
Texture-Based DVR 9/26/14 R. Daniel Bergeron1

Texture-Based Direct Volume Rendering
R. Daniel Bergeron

Department of Computer Science
University of New Hampshire

Durham, NH 03824
!
Based on:
Van Gelder and Kim, Direct volume rendering with shading via 3D textures, Vis ’96.
LaMar et al., Multresolution techniques for interactive texture-based volume visualization, Vis ’99.

Texture-Based DVR 9/26/14 R. Daniel Bergeron2

Overview

♦ Hardware texture mapping is a great tool for dvr
♦ 2D texture mapping

– create 2d slices through volume
– map data in each slice to a texture with color and opacity
– assign the texture to a polygon representing the slice
– render the polygons (slices); let hardware composite textures

♦ 3D texture mapping
– map volume data to a 3D texture with color and opacity
– create rectangles parallel to screen, map these to positions in the 3D

texture map and render with compositing

Texture-Based DVR 9/26/14 R. Daniel Bergeron3

2D Texture Map Review

♦ Texture maps defined in st parameter space
♦ Associate a texture map with a polygon

– define a mapping from 2D plane of polygon to texture space
♦ Map pixel to polygon plane and then to texture space
♦ Blend texels to get pixel value

s

t

Texture Space

y

x

u
v

z

pixel

Texture-Based DVR 9/26/14 R. Daniel Bergeron4

2D Texture Map Hardware

♦ Define polygon to texture space mapping by assigning
texture coordinates to each vertex

♦ Map the polygon to the screen space
♦ Interpolate across texture space as scan convert

polygon across image space

s

t

Texture Space

y

xz

Texture-Based DVR 9/26/14 R. Daniel Bergeron5

2D Texture Map Hardware (cont)
♦ Texture map support on graphics cards does most of the mapping and filtering
♦ Most boards today also implement hierarchical texture map called A-buffer

– Compress several resolution  
levels into a single texture map

– Hardware selects resolution  
level and does interpolation  
within and between resolutions

♦ Supports opacity and RGB
Red pixels
at highest
resolution

Green pixels
at highest
resolution

Blue pixels
at highes
resolution

R G

B R G
B

Texture-Based DVR 9/26/14 R. Daniel Bergeron6

3D Texture Map Review

♦ Define an RGBA volume as a texture in rst space
♦ Map polygon vertices to the 3D texture space
♦ Interpolate through 3D texture space as scan convert

polygons 3D Texture Space

y

xz

s

tr

Texture-Based DVR 9/26/14 R. Daniel Bergeron7

Basic 2D Texture-Based DVR
♦ Original data slices are used to generate texture maps

– Use xy or yz or xz planes, depending on the view
» Generate 3 sets of texture maps as pre-processing step, or
» Dynamically regenerate texture maps as orientation passes 45° steps

– Each slice becomes a rectangle to render with its associated
texture mapped to its surface

– Render from back to front
♦ Artifacts at large angles Image space

Render from back to front
Texture-Based DVR 9/26/14 R. Daniel Bergeron8

Voltx – Van Gelder & Kim

♦ Polygons always parallel to image plane
– fewer artifacts
– smoother transitions

♦ User-specified classification defines interior surfaces
♦ Add light source reflection from classified surfaces

– incorporate both reflection and ambient light into textures
– need to recompute textures if light source changes or if

orientation of volume changes

Texture-Based DVR 9/26/14 R. Daniel Bergeron9

Voltx: Creating Texture Maps

♦ Each texel in texture map corresponds to a voxel
– it is a color and opacity derived from voxel data
– combined ambient and reflective components

♦ Ambient component
– “luminous gas” model, but only needs to integrate through a single

“slab” of the volume (between two slices). Assume Δ for integration
is constant (not really true for perspective)

♦ Reflective component
– needs a classification algorithm to identify whether there is a

reflection; if so, just add standard shading model, using surface
normal (gradient)

Texture-Based DVR 9/26/14 R. Daniel Bergeron10

Voltx: Classification

♦ User specifies a set of boundary values and a scale factor for
each boundary that applies to a probability function in the
region of the boundary.

♦ System uses the boundary value, the gradient at each point,
and the scaled probability function to generate the weight for
the reflective component.

♦ E.g., if bone is identified as 110 or higher and have a voxel of
value 114 and gradient magnitude of 10, assume bone surface
is .4 units from voxel in negative gradient direction. But, 130
with same gradient is not reflective.

Texture-Based DVR 9/26/14 R. Daniel Bergeron11

Voltx: Computing Texel Values

♦ Texel values depend on light and orientation
♦ Need to change maps often, needs to be fast
♦ Build a lookup table for each material based on a quantized

representation of the gradient.
– Generate points on a sphere that are “evenly” distributed

» triangular tesselation
» icosahedron (12 vertices) and a dodecahedron (20 vertices) produce an

initial set of 60 triangles that are recursively subdivided. They used 4 levels
of recursion yielding over 7600 directions.

– Quantize a gradient to one of these directions map it to an index
into a table of colors for that material.

Texture-Based DVR 9/26/14 R. Daniel Bergeron12

Voltx: Rendering Slices

♦ Create new volume centered at origin  
with sides = diagonal of original  
and slices parallel to image plane.  
Slices called a “proxy” geometry

♦ Create 3D texture map in new volume
♦ Force texture coordinates to range  

from 0-1 inside original volume
♦ Can define transformation that maps world volume coord

(x,y,z) to texture coord (r,s,t)
♦ Rotations done by rotating texture map

Texture-Based DVR 9/26/14 R. Daniel Bergeron13

Voltx: Defining the View
♦ Given volume is nx × ny × nz with spacing (Δx, Δy, Δz)

– Let Nx, Ny, Nz be the least powers of 2 greater than nx, ny,
nz

– Let Lx=Nx Δx, Ly=Ny Δy, Lz=Nz Δz, d=(Lx
2+ Ly

2+ Lz
2)½

– Map original llf corner (-½ nx Δx, -½ ny Δy, -½ nz Δz) to
texture (0,0,0) and original opposite corner (½ nx Δx, ½ ny
Δy, ½ nz Δz) to (nx /Nx, ny /Ny, nz /Nz)

d

Lx

nx Δx

(0,0,0) tex=(-½ nx Δx, -½ ny Δy, -½ nz Δz)
(1,1,1)tex

!

Orig
volume

(nx /Nx, ny /Ny, nz /Nz)tex

Texture-Based DVR 9/26/14 R. Daniel Bergeron14

Voltx: Defining the View-2

♦ The mapping constraints are satisfied with
r(x) = (x+½ nx Δx) / Lx
s(y) = (y+½ ny Δy) / Ly
t(z) = (z+½ nz Δz) / Lz
– corners of bounding cube are at (±½ d, ±½ d, ±½ d)  

map these to texture coords using r,s,t above, will be outside the range
(0,1)

♦ (r,s,t) = (x,y,z)D-1R-1ST
where D-1 is uniform scale by 1/d, R is rotation of volume,  

S is scale by (d/Lx, d/Ly, d/Lz), and  
T is a translation by (½ nx Δx, ½ ny Δy, ½ nz Δz)

Texture-Based DVR 9/26/14 R. Daniel Bergeron15

Voltx: Rendering Planes

♦ Planes can have regions outside the volume
– use OpenGL clipping planes so don’t “render” empty voxels
– user can redefine clipping planes to clip even more

♦ Number of planes
– by default use d/Δz planes; with default view each data point

is sampled by one plane; 643 volume has 110 planes
– more planes means more accurate images; they use 2-4

times default since extra planes aren’t very costly

Texture-Based DVR 9/26/14 R. Daniel Bergeron16

Multiresolution Volumes

(from LaMar, Hamann, and Joy in Visualization ’99)
♦ Given a point of interest, render close regions at high

resolution, farther regions at coarser resolution
♦ Generate multiresolution texture hierarchy
♦ Generate octree representation of volume
♦ Given point of interest and viewing parameters, traverse the

octree; at each node:
– skip node entirely (subtree is outside viewing frustum)
– render this node and skip all children
– do not render this node, traverse its children

Texture-Based DVR 9/26/14 R. Daniel Bergeron17

Generating Texture Hierarchies
♦ Textures are composed of tiles

– linear interpolation used between tile centers, but texture function is undefined outside the centers of boundary pixels. 1-d example of 8-pixel tile, function
defined over 7 pixels !

♦ 2-level texture hierarchy – share boundary pixels !!
– Image represented by A can be approximated by B with half the pixels and B can be the parent of A in a binary tree
– In 3d, B is 1/8 the size of A and is the octree parent

 texture function domain

A0
A1

Level A

Level B

Texture-Based DVR 9/26/14 R. Daniel Bergeron18

Rendering: Selecting Tiles
♦ Traverse octree from root (coarsest level) down

If tile of the current node is outside viewing frustum, return
field-of-view criterion: select tile if it intersects the view frustum and tile’s

projected angle < field of view
distance criterion: select tile if distance from point of  

interest to center of tile > diagonal length of tile.
If tile is selected
 render it
else
 visit its children

tile

field of view

Texture-Based DVR 9/26/14 R. Daniel Bergeron19

Distance Criterion: 2D example

Level 0
256 tiles

Level 1
64 tiles

Level 2
16 tiles

Level 3
4 tiles

Level 4
1 tiles

Point of
interest

Texture-Based DVR 9/26/14 R. Daniel Bergeron20

Proxy Geometries

♦ Proxy geometry: the object to which textures are mapped
– Object-aligned planes (OAP): original slices

fastest, supported by lots of boards only 2D texturing needed, needs 3 sets
of planes, light attenuation not correct if distance between planes not
constant (worst at 45 degree angles)

– Viewport-aligned planes (VAP): slices parallel to image plane
only 1 3D texture, orthographic projections correct, not supported by all

boards, more complex, still has some artifacts
– Viewpoint-centered spherical shells (VCSS): concentric

spherical shells centered at point of interest
3D textures needed, no artifacts in perspective projection, slower

Texture-Based DVR 9/26/14 R. Daniel Bergeron21

Proxy Visual Differences

Object Aligned Planes Viewport-Aligned Planes Viewpoint-centered
spherical shells

Texture-Based DVR 9/26/14 R. Daniel Bergeron22

Multiresolution Proxy Geometries

Object-Aligned Planes Viewport-Aligned Planes

VCSS

Texture-Based DVR 9/26/14 R. Daniel Bergeron23

Preserving Visual Properties

♦ Varying resolutions introduce opacity properties
– Traditional algorithms use equal step sizes along rays and

integral approximation is based on step size
– Samples along proxy geometries are at different distances

from each other. Adjust opacity equations to compensate.
α1,c1 α2,c2α0,c0

C

C*

Can get approximately the same value for C and C* by letting  
α* = 1 – (1 – α)2 = 2α – α2

In general, if high resolution is k times resolution of low resolution:  
α* = 1 – (1 – α)k

Texture-Based DVR 9/26/14 R. Daniel Bergeron24

Sample Output

Horse metacarpus
fixed full resolution
VCSS
2.87 secs

Horse metacarpus
adaptive resolution
VCSS
1.53 secs

