Flow Field Visualization

- Traditional wind/water tunnels
 - experimental flow visualization techniques
- Computational Fluid Dynamics (CFD)
 - numerical solution to partial diff eqns for fluid flow
 - cheaper than building physical models
 - more visualization options
- Computer-aided flow visualization

Experimental Flow Visualization

- Inject foreign matter (dye, bubbles, smoke) and/or use optical techniques
- Experimental visualization options
 - *path line*: path traversed by a particle in the flow bubble injection
 - *streak line*: locus of particles that previously passed through each point dye injection
 - *time line*: advected image of a *rake* row of bubbles perpendicular to flow

2

• Injection can change the field

Flow Visualization Overview

Bergeron

Computational Fluid Dynamics

- Scalar fields: temperature, pressure et al.
- Vector field: direction of fluid flow
- Steady state: no change in field over time
 - flow still occurs, but same field defines it over time
 - visualization uses time, but field is constant
- Unsteady state: flow field changes over time
 - need separate field for each time step
- visualization time need not match simulation time, so may need to access 2 or more fields

3

Flow Visualization Overview

Flow Visualization Overview

Bergeron

Bergeron

Indirect Flow Visualization

- Derive scalar values from vector field
 - velocity magnitude
 - vorticity
 - helicity
 - Reynolds number
- Render using volume rendering techniques

4

Bergeron

Direct Flow Visualization Vector Plots Vector plots Display vectors in a flow field too cluttered if do every vector Traditional: path, streak, and time lines • especially hard in 3d streamlines: tangent to the velocity vector • . how to render vectors? • stream ribbons: tiling of two adjacent streamlines direction only? stream surfaces: connecting stream ribbons also length? stream polygons: polygon normal to vector flow . as lines or solids stream tube: connect stream polys surface particles: model particle as small polygon *flow topology*: find critical points Flow Visualization Overview 5 Bergeron Flow Visualization Overview 6 Bergeron

Path Lines

- Path traversed by a particle, also called *particle* traces
- Need set of initial particle positions (seeds): random placed, user specified, or program specified
- At each new time step:
 - $x(t+\Delta t) = x(t) + Integral(v(x(t))) dt$ from t to $t+\Delta t$
- Path line: at time t_n
 - connect points from t_0 through t_n
 - connect points from t_{n-k} through t_n for some k 7

Flow Visualization Overview

Bergeron

Streak Lines

- The locus of particles that have previously passed through a given point in space.
- Same as a path line in steady state flow
- For unsteady state
 - for every t from t=0 to end time

solve integral from t to end time with initial condition x(t) = point in space

8

Bergeron

Time Lines

- Rake: a line of points (particles) usually perpendicular to the flow at some initial position
- Show position of rake in each time step

Flow Visualization Overview

Bergeron

Streamlines

9

- Streamlines are curves in the field that are everywhere tangent to the velocity field
- Same as streakline and path line for steady state
- Solution to dx/u = dy/v = dz/w
 - where x,y,z are spatial position and u,v,w is velocity field.

11

Flow Visualization Overview

Bergeron

Stream Polygons

- *Strain* causes distortion in fluid elements in a flow not representable in other visualizations
- Polygons can be oriented along stream normal to local velocity. Local rotation is applied to polygon and local strain causes distortion.

10

Flow Visualization Overview

Bergeron

Stream Ribbons

- Connect 2 adjacent streamlines by triangulation
 - In 3D streamlines are hard to follow; can't see "twisting" very well
 - Stream ribbons show flow direction and twisting and curvature
 - polygons can be colored based on some other attribute

12

Flow Visualization Overview

Bergeron

Stream Tubes Stream Surfaces By connecting stream polygons together can Connect many stream ribbons get get "tubes" that bend, twist, and deform Problems through space • Efficient step sizes: also problem for stream Can map textures to surface of the tubes to ribbon help show flow or other attributes. • not too small (too many triangles) • not too large (course surface) Determining when surface should be split or joined Flow Visualization Overview Flow Visualization Overview 13 Bergeron 14 Bergeron **Surface Particles Flow Topology** • Critical points: magnitude of field is zero • Rather than drawing *path lines*, can generate · streamline slope is undefined and streamlines only cross at critical points. Can represent entire field by its critical points small solid particles at each time step (not • eigenvalues of gradient: positive correspond to velocities away from critical connected) point (repelling); negative towards (attracting). Complex eigenvalues result in a *focus*. Real part = 0 yield ellipses; non-zero are spirals. Examples: • Particles saddle, repelling repelling repelling • have surface area, so can reflect light in 3rd dim. focus. node. repelling can be colored to represent some value in 3rd dim can have a "life time" to simulate the "history" that is attracting attracting center, repelling inherent in a path line: if particles are close enough in 3rd dim. focus, node over time, will see equivalent of path lines repelling in 3rd dim Flow Visualization Overview 15 Bergeron Flow Visualization Overview 16 Bergeron