	Problem
Database Support for Multisource Multiresolution Scientific Data R. Daniel Bergeron Ted M. Sparr Philip Rhodes Andy Foulks Xuan Tang Li Ye Lorna Ellis (and others)	 Scientists are faced with increasingly large and complex data sets Tools for managing this data are inadequate scientific database systems have yet to prove useful vast majority of scientists still organize data in files Need better support for scientific data processing a formal model for describing scientific data database and other software to implement that model in an efficient manner
23:05 Bergeron	1 23:05 Bergeron
Talk Overview	Modern Scientific Data
 Talk Overview Nature and structure of modern scientific data Multiresolution and adaptive resolution representations of large data sets Lack of good database tools for supporting scientific applications Formal data model for scientific data Prototype system to support the data model 	Modern Scientific Data Huge in size Complex Multidimensional and multivariate Multisource Distributed Data is too large and too complex to access directly as a single entity - especially in an environment.

Scientific Data Size

- Increasing computing power means ever more *simulation* data
- Better instrumentation means ever more *sampled* data from real world phenomena
- Analyzing and understanding this massive amount of data is yet another problem, especially when humans must be involved.
- Need to reduce size to manageable levels: *multiresolution data representation*

Scientific Data Complexity

Scientific data is usually defined in a *multidimensional space* and has multiple data values at points in that space (*multivariate*)
Scientists often focus on small *subsets* of a very large data set, both spatially and by variate
Scientific data is often organized in multiple sources that should be processed as a single entity
Increasingly, scientific data is *distributed* over multiple locations

23:05	Bergeron	5	23:05	Bergeron	6

Physical Data Storage Options

- . Given multivariate data at points in space
 - *point-order* storage groups the variates of each point into a record and stores each record as a unit in a file
 - *attribute-order* storage segregates all values of each variate together
- In both cases, data can be stored in multiple files
 - attribute-order data usually has 1 attribute per file
 - point-order data may be organized in *blocks* where each (spatial) block of data is stored in a separate file

Conceptual View vs. Physical Storage

- Scientist (application code) would like to view the data in a form that is natural for the task.
- . Examples
 - data stored in 4 files in attribute order; program accesses it as 1 file in point order.
 - volume data stored in 100 files, one per slice; program accesses at a single 3D file.
 - 4 attribute data stored in 1 file in point order; program sees 2 attribute data in attribute order

7

23:05

Distributed Scientific Data

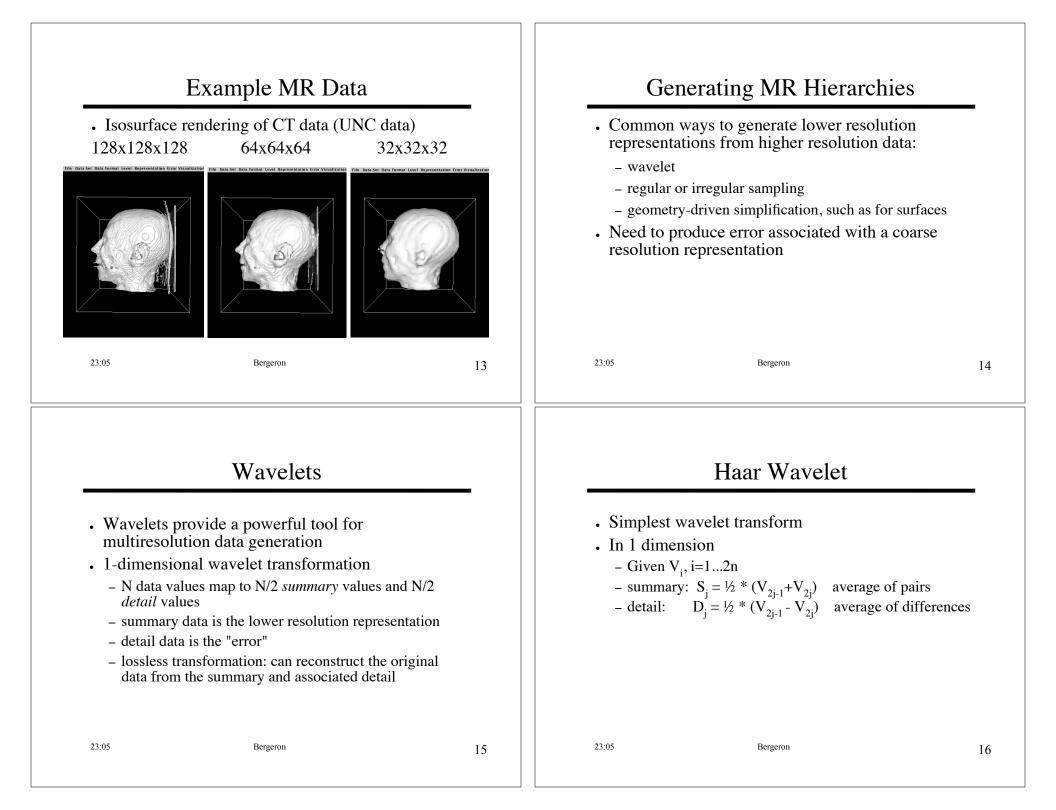
- Scientists need to access large distributed scientific data sets
- Distribution and multiresolution are natural fit
 - coarsest resolutions on workstation
 - next few finer resolutions on LAN
 - finest resolutions in archives on WAN
- Distribution and multisource data also fit
 - Spatial/temporal blocks can be distributed
 - Multiple attributes can be distributed

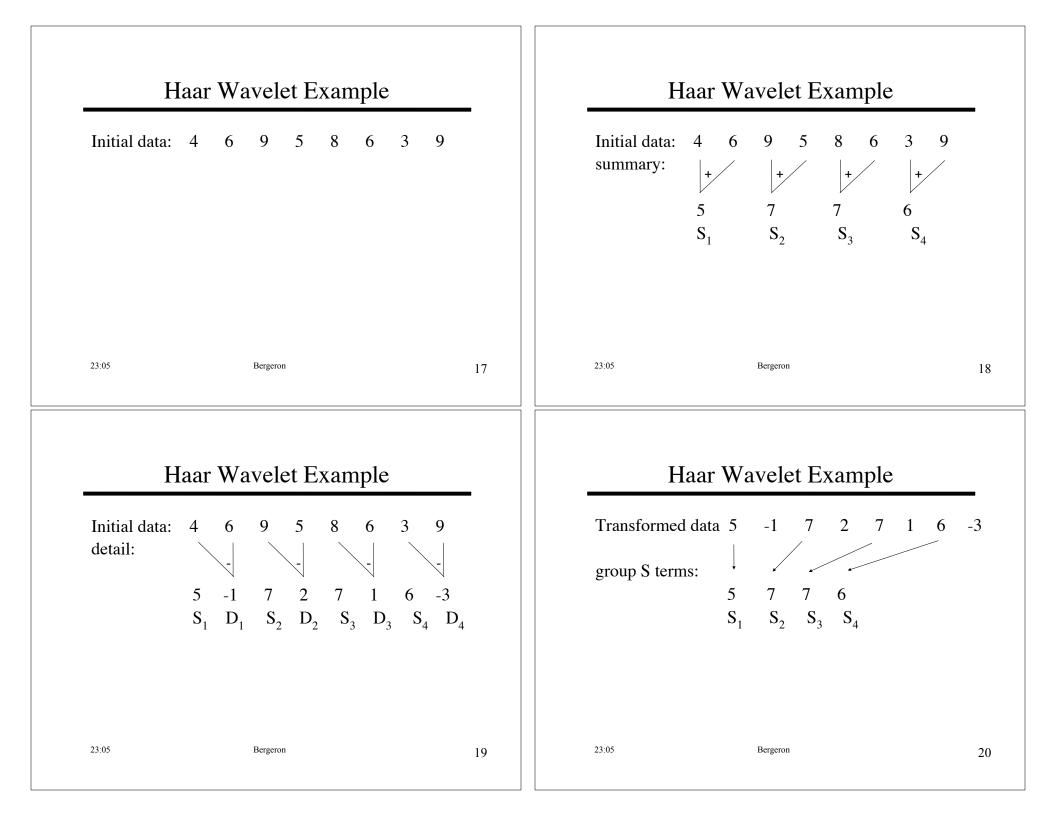
Distributed Scientific Environment

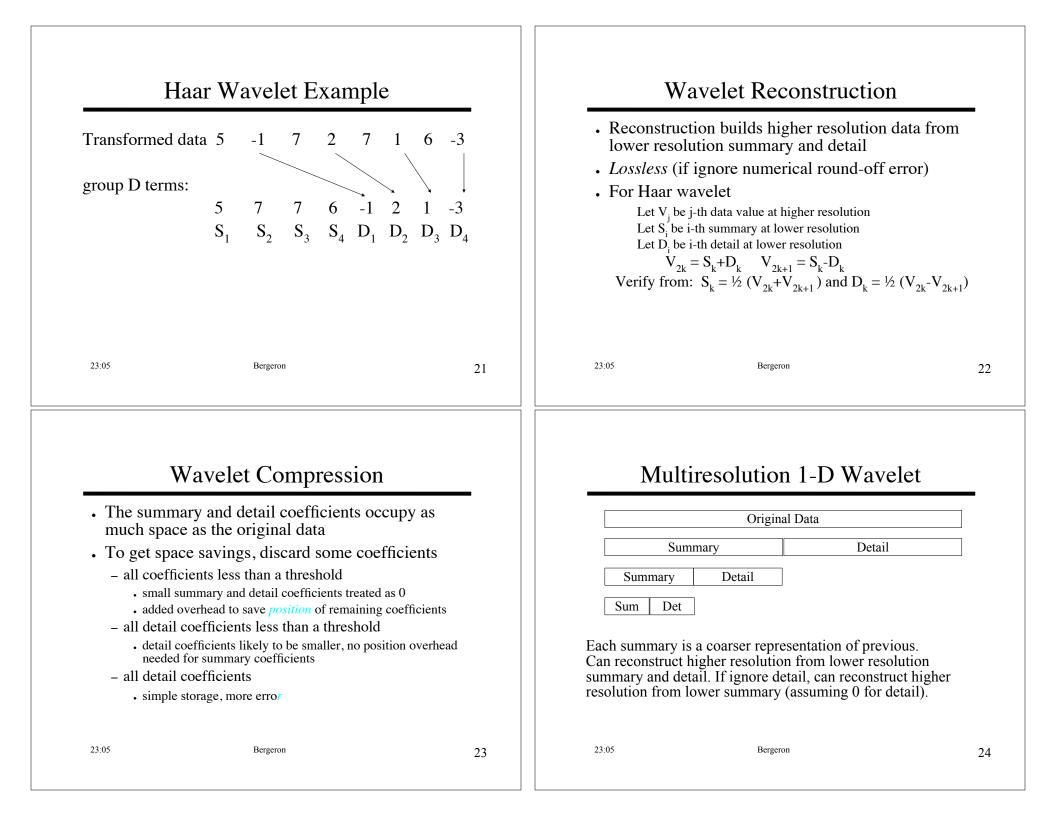
- Support for distributed data and processing needed by scientific applications
- transparent access
 - requires no special code or knowledge except the data set name (e.g., url)
- semi-transparent access
 - makes some aspects of the distribution visible
- *Grid computing* research should help *if* it supports small scale grids as well as super grids

23:05	Bergeron	9	23:05	Bergeron	10

Interactive Data Access Paradigm

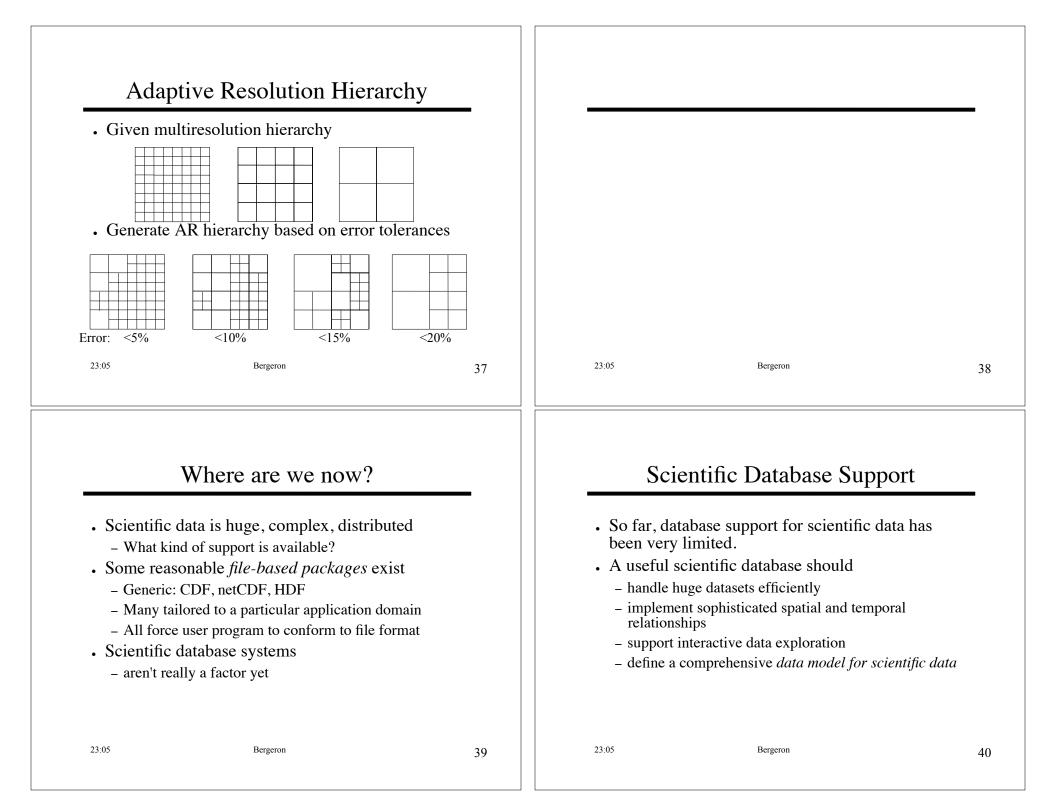

- A scientist can only handle a small subset of the data, both computationally and cognitively
 - a low resolution abstraction of a large amount of data, *or*
 - a small amount of high resolution data
- . Key requirements for interactive data access
 - seamless transition between resolution levels
 - error representation for each resolution
 - *adaptive resolution* data modelling and visualization tools


Multiresolution Data

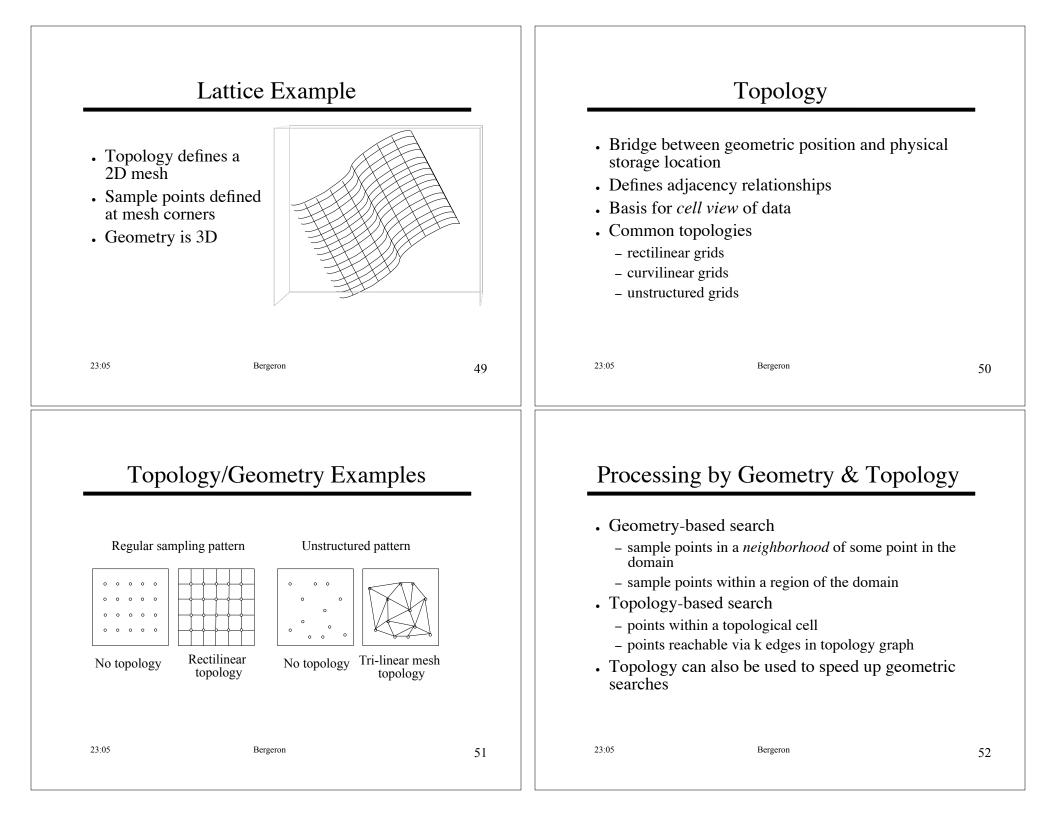

- Hierarchy of resolutions for the same data set, generated offline
- Maintain local error for each resolution
- . Need not save all resolution levels
- For a specific task, access the appropriate resolution level in the hierarchy, possibly determined by a user-specified *error tolerance*

11

23:05



2-D Wavelet Data Selection • Given a 2-D array of input data • Simpler abstraction approach: select a subset of - apply 1-D wavelet to each row the data for the lower resolution - apply 1-D wavelet to resulting columns - random or pseudo random selection might reduce aliasing artifacts D SS SD D SS SD - regular selection maintains distribution of data S SS SD S D . discard every other data value in each dimension S D DS DD • same data reduction characteristics as wavelets S D DS DD D DS DD • Need to explicitly compute an error metric • The summary data is $\frac{1}{4}$ the size of the input • This approach extends easily to higher dimensions 23:05 Bergeron 23:05 Bergeron 25 26 Using Low Resolution Data **Error Generation** • Typically low resolution data can be used by the same algorithms that process full resolution data • Want *local error* for low resolution data • But, are the results reliable? - every data value should have corresponding error value - for visualization, should provide some - cumulative error: error resulting if low feedback *locally* to show the authenticity of the resolution data is used to reconstruct an visualization approximation to original data - Best: a single visualization including both data and error. This is hard. • Wavelet transform produces error for one step, but accumulating it is complicated -OK: 2 renderings: one of data, one of error 23:05 Bergeron 23:05 Bergeron 27 28


Error is map 128x128x128	Piped to hue (red is high 64x64x64	32x32x32		 Often need set from a l Wavelet use summ Otherwise Replicate Interpola 	ower re mary and e low re	solutior d detail solutior	one (which poin	ch may ts	y be (0)	a
23:05	Bergeron		29	23:05		Bergeron					
											_
Reco	onstruction Exar	nple 1D		Reco	onstru	ction	Exa	mple	e 11)	
		nple 1D		Reco • Simple 1D			Exa	mple	e 11)	
• Simple 1D	example					9		1	e 11) 9	
• Simple 1D o Orig data:	example 4 6 9 5 8	6 3 9		• Simple 1D	example 4 6	e 95	5 8	1			
• Simple 1D	example 4 6 9 5 8	6 3 9		• Simple 1D Orig data:	example 4 6 5	e 95 7	5 8 7	6			
• Simple 1D o Orig data:	example 4 6 9 5 8	6 3 9		• Simple 1D Orig data: Summary:	example 4 6 5	e 95 7	5 8 7	6	3 6	9	

• Simple 11) exa	mple	;							• Simple 1D e	exan	nple							
Orig data:		6		5	8	6	3	9		_		-	9	5	8	6	3	9	
Summary:	5		7		7		6			Summary:	5		7		7		6		
Replication	: 5	5	7	7	7	7	6	6		Replication:	5	5	7	7	7	7	6	6	
Error:	1	-1	-2	2	-1	1	3	-3		Error:	1	-1	-2	2	-1	1	3	-3	
										Interpolation:	5	6	7	7	7	6.5	6	6	
23:05			Berger	on					33	23:05			Berger	on					
Rec	ons	truc			xan	nple	e 1E)		Ada	pti	ve	Res	solu	ıtio	n D	ata		
			ctio		xan	nple	e 1E)			-						ata		
Rec) exa		ctio		xan 8	nple 6	2 1E) 9		Ada Different res Build by sel	solu ecti	tion ng p	s in c arts	one c			ata		
Rec • Simple 11 Orig data: Summary:	D exa 4 5	mple 6	etio 9 7	n E	8 7	•	3 6			Ada Different res Build by sel from differe	solu ecti ent N	tion ng p IR 1	s in c arts evels	one c			ata		
Rec • Simple 11 Orig data:	D exa 4 5	mple 6	ctio	n E		•	3		_	Ada Different res Build by sel from differe – local reso	solu ectin nt N	tion ng p 4R 1 on b	s in c arts evels ased	one o s on	data		ata		
Rec • Simple 11 Orig data: Summary:	D exa 4 5	mple 6	etio 9 7	n E 5	8 7	6	3 6	9		Ada Different res Build by sel from differe – local reso local erro – data stora	solu ectinent N olutionr at	tion ng p IR 1 on b chos nore	s in c arts evels ased sen 1 c com	one on on level	lata		ata		
Rec • Simple 11 Orig data: Summary: Replication:	D exa 4 5 : 5 1	mple 6 5 -1	9 7 7 -2	n E 5 7 2	8 7 7 -1	6 7 1	3 6 6 3	9 6 -3		Ada Different res Build by sel from differe – local reso local erro	solu ectin ent N olutio or at age r ple a	tion ng p IR 1 on b chos nore array	s in c arts evels ased sen 1 c com	one on on level nplez	lata		ata		

Data N	Iodel for MR Scientific Data	_	Data Mode	ls
 <i>hoc</i> Scientific enough of Need a rig framewor Need an <i>i</i> 	e data support packages are generally <i>ad</i> e databases have not yet proved efficient r powerful enough gorous <i>formal model</i> to provide a ek for building software support <i>implementation model</i> that utilizes technology where effective		 Data models are the basis for an <i>Relational</i> and <i>object</i> models and Neither is particularly effective 	re most prevalent
23:05	Bergeron	41	23:05 Bergeron	4
Goals	s of a Scientific Data Model	_	Scientific Data I	Model
 Model sp Model boresolution Model pa Model err Should lead 	t a wide range of scientific data atial relationships implicitly oth multiresolution and adaptive n data artitioned and distributed data ror in the data d to better analysis and visualization n less need for <i>ad ho</i> c design and/or code		 Need to model wide range of data – generalize notion of a grid – support both spatial and temporal Need formal abstractions for – the <i>domain</i> in which data exists – the <i>structure</i> of the data – representations of the data at diff – <i>error</i> – <i>conceptual view</i> that differs from 	l data ferent <i>resolutions</i>
23:05	Bergeron	43	23:05 Bergeron	4

Motivation for Our Data Model Database Framework • Concentrate on scientific data that is spatial (or • Basic MR/AR concepts are generic can be treated as if it is spatial) • Expect to be able to make better and more general - we call this *dimensional* data analysis and support software based on a clean • Database support is a critical component and comprehensive data model – less ad hoc code - store extensive metadata about the scientific data • Want database system support for - access to data is via the database - access to different resolutions • Scientific data itself is not stored in the database - error representation - data is in files or on the net - data distribution - processing distribution 23.05 Bergeron 23.05 Bergeron 45 46 Lattice Key Components • Lattice is a set of sample points in a space (geometry) • Lattice - represents a conceptual data set - sample points represent a function over a domain • Topology • Sample points may be organized in a grid (topology) - encapsulates implicit spatial/temporal data relations - structured or unstructured • Geometry - often represents spatial/temporal proximity - formalizes the space in which the data lives - partitions topological space into cells • DataSource • Approximating function produces data values - abstraction of the physical storage of lattice data everywhere in the topological space - compatible with multi-dimensional arrays • Error function estimates data error everywhere 23:05 23:05 Bergeron Bergeron 47 48

 Models the mapping of the conceptual lattice to the physical data layer Models the notion of a computational space Based on viewing the physical layer as a multi-dimensional array PhysicalDataSource is a direct representation of a data file (or url) PhysicalDataSource is a direct representation of a data file (or url) Data sources do <u>not</u> actually contain data; they just describe a conceptual view and how to get the data associated with that view PhysicalDataSource is a direct representation of a data file (or url) PhysicalDataSource spatially combines 2 or more spatially symmetric data sources with different attributes BlockedDataSource spatially combines 2 or more data sources with matching attributes BlockedDataSource spatially combines 2 or more data sources with matching attributes Stava is implementation platform portability, distributed computing support, future potential Major Components Data Source Lattice Implementation guidelines critical for adequate performance Very large data sets impose difficult constraints Data access cost dominates, need to minimize Voors to store the data Avoid reading data that is nt actually needed emony costs to store the data use tax you'device treation related to individual data values is diminize data copying Caching and pre-fetching important 		Data Source		D	ata Source Framework	
Implementation Overview Implementation Guidelines • Java is implementation platform • Very large data sets impose difficult constraints • portability, distributed computing support, future potential • Very large data sets impose difficult constraints • Major Components • Data access cost dominates, need to minimize • Lattice • Avoid reading data that isn't actually needed • Implementation guidelines critical for adequate performance • Use lazy evaluation for data access • Avoid object creation related to individual data values • Minimize data copying	 the physical Models the r Based on vie dimensional PhysicalDat 	data layer notion of a computational space ewing the physical layer as a multi- array aSource is a direct representation o	f	just descr the data a PhysicalL - defines a AttributeJ spatially s attributes BlockedD	ibe a conceptual view and how to get associated with that view DataSource maps directly to a data file dimensionality, sizes, record formats, etc. JoinDataSource combines 2 or more symmetric data sources with different DataSource spatially combines 2 or more	2
 Java is implementation platform portability, distributed computing support, future potential Major Components Data Source Lattice Implementation guidelines critical for adequate performance Implementation guidelines critical for adequate performance Minimize data copying Very large data sets impose difficult constraints Data access cost dominates, need to minimize I/O costs to read the data Avoid reading data that isn't actually needed memory costs to store the data cpu costs to access the data Use lazy evaluation for data access Avoid object creation related to individual data values Minimize data copying Minimize data copying Data access cost dominates, need to minimize I/O costs to read the data Avoid reading data that isn't actually needed memory costs to access the data Use lazy evaluation for data access Avoid object creation related to individual data values	23:05	Bergeron	53	23:05	Bergeron	
 portability, distributed computing support, future potential Major Components Data Source Lattice Implementation guidelines critical for adequate performance Implementation guidelines critical for adequate performance Data access cost dominates, need to minimize I/O costs to read the data Avoid reading data that isn't actually needed memory costs to store the data cpu costs to access the data Use lazy evaluation for data access Avoid object creation related to individual data values Minimize data copying 						
	Impl	lementation Overview		Im	plementation Guidelines	

IVIA	jor Data Source Classes		Curre	nt Implementation Status	II
 DataSou definit does n Datum collect mostly DataBloct 	ion of a <i>conceptual data store</i> ot actually contain data, defines how to get it tion of data values located at a point v a conceptual object; avoid actually creating Datur	ms	– mySQL – XML-ba • Persistent	t DataSource definition database version implemented used file definitions implemented t Lattice definition not complete nce testing harness implemented	
23:05	Bergeron	57	23:05	Bergeron	58
	Conclusions			Future Work	
 dimension multivary implicity multisou multireson We have an intermediate the model 	ed a Scientific Data Model that supports onal data (spatial and temporal) iate and multidimensional data spatial and temporal relations rce and distributed data olution and adaptive resolution data a prototype system that indicates that el is implementable, and efficient enough (within Java performance nts)	s	– multires – transpar	ementation does not yet fully suppo olution and adaptive resolution data ent distribution of data ion of processing e	ort