Modern Science Research

- Much of today's science research is driven by 3 principal components†:
 - Data
 - sampled data or simulation output
 - Data
 - many Gb, even Tb - too much to visualize
 - Data
 - many Tb, even Pb - how to store and access it

†Taken from the realtor's mantra: location, location, location

Data Visualization

- Visualization goal
 - *presentational* visualization
 - how do you show something in the data
 - *exploratory* visualization
 - how do you learn something from the data

- Exploratory visualization mantra†
 - overview then focus

†Due to Ben Schneiderman
Overview then Focus

- Use a low resolution data representation to get an overview visualization
- Zoom in to regions of interest
 - visual zoom and simultaneous
 - resolution zoom
 data size stays constant (more or less)

Case Study Overview

- Challenges of visualizing simulation data
- Focus on unsteady MHD simulation
- Application framework
 - Time Series Data
 - Multi/Adaptive resolution techniques
 - Error model
 - STAR data
 - Space Time Adaptive Resolution data

Very Large Datasets

- Numerical simulation produces GBs and TBs of time series data
- How can we visualize this interactively on a commodity workstation?
- Key ideas
 - overview then focus (the visualization mantra)
 - know the error in the data
 - only read what you need

Interactive Visualization Model

- Generates multiresolution data (in both spatial and temporal domains)
- Initial view is at a coarse enough level to support interactivity (depends on platform)
- Zoom into spatially and/or temporally focused view at higher resolution
 - where the data is "interesting", and
 - where the data has high error
- Goal: memory demand stays constant
Implementation Issues

- Multiresolution data generation and access
- Adaptive resolution data generation/access
- Efficient I/O and network access to multidimensional data
- Writing rendering algorithms for MR and AR data

Support for Large Scientific Data

- Granite Scientific Database System (Java)
 - General support for rectilinear, multisource, multidimensional, multiresolution data
 - Special features for I/O optimization based on iteration-aware prefetching and caching
- STARview visualization environment (C++)
 - Focused on multiresolution time series data
 - Eases implementation of renderers

STARview Goals

- Space Time multi/Adaptive Resolution data hierarchy
- Provide a transparent uniform resolution interface to MR and AR data so renderers don't have to know about it.
- Supports MR and AR data in both the spatial and temporal domains.
- Supports access to error data for the lower resolution representations

STAR Data Model

- Space Time multi/Adaptive Resolution data hierarchy
- STAR Tree child node
 - reduced spatial resolution
 - reduced temporal resolution
- STARgen application creates hierarchy from original data
- Arbitrary mixing of spatial and temporal data
- Use wavelet transformation algorithm
- Generate error
Space/Time Wavelets

- Spatial wavelet transform applied to data from each step of time series
- Temporal wavelet transform applied to all data at corresponding positions in all steps

Spatial Adaptive Resolution Data

- Given multiresolution hierarchy
- Generate AR hierarchy based on error tolerances

Using Spatial AR Data

- Using AR directly requires specialized algorithms
- Or, convert AR to uniform resolution
 - Pick target uniform resolution
 - Average higher resolution AR regions
 - Expand lower resolution AR regions
 - Apply standard algorithm

Temporal Adaptive Resolution Data

- Want intelligent data reduction techniques
- Error tolerance δ used to remove less important time slices - those with less change
- Time between time steps is non-uniform
 - Recreate uniform sample via interpolation
- Framework allows any kind of interpolator
Quality of MR and AR data

- Scientists do not like discarding data
- Integration of error with the data is key
- Uncertainty visualization informs scientist
- Only delete time steps not significantly different from surrounding steps (based on δ)
- Only abstract spatial regions with low error
- Tradeoff is that we can handle larger data interactively

Data Quality Issues

- Can you trust the low resolution data?
 - no (at least not blindly)
- Must compute error of low resolution data
 - error must be spatially (and temporally) computed, so you know where the data is unreliable
- Provide error visualization tools

Solar Wind Simulation

- Models interaction between solar wind and Earth’s magnetosphere
- Simulation records magnetic field, particle velocity, and current density
- Data is a 3D time series
- Data points sampled on a structured grid
- 87 time steps, total data size is 15GB

Solar Wind Unsteady Flow

Note: color is mapped to particle speed

392 x 112 x 112
196 x 56 x 56
STAR / VisIt Interface

- STAR database plugin
 - Accesses STAR multiresolution data hierarchy
- STAR operator plugin
 - User controls resolution via an operator plugin
 - Interaction with operator plugin triggers data reload

STAR/VisIt MR Support

- VisIt state after a STAR data object opened
- 1 slice of one high resolution time step; shows density variate
- STAR operator dialog to control data resolution

Any VisIt rendering can be applied to any compatible STAR data

STAR/VisIt MR Support 2

- Medium resolution
- Low resolution

STAR Error Data

- STAR error data is generated at same resolution as the lower resolution data
- Top is error of resolution 2 and bottom is resolution 2 data.
STAR/Visit Error Data

- Error is just another data set to VisIt; top is error data drawn with opacity at 50% superimposed on the medium resolution data,
- VisIt lets you drag a slider to change opacity dynamically or swap views between the error and data.

Managing Large Data

- User specifies upper memory limit
- Time Series Data that exceeds this limit is loaded at a lower temporal resolution
- Intermediate slices are interpolated
- Scientist can zoom in spatially
 - Automatically increase spatial resolution in response to a reduction in spatial range

Results

<table>
<thead>
<tr>
<th>Data Size</th>
<th>Show Error?</th>
<th>Memory Used for Data Storage</th>
<th>Average Frame Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>512x512x3000</td>
<td>N</td>
<td>No Imposed Limit</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>512x512x3000</td>
<td>N</td>
<td>650 MB Limit</td>
<td>14 fps</td>
</tr>
<tr>
<td>256x256x3000x2</td>
<td>Y</td>
<td>No Imposed Limit</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>256x256x3000x2</td>
<td>Y</td>
<td>750 MB Limit</td>
<td>10 fps</td>
</tr>
<tr>
<td>128x128x3000x2</td>
<td>Y</td>
<td>No Imposed Limit</td>
<td>12 fps</td>
</tr>
<tr>
<td>64x64x3000x2</td>
<td>Y</td>
<td>No Imposed Limit</td>
<td>30 fps</td>
</tr>
</tbody>
</table>

- Showing error requires twice as much data
- Keeping interesting data in memory yields interactive frame rates

Out-of-core Visualization

- MR and AR data and subset access reduce data needed to make a visualization
- Sometimes still need to create images from data that simply doesn’t fit in memory
- Many visualization techniques don't need all data in memory at once
- Interactivity, however, demands efficient I/O (or network) data retrieval
I/O Optimization

- Consider a 3D matrix stored by slice and a subregion that is too large for available memory
 - If viewed along slice storage axis, access matches storage.
 - If viewed from right, access does not match storage

- Application creates an iterator
 - Defines access pattern in advance, so I/O system can predict what data to pre-fetch and save in cache

Iteration-Aware Caching

- Preliminary results are promising
 - 39GB visible woman data set
 - 2.5 to 12 times faster

- Same notion works to reduce network access costs for remote data
 - Improvement achieved by addressing latency overhead

Conclusions

- Principal goal: combine space and time multiresolution into unified data model
- Focus on simulation of MHD phenomena
- Integrate error model into application
- Make it useful for scientists creating simulations
- Minimize difficulty in creating renderers

Recent Related Work

- Integrate MR error analysis into simulation [HiPC 2011]
 - Save data based on significance
 - Simulate at higher resolution, save at lower

- Lossy wavelet data compression [VDA 2012]
 - Save some detail coefficient blocks
 - Reduce precision of detail coefficients (to a byte)
 - Can reduce error significantly for small increase in space and IO