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Volume Rendering Overview

♦ Spatial data structures  
– can lower costs without sacrificing quality 
– e.g., octrees, k-d trees, distance trees 

♦ Image-order algorithms – casting rays through pixels 
– traverse spatial d.s. for every ray; multiple traversals 

♦ Object-order algorithms – splatting 
– process data once, but hard to terminate processing early 

♦ Shear-warp algorithms 
– efficient data traversal with possibility of early exit
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Shear-Warp: Parallel Projection

♦ Sheared object space 
– simple transformation of volume allowing efficient projection 
– in this space all viewing rays are parallel to a coordinate axis

Volume  
slices

Image plane

Viewing rays Shear

Project

Parallel projection:
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Shear-Warp: Perspective Projection

♦ Perspective projection more complex 
– requires each slice to be scaled based on the view

Volume  
slices

Image plane

Viewing rays Shear and scale

Project

Perspective projection:
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Basic Algorithm
Determine which of 3 possible slicing directions to use (P). 
1. Transform volume data to sheared object space by translating 

and resampling each slice (S). 
2. Composite resampled slices in front-to-back order. This 

produces a 2D intermediate image in sheared object space. 
3. Transform intermediate image to image space by warping 

( Mwarp). This is a 2d resampling step.

1. Shear / resample

Voxel scanline

2. project/composite

3. warp/resample

Intermediate image scanline

Image
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Shear-Warp Factorization
♦ Shear-Warp can be expressed as factorization of the view transform 

matrix:    Mview = Mwarp2d · Mshear3d = Mwarp2d · S · P  
– P permutes axes that so shear is parallel to slices that are most 

perpendicular to viewing direction 
– S is shear whose terms can be extracted from Mview   
!
!

!
!

– Mwarp2d  transforms sheared object coords to image coords:  
  Mwarp2d = Mview · P

-1 · S-1
!
!
!
!
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Shear-Warp Properties

♦ Projection in sheared object space has properties that 
allow more efficient compositing: 

1. Scanlines in intermediate space are parallel to volume 
scanlines 

2. All voxels in a given slice are scaled by same factor. 
3. For parallel projections: every slice has same scale factor 

and that is arbitrary. Usually choose 1, so get 1-1 mapping 
of voxels to intermediate image pixels. 

Lacroute and Levoy describe 3 different rendering 
algorithms based on Shear-Warp.
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Parallel Projection Rendering 1

♦ Parallel view allows run-length encoding for data.  
– most data has lots of “empty” space 
– sheared, resampled volume stored as run-length encoded voxel 

scanlines, with 2 kinds of runs: transparent and non-transparent, 
defined by user-specified threshold 

– intermediate image scanline also stores run information: each 
opaque pixel (based on user threshold) has pointer to next non-
opaque pixel in the scanline. Can skip quickly over runs of 
opaque pixels.

Non-opaque pixel

Opaque pixel
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Parallel Projection Rendering 2
♦ For each slice and for each volume scanline 

– Walk through volume scanline and intermed. image 

– use voxel run-length encoding to skip transparent voxels 
– use image encoding to skip occluded voxels  

!
!

♦ Unskipped voxel runs can be processed efficiently 
– all voxels in slice are scaled  

by same factors, so resampling  
to get values at image pixel  
centers uses same weights:

voxel scanline

intermediate  
image scanline

skip work skipworkskip
resample  
and 
composite
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Parallel Projection Rendering 3

♦ Use bilinear interp. & backward projection convolution 
– 2 voxel scanlines are traversed simultaneously to produce one 

intermediate image scanline (intermediate image scanline lies 
between two voxel scanlines) 

♦ Use lookup table for shading 
♦ Use lookup table to correct voxel opacity for view angle 

– apparent slice thickness depends on angle

Slice k
Slice k+1

View angle 2View angle 1
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Parallel Projection Rendering 4

♦ After compositing, need to warp 2D intermediate image 
to final image 
– use general purpose affine image warper with bilinear filter 
– image is small compared to volume, so this is minor part 

♦ Run length encoded data structure 
– created on the fly, but it is (nearly) view-independent  
– create 3 encodings, one for each principal view direction 
– because transparent voxels are not stored, size is usually 

tractable 
– value of P matrix used to select which version to use
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Perspective Projection Rendering 1

♦ Perspective rays diverge, so uniform sampling is hard 
– ray tracing solutions: 

» as distance along ray increases, split ray into multiple rays, or 
» use each sample point to sample larger portion of volume using a 

mip-map 
– splatting: resampling filter footprint must be recomputed for 

each voxel 
– shear-warp: adaptive area sampling is part of the algorithm 

» each slice is scaled differently, so farther slices are smaller and each 
ray is, in effect, sampling a larger portion of volume as it gets farther 
away
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Perspective Projection Rendering 2

♦ Algorithm nearly same as parallel rendering, except 
– each voxel scaled as well as translated during resampling, so  

» more than 2 voxel scanlines may need to be traversed simultaneously to 
contribute to the intermediate image scanline, and 

» voxel scanlines may not be traversed at the same rate as image scanlines 
– choose factors so closest slice has unit scaling (all the rest will 

have < 1, so no slice will be enlarged) 
– use a box reconstruction filter and a box low-pass filter

     Shear-Warp      9/22/14                                                                            R. Daniel Bergeron14

Fast Classification Algorithm

♦ 2 algorithms presented don’t allow experimentation with 
transfer function (it’s done in run-length encoding) 

♦ 3rd  variation keeps the full volume and evaluates opacity 
transfer while rendering; need to avoid unnecessary 
computations  

♦ Key data structures 
– min-max octree: each node stores min/max of all children; built at 

data loading time; it is not dependent on transfer fcn 
– summed area table: built after transfer fcn defined 
– 3D voxel array
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Summed Area Table
♦ Summed area table developed by Crow (84) for texture mapping 

– entry i,j in summed area table is sum of image entries from 0,0 to i,j 
– can get sum of any rectangle (i
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Transfer Function Evaluation

♦ Opacity transfer function can be of form: 
 α = f( p, q, … ) where p might be data value, q the length of 

the gradient, or whatever. 
– given a threshold, f partitions the multidim space (defined 

by p,q, …) into transparent/non-transparent regions 
– for region of volume that just contains current scanline 

1. find extrema of parameters: min and max of p,q,… 
2. determine if opacity is transparent throughout the region  

♦ if so, discard scanline since it is transparent everywhere 
♦ else if scanline is small enough, render it 
♦ else subdivide scanline (and region) and recurse
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Region Transparency Test
♦ Min-max octree contains extrema of opacity function parameter values in each 

node (subcube of volume) 
♦ For step 2 above, need to integrate f over region of parameter space defined by 

parameter extrema 
– Build summed area table for opacity function where indexes are discretized values of 

parameters 
– use pmin, pmax, qmin, qmax to find sum of all possible values of function in the region; if 

sum is 0, region must be transparent everywhere. 
– if parameters can take on large ranges, need to quantize some or all of the parameters to keep 

table to manageable size 
– if there are 3 parameters, need 3d summed area table
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Fast Classification Rendering Algorithm
♦ Build min-max octree as preprocessing step; octree is independent of 

both view and transfer function 
♦ Just before rendering, build summed area table based on current 

opacity transfer function 
♦ Use either parallel or perspective algorithm accessing 3d array of 

voxels in scanline order 
– for each scanline, use octree and SA table to skip transparent regions 
– for non-transparent regions, classify each voxel via a lookup table and proceed 

as before. 
– opaque regions of the image still cause voxel processing to be skipped. 
– note that voxel classification never done in transparent volume regions or 

opaque image regions; that saves computation
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Fast Classification Limitations

♦ Octree traversal and SA table computations add overhead 
– can be reduced by avoiding re-computation: e.g., transparency test for an octree node 

is computed once on demand, then saved in the tree 
♦ Opacity transfer function has restrictions 

– parameters must be available and function pre-computable for each voxel in order to 
build octree 

– domain of parameter space  must be manageable 
– context-sensitive segmentation does not satisfy these restrictions 

♦ If major view axis changes, access to scanlines in the 3d array won’t 
follow storage order. For large volumes get thrashing. 

– can reorder the array, but that causes delay 
– best to use this algorithm only for small range of views; once desired opacity 

function is defined, switch to one of other algorithms.
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Performance Results

♦ Lacroute/Levoy tested on a modest machine: SGI Indigo R4000 
with 64Mbytes and no graphics accelerator 

♦ 256x256x225 head MRI data set using gray scale 
                             Parallel    Perspective   Fast classification/Parallel 
Avg time (sec) 1.2    3.3        2.8 
Memory (Mb) 13    13        61 

♦ Color rendering takes about twice as long 
♦ Ray casting versions were 5 times longer for 1283 data sets and 

10 times longer for 2563 data sets
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Image Quality
♦ Many images are virtually identical to ray casting. The 2 

resampling steps might lead to blurring, but they don’t see it.
Shear-Warp Ray Casting
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Other Images
256x256x159: Parallel 2.2 sec        256x256x110: Perspective 3.8 sec

     Shear-Warp      9/22/14                                                                            R. Daniel Bergeron23

Image Quality Problems
♦ Shear-warp uses 2d rather than 3d filter to resample volume data. 

It is 1st order in plane of slice but 0-order between slices. 
– could be a problem with high frequencies perpendicular to slices; example 

below classifies with extremely sharp ramps to get high freq. and uses 
worst possible viewing angle (close to 45 degrees             

Shear-warp                Ray caster           Shear-warp w/smoother  classification


