
 Shear-Warp 9/22/14 R. Daniel Bergeron1

Shear-Warp Volume Rendering
R. Daniel Bergeron

Department of Computer Science
University of New Hampshire

Durham, NH 03824
!
!
From:
Lacroute and Levoy, Fast Volume Rendering Using a Shear-Warp- Factorization of the Viewing

Transformation, Siggraph ’94

 Shear-Warp 9/22/14 R. Daniel Bergeron2

Volume Rendering Overview

♦ Spatial data structures
– can lower costs without sacrificing quality
– e.g., octrees, k-d trees, distance trees

♦ Image-order algorithms – casting rays through pixels
– traverse spatial d.s. for every ray; multiple traversals

♦ Object-order algorithms – splatting
– process data once, but hard to terminate processing early

♦ Shear-warp algorithms
– efficient data traversal with possibility of early exit

 Shear-Warp 9/22/14 R. Daniel Bergeron3

Shear-Warp: Parallel Projection

♦ Sheared object space
– simple transformation of volume allowing efficient projection
– in this space all viewing rays are parallel to a coordinate axis

Volume
slices

Image plane

Viewing rays Shear

Project

Parallel projection:

 Shear-Warp 9/22/14 R. Daniel Bergeron4

Shear-Warp: Perspective Projection

♦ Perspective projection more complex
– requires each slice to be scaled based on the view

Volume
slices

Image plane

Viewing rays Shear and scale

Project

Perspective projection:

 Shear-Warp 9/22/14 R. Daniel Bergeron5

Basic Algorithm
Determine which of 3 possible slicing directions to use (P).
1. Transform volume data to sheared object space by translating

and resampling each slice (S).
2. Composite resampled slices in front-to-back order. This

produces a 2D intermediate image in sheared object space.
3. Transform intermediate image to image space by warping

(Mwarp). This is a 2d resampling step.

1. Shear / resample

Voxel scanline

2. project/composite

3. warp/resample

Intermediate image scanline

Image

 Shear-Warp 9/22/14 R. Daniel Bergeron6

Shear-Warp Factorization
♦ Shear-Warp can be expressed as factorization of the view transform

matrix: Mview = Mwarp2d · Mshear3d = Mwarp2d · S · P
– P permutes axes that so shear is parallel to slices that are most

perpendicular to viewing direction
– S is shear whose terms can be extracted from Mview
!
!

!
!

– Mwarp2d transforms sheared object coords to image coords:
 Mwarp2d = Mview · P

-1 · S-1
!
!
!
!

"

#

$
$
$
$

%

&

=

1000
0100
010
001

y

x

par

s
s

S

!
!
!
!

"

#

$
$
$
$

%

&

=

100
0100
010
001

w

y

x

per

s

s
s

S

 Shear-Warp 9/22/14 R. Daniel Bergeron7

Shear-Warp Properties

♦ Projection in sheared object space has properties that
allow more efficient compositing:

1. Scanlines in intermediate space are parallel to volume
scanlines

2. All voxels in a given slice are scaled by same factor.
3. For parallel projections: every slice has same scale factor

and that is arbitrary. Usually choose 1, so get 1-1 mapping
of voxels to intermediate image pixels.

Lacroute and Levoy describe 3 different rendering
algorithms based on Shear-Warp.

 Shear-Warp 9/22/14 R. Daniel Bergeron8

Parallel Projection Rendering 1

♦ Parallel view allows run-length encoding for data.
– most data has lots of “empty” space
– sheared, resampled volume stored as run-length encoded voxel

scanlines, with 2 kinds of runs: transparent and non-transparent,
defined by user-specified threshold

– intermediate image scanline also stores run information: each
opaque pixel (based on user threshold) has pointer to next non-
opaque pixel in the scanline. Can skip quickly over runs of
opaque pixels.

Non-opaque pixel

Opaque pixel

 Shear-Warp 9/22/14 R. Daniel Bergeron9

Parallel Projection Rendering 2
♦ For each slice and for each volume scanline

– Walk through volume scanline and intermed. image

– use voxel run-length encoding to skip transparent voxels
– use image encoding to skip occluded voxels  

!
!

♦ Unskipped voxel runs can be processed efficiently
– all voxels in slice are scaled  

by same factors, so resampling  
to get values at image pixel  
centers uses same weights:

voxel scanline

intermediate  
image scanline

skip work skipworkskip
resample
and
composite

 Shear-Warp 9/22/14 R. Daniel Bergeron10

Parallel Projection Rendering 3

♦ Use bilinear interp. & backward projection convolution
– 2 voxel scanlines are traversed simultaneously to produce one

intermediate image scanline (intermediate image scanline lies
between two voxel scanlines)

♦ Use lookup table for shading
♦ Use lookup table to correct voxel opacity for view angle

– apparent slice thickness depends on angle

Slice k
Slice k+1

View angle 2View angle 1

 Shear-Warp 9/22/14 R. Daniel Bergeron11

Parallel Projection Rendering 4

♦ After compositing, need to warp 2D intermediate image
to final image
– use general purpose affine image warper with bilinear filter
– image is small compared to volume, so this is minor part

♦ Run length encoded data structure
– created on the fly, but it is (nearly) view-independent
– create 3 encodings, one for each principal view direction
– because transparent voxels are not stored, size is usually

tractable
– value of P matrix used to select which version to use

 Shear-Warp 9/22/14 R. Daniel Bergeron12

Perspective Projection Rendering 1

♦ Perspective rays diverge, so uniform sampling is hard
– ray tracing solutions:

» as distance along ray increases, split ray into multiple rays, or
» use each sample point to sample larger portion of volume using a

mip-map
– splatting: resampling filter footprint must be recomputed for

each voxel
– shear-warp: adaptive area sampling is part of the algorithm

» each slice is scaled differently, so farther slices are smaller and each
ray is, in effect, sampling a larger portion of volume as it gets farther
away

 Shear-Warp 9/22/14 R. Daniel Bergeron13

Perspective Projection Rendering 2

♦ Algorithm nearly same as parallel rendering, except
– each voxel scaled as well as translated during resampling, so

» more than 2 voxel scanlines may need to be traversed simultaneously to
contribute to the intermediate image scanline, and

» voxel scanlines may not be traversed at the same rate as image scanlines
– choose factors so closest slice has unit scaling (all the rest will

have < 1, so no slice will be enlarged)
– use a box reconstruction filter and a box low-pass filter

 Shear-Warp 9/22/14 R. Daniel Bergeron14

Fast Classification Algorithm

♦ 2 algorithms presented don’t allow experimentation with
transfer function (it’s done in run-length encoding)

♦ 3rd variation keeps the full volume and evaluates opacity
transfer while rendering; need to avoid unnecessary
computations

♦ Key data structures
– min-max octree: each node stores min/max of all children; built at

data loading time; it is not dependent on transfer fcn
– summed area table: built after transfer fcn defined
– 3D voxel array

 Shear-Warp 9/22/14 R. Daniel Bergeron15

Summed Area Table
♦ Summed area table developed by Crow (84) for texture mapping

– entry i,j in summed area table is sum of image entries from 0,0 to i,j
– can get sum of any rectangle (i

1
, j

1
) to (i

2
, j

2
) in the image with  

sum = sat(i
2
, j

2
) – sat(i

2
, j

1
-1) – sat(i

1
-1, j

2
) + sat(i

1
-1, j

1
-1) !

image summed
area
table

 13 14 15 16

 9 10 11 12

 5 6 7 8

 1 2 3 4

 28 60 96 136

 15 33 54 78

 6 14 24 36

 1 3 6 10

 Shear-Warp 9/22/14 R. Daniel Bergeron16

Transfer Function Evaluation

♦ Opacity transfer function can be of form:
 α = f(p, q, …) where p might be data value, q the length of

the gradient, or whatever.
– given a threshold, f partitions the multidim space (defined

by p,q, …) into transparent/non-transparent regions
– for region of volume that just contains current scanline

1. find extrema of parameters: min and max of p,q,…
2. determine if opacity is transparent throughout the region

♦ if so, discard scanline since it is transparent everywhere
♦ else if scanline is small enough, render it
♦ else subdivide scanline (and region) and recurse

 Shear-Warp 9/22/14 R. Daniel Bergeron17

Region Transparency Test
♦ Min-max octree contains extrema of opacity function parameter values in each

node (subcube of volume)
♦ For step 2 above, need to integrate f over region of parameter space defined by

parameter extrema
– Build summed area table for opacity function where indexes are discretized values of

parameters
– use pmin, pmax, qmin, qmax to find sum of all possible values of function in the region; if

sum is 0, region must be transparent everywhere.
– if parameters can take on large ranges, need to quantize some or all of the parameters to keep

table to manageable size
– if there are 3 parameters, need 3d summed area table

 Shear-Warp 9/22/14 R. Daniel Bergeron18

Fast Classification Rendering Algorithm
♦ Build min-max octree as preprocessing step; octree is independent of

both view and transfer function
♦ Just before rendering, build summed area table based on current

opacity transfer function
♦ Use either parallel or perspective algorithm accessing 3d array of

voxels in scanline order
– for each scanline, use octree and SA table to skip transparent regions
– for non-transparent regions, classify each voxel via a lookup table and proceed

as before.
– opaque regions of the image still cause voxel processing to be skipped.
– note that voxel classification never done in transparent volume regions or

opaque image regions; that saves computation

 Shear-Warp 9/22/14 R. Daniel Bergeron19

Fast Classification Limitations

♦ Octree traversal and SA table computations add overhead
– can be reduced by avoiding re-computation: e.g., transparency test for an octree node

is computed once on demand, then saved in the tree
♦ Opacity transfer function has restrictions

– parameters must be available and function pre-computable for each voxel in order to
build octree

– domain of parameter space must be manageable
– context-sensitive segmentation does not satisfy these restrictions

♦ If major view axis changes, access to scanlines in the 3d array won’t
follow storage order. For large volumes get thrashing.

– can reorder the array, but that causes delay
– best to use this algorithm only for small range of views; once desired opacity

function is defined, switch to one of other algorithms.

 Shear-Warp 9/22/14 R. Daniel Bergeron20

Performance Results

♦ Lacroute/Levoy tested on a modest machine: SGI Indigo R4000
with 64Mbytes and no graphics accelerator

♦ 256x256x225 head MRI data set using gray scale
 Parallel Perspective Fast classification/Parallel
Avg time (sec) 1.2 3.3 2.8
Memory (Mb) 13 13 61

♦ Color rendering takes about twice as long
♦ Ray casting versions were 5 times longer for 1283 data sets and

10 times longer for 2563 data sets

 Shear-Warp 9/22/14 R. Daniel Bergeron21

Image Quality
♦ Many images are virtually identical to ray casting. The 2

resampling steps might lead to blurring, but they don’t see it.
Shear-Warp Ray Casting

 Shear-Warp 9/22/14 R. Daniel Bergeron22

Other Images
256x256x159: Parallel 2.2 sec 256x256x110: Perspective 3.8 sec

 Shear-Warp 9/22/14 R. Daniel Bergeron23

Image Quality Problems
♦ Shear-warp uses 2d rather than 3d filter to resample volume data.

It is 1st order in plane of slice but 0-order between slices.
– could be a problem with high frequencies perpendicular to slices; example

below classifies with extremely sharp ramps to get high freq. and uses
worst possible viewing angle (close to 45 degrees

Shear-warp Ray caster Shear-warp w/smoother classification

