MHD simulation
Application framework

Time Series Data
Multi/Adaptive resolution techniques
Error model

STAR data

Space Time Adaptive Resolution data

Very Large Datasets

Scientific Data Modeling

- Numerical simulation produces GBs and TBs of time series data
- How can we visualize this *interactively* on a commodity workstation?
- Key ideas

9/2/14 22:55

- overview then focus (the visualization mantra)
- know the error in the data
- only read what you need

9/2/14 22:55

7

5

Interactive Visualization Model

- Generates multiresolution data (in both spatial and temporal domains)
- Initial view is at a coarse enough level to support interactivity (depends on platform)
- Zoom into spatially and/or temporally focused view at higher resolution
 - where the data is "interesting", and
 - where the data has high error
- Goal: memory demand stays constant

9/2/14 22:55

Scientific Data Modeling

8

Implementation Issues

- Multiresolution data generation and access
- Adaptive resolution data generation/access
- Efficient I/O and network access to multidimensional data
- Writing rendering algorithms for MR and AR data

Support for Large Scientific Data

- Granite Scientific Database System (Java)
 - General support for rectilinear, multisource, multidimensional, multiresolution data
 - Special features for I/O optimization based on iteration-aware prefetching and caching
- STARview visualization environment (C++)
 - Focused on multiresolution time series data
 - Eases implementation of renderers

9/2/14 22:55

Scientific Data Modeling

STARview Goals

Scientific Data Modeling

- Space Time multi/Adaptive Resolution data hierarchy
- Provide a transparent uniform resolution interface to MR and AR data so renderers don't have to know about it.
- Supports MR and AR data in both the <u>spatial and temporal</u> domains.
- Supports access to <u>error data</u> for the lower resolution representations

9/2/14 22:55

9/2/14 22:55

Scientific Data Modeling

11

9

STAR Data Model

- Space Time multi/Adaptive Resolution data hierarchy
- STAR Tree child node
 - reduced spatial resolution
 - reduced temporal resolution
- STARgen application creates hierarchy from original data
- Arbitrary mixing of spatial and temporal data
- Use wavelet transformation algorithm
- Generate error

Scientific Data Modeling

Space/Time Wavelets

- Spatial wavelet transform applied to data from each step of time series
- Temporal wavelet transform applied to all data at corresponding positions in all steps

Using Spatial AR Data

- Using AR directly requires specialized algorithms
- Or, convert AR to uniform resolution
 - Pick target uniform resolution
 - Average higher resolution AR regions
 - Expand lower resolution AR regions
 - Apply standard algorithm

Spatial Adaptive Resolution Data

• Given multiresolution hierarchy

Generate AR hierarchy based on error tolerances

Temporal Adaptive Resolution Data

- Want intelligent data reduction techniques
- Error tolerance δ used to remove less important time slices those with less change
- Time between time steps is non-uniform – Recreate uniform sample via interpolation
- Framework allows any kind of interpolator

```
9/2/14 22:55
```

15

Scientific Data Modeling

< 20%

Quality of MR and AR data

- Scientists do not like discarding data
- Integration of error with the data is key
- Uncertainty visualization informs scientist
- Only delete time steps *not significantly different* from surrounding steps (based on δ)
- Only abstract spatial regions with low error
- Tradeoff is that we can handle larger data interactively

Scientific Data Modeling

Data Quality Issues

- Can you trust the low resolution data? - no (at least not blindly)
- Must compute *error* of low resolution data
 - error must be spatially (and temporally) computed, so you know where the data is unreliable
- Provide *error visualization* tools

9/

Scientific Data Modeling

Solar Wind Simulation

- Models interaction between solar wind and Earth's magnetosphere
- Simulation records magnetic field, particle velocity, and current density
- Data is a 3D time series
- Data points sampled on a structured grid
- 87 time steps, total data size is 15GB

9/2/14 22:55

19

17

Solar Wind Unsteady Flow

STAR / VisIt Interface

- STAR database plugin
 - Accesses STAR multiresolution data hierarchy
- STAR operator plugin
 - User controls resolution via an operator plugin
 - Interaction with operator plugin triggers data reload

STAR/VisIt MR Support

- VisIt state after a STAR data object opened
- 1 slice of one high resolution time step; shows density variate
- STAR operator dialog to control data resolution

Any VisIt rendering can be applied to any compatible STAR data

STAR/VisIt MR Support 2

• Medium resolution • Low resolution $92/14 \ 22:5$ AISR 2008 23

AISR 2008

- STAR error data is generated at same resolution as the lower resolution data
- Top is error of resolution 2 and bottom is resolution 2 data.

9/2/14 22:55

24

user: sdb Mon May 523:05:012008

Managing Large Data **STAR/Visit Error Data** And and a second • Error is just another • User specifies upper memory limit data set to VisIt; top is • Time Series Data that exceeds this limit is error data drawn with opacity at 50 % loaded at a lower temporal resolution superimposed on the medium resolution • Intermediate slices are interpolated data. user: sdb Mon May, 5 23;10:50 2008 VisIt lets you drag a • Scientist can zoom in spatially slider to to change opacity dynamically or - Automatically increase spatial resolution in swap views between response to a reduction in spatial range the error and data. user: sdb Mon May 523:05:01 AISR 2008 9/2/14 22:55 25 9/2/14 22:55 Scientific Data Modeling

Results

Data Size	Show Error?	Memory Used for Data Storage	Average Frame Rate
512x512x3000	Ν	No Imposed Limit	Ø
512x512x3000	Ν	650MB Limit	14 fps
256x256x3000x2	Y	No Imposed Limit	Ø
256x256x3000x2	Y	750MB Limit	10 fps
128x128x3000x2	Y	No Imposed Limit	12 fps
64x64x3000x2	Y	No Imposed Limit	30 fps

- Showing error requires twice as much data
- Keeping interesting data in memory yields interactive frame rates

9/2/14 22:55

27

Out-of-core Visualization

- MR and AR data and subset access reduce data needed to make a visualization
- Sometimes still need to create images from data that simply doesn't fit in memory
- Many visualization techniques don't need all data in memory at once
- Interactivity, however, demands efficient I/O (or network) data retrieval

9/2/14 22:55

I/O Optimization

- Consider a 3D matrix stored by slice and a subregion that is too large for available memory
 - If viewed along slice storage axis, access matches storage.
 - If viewed from right, access does not match storage
- Application creates an *iterator*
 - Defines access pattern <u>in advance</u>, so I/O system can predict what data to *pre-fetch* and save in *cache*

	9/2/14	22:55
Text		

Scientific Data Modeling

Iteration-Aware Caching

- Preliminary results are promising
 - 39GB visible woman data set
 - 2.5 to 12 times faster
- Same notion works to reduce network access costs for remote data
 - improvement achieved by addressing *latency* overhead

9/2/14	22:55

Scientific Data Modeling

Conclusions

- Principal goal: combine space and time multiresolution into unified data model
- Focus on simulation of MHD phenomena
- Integrate error model into application
- Make it useful for scientists creating simulations
- Minimize difficulty in creating renderers

9/2/14	22:55
,, <u> </u>	

31

29

Recent Related Work

- Integrate MR error analysis into simulation [HiPC 2011]
 - Save data based on significance
 - Simulate at higher resolution, save at lower
- Lossy wavelet data compression [VDA 2012]
 - Save some detail coefficient blocks
 - Reduce precision of detail coefficients (to a byte)
 - Can reduce error significantly for small increase in space and IO

9/2/14 22:55