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Overview

♦ Hardware texture mapping is a great tool for dvr 
♦ 2D texture mapping 

– create 2d slices through volume 
– map data in each slice to a texture with color and opacity 
– assign the texture to a polygon representing the slice 
– render the polygons (slices); let hardware composite textures 

♦ 3D texture mapping 
– map volume data to a 3D texture with color and opacity 
– create rectangles parallel to screen, map these to positions in the 3D 

texture map and render with compositing
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2D Texture Map Review

♦ Texture maps defined in st parameter space 
♦ Associate a texture map with a polygon 

– define a mapping from 2D plane of polygon to texture space 
♦ Map pixel to polygon plane and then to texture space 
♦ Blend texels to get pixel value
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2D Texture Map Hardware

♦ Define polygon to texture space mapping by assigning 
texture coordinates to each vertex 

♦ Map the polygon to the screen space 
♦ Interpolate across texture space as scan convert 

polygon across image space
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2D Texture Map Hardware (cont)
♦ Texture map support on graphics cards does most of the mapping and filtering 
♦ Most boards today also implement hierarchical texture map called A-buffer 

– Compress several resolution  
levels into a single texture map 

– Hardware selects resolution  
level and does interpolation  
within and between resolutions 

♦ Supports opacity and RGB
Red pixels 
at highest 
resolution

Green pixels 
at highest 
resolution

Blue pixels 
at highes 
resolution
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3D Texture Map Review

♦ Define an RGBA volume as a texture in rst space 
♦ Map polygon vertices to the 3D texture space 
♦ Interpolate through 3D texture space as scan convert 

polygons 3D Texture Space
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Basic 2D Texture-Based DVR
♦ Original data slices are used to generate texture maps 

– Use xy or yz or xz planes, depending on the view 
» Generate 3 sets of texture maps as pre-processing step, or 
» Dynamically regenerate texture maps as orientation passes 45° steps 

– Each slice becomes a rectangle to render with its associated 
texture mapped to its surface 

– Render from back to front 
♦ Artifacts at large angles Image space

Render from back to front
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Voltx – Van Gelder & Kim

♦ Polygons always parallel to image plane 
– fewer artifacts 
– smoother transitions 

♦ User-specified classification defines interior surfaces 
♦ Add light source reflection from classified surfaces 

– incorporate both reflection and ambient light into textures 
– need to recompute textures if light source changes or if 

orientation of volume changes
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Voltx: Creating Texture Maps

♦ Each texel in texture map corresponds to a voxel 
– it is a color and opacity derived from voxel data 
– combined ambient and reflective components  

♦ Ambient component 
– “luminous gas” model, but only needs to integrate through a single 

“slab” of the volume (between two slices). Assume Δ for integration 
is constant (not really true for perspective) 

♦ Reflective component 
– needs a classification algorithm to identify whether there is a 

reflection; if so, just add standard shading model, using surface 
normal (gradient)
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Voltx: Classification

♦ User specifies a set of boundary values and a scale factor for 
each boundary that applies to a probability function in the 
region of the boundary. 

♦ System uses the boundary value, the gradient at each point, 
and the scaled probability function to generate the weight for 
the reflective component. 

♦ E.g., if bone is identified as 110 or higher and have a voxel of 
value 114 and gradient magnitude of 10, assume bone surface 
is .4 units from voxel in negative gradient direction. But, 130 
with same gradient is not reflective.
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Voltx: Computing Texel Values

♦ Texel values depend on light and orientation 
♦ Need to change maps often, needs to be fast 
♦ Build a lookup table for each material based on a quantized 

representation of the gradient.  
– Generate points on a sphere that are “evenly” distributed 

» triangular tesselation 
» icosahedron (12 vertices) and a dodecahedron (20 vertices) produce an 

initial set of 60 triangles that are recursively subdivided. They used 4 levels 
of recursion yielding over 7600 directions. 

– Quantize a gradient to one of these directions map it to an index 
into a table of colors for that material.
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Voltx: Rendering Slices

♦ Create new volume centered at origin  
with sides = diagonal of original  
and slices parallel to image plane.  
Slices called a “proxy” geometry 

♦ Create 3D texture map in new volume 
♦ Force texture coordinates to range  

from 0-1 inside original volume 
♦ Can define transformation that maps world volume coord 

(x,y,z) to texture coord (r,s,t) 
♦ Rotations done by rotating texture map
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Voltx: Defining the View
♦ Given volume is nx × ny × nz with spacing (Δx, Δy, Δz) 

– Let Nx, Ny, Nz be the least powers of 2 greater than nx, ny, 
nz 

– Let Lx=Nx Δx,   Ly=Ny Δy,   Lz=Nz Δz,   d=(Lx
2+ Ly

2+ Lz
2)½ 

– Map original llf corner (-½ nx Δx, -½ ny Δy, -½ nz Δz) to 
texture (0,0,0) and original opposite corner (½ nx Δx, ½ ny 
Δy, ½ nz Δz) to (nx /Nx, ny /Ny, nz /Nz)

d

Lx

nx Δx

(0,0,0) tex=(-½ nx Δx, -½ ny Δy, -½ nz Δz)  
(1,1,1)tex 

!
 

Orig 
volume

(nx /Nx, ny /Ny, nz /Nz)tex
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Voltx: Defining the View-2

♦ The mapping constraints are satisfied with 
r(x) = (x+½ nx Δx) / Lx 
s(y) = (y+½ ny Δy) / Ly 
t(z) = (z+½ nz Δz) / Lz 
– corners of bounding cube are at (±½ d, ±½ d, ±½ d)  

map these to texture coords using r,s,t above, will be outside the range 
(0,1) 

♦ (r,s,t) = (x,y,z)D-1R-1ST 
where D-1 is uniform scale by 1/d, R is rotation of volume,  

S is scale by (d/Lx, d/Ly, d/Lz), and  
T is a translation by (½ nx Δx, ½ ny Δy, ½ nz Δz)
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Voltx: Rendering Planes

♦ Planes can have regions outside the volume 
– use OpenGL clipping planes so don’t “render” empty voxels 
– user can redefine clipping planes to clip even more 

♦ Number of planes 
– by default use d/Δz planes; with default view each data point 

is sampled by one plane; 643 volume has 110 planes 
– more planes means more accurate images; they use 2-4 

times default since extra planes aren’t very costly

Texture-Based DVR    9/26/14                                                 R. Daniel Bergeron16

Multiresolution Volumes

(from LaMar, Hamann, and Joy in Visualization ’99) 
♦ Given a point of interest, render close regions at high 

resolution, farther regions at coarser resolution 
♦ Generate multiresolution texture hierarchy 
♦ Generate octree representation of volume 
♦ Given point of interest and viewing parameters, traverse the 

octree; at each node: 
– skip node entirely (subtree is outside viewing frustum) 
– render this node and skip all children 
– do not render this node, traverse its children
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Generating Texture Hierarchies
♦ Textures are composed of tiles 

– linear interpolation used between tile centers, but texture function is undefined outside the centers of boundary pixels. 1-d example of 8-pixel tile, function 
defined over 7 pixels !

♦ 2-level texture hierarchy – share boundary pixels !!
– Image represented by A can be approximated by B with half the pixels and B can be the parent of A in a binary tree 
– In 3d, B is 1/8 the size of A and is the octree parent

 texture function domain 

A0
A1

Level A

Level B
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Rendering: Selecting Tiles
♦ Traverse octree from root (coarsest level) down 

If tile of the current node is outside viewing frustum, return 
field-of-view criterion: select tile if it intersects the view frustum and tile’s 

projected angle <  field of view  
distance criterion: select tile if distance from point of  

interest to center of tile > diagonal length of tile. 
If tile is selected  
 render it 
else  
 visit its children

tile

field of view
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Distance Criterion: 2D example

Level 0 
256 tiles

Level 1 
64 tiles

Level 2 
16 tiles

Level 3 
4 tiles

Level 4 
1 tiles

Point of 
interest
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Proxy Geometries

♦ Proxy geometry: the object to which textures are mapped 
– Object-aligned planes (OAP): original slices 

fastest, supported by lots of boards only 2D texturing needed, needs 3 sets 
of planes, light attenuation not correct if distance between planes not 
constant (worst at 45 degree angles) 

– Viewport-aligned planes (VAP): slices parallel to image plane 
only 1 3D texture, orthographic projections correct, not supported by all 

boards, more complex, still has some artifacts 
– Viewpoint-centered spherical shells (VCSS): concentric 

spherical shells centered at point of interest 
3D textures needed, no artifacts in perspective projection, slower
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Proxy Visual Differences

Object Aligned Planes Viewport-Aligned Planes Viewpoint-centered 
spherical shells
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Multiresolution Proxy Geometries

Object-Aligned Planes Viewport-Aligned Planes

VCSS
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Preserving Visual Properties

♦ Varying resolutions introduce opacity properties 
– Traditional algorithms use equal step sizes along rays and 

integral approximation is based on step size 
– Samples along proxy geometries are at different distances 

from each other. Adjust opacity equations to compensate.
α1,c1 α2,c2α0,c0

C

C*

Can get approximately the same value for C and C* by letting  
α* = 1 – (1 – α)2 = 2α –  α2   

In general, if high resolution is k times resolution of low resolution:  
α* = 1 – (1 – α)k
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Sample Output

Horse metacarpus 
fixed full resolution 
VCSS  
2.87 secs

Horse metacarpus 
adaptive resolution 
VCSS  
1.53 secs


