Texture-Based Direct Volume Rendering

R. Daniel Bergeron
Department of Computer Science
University of New Hampshire
Durham, NH 03824

Based on:
Van Gelder and Kim, Direct volume rendering with shading via 3D textures, Vis "96.
LaMar et al., Multresolution techniques for interactive texture-based volume visualization, Vis ’99.

Texture-Based DVR ~ 9/26/14 1 R. Daniel Bergeron

Overview

Hardware texture mapping is a great tool for dvr

2D texture mapping
create 2d slices through volume
map data in each slice to a texture with color and opacity
assign the texture to a polygon representing the slice
render the polygons (slices); let hardware composite textures

3D texture mapping
map volume data to a 3D texture with color and opacity

create rectangles parallel to screen, map these to positions in the 3D
texture map and render with compositing

Texture-Based DVR 9/26/14 2 R. Daniel Bergeron

2D Texture Map Review

Texture maps defined in st parameter space

Associate a texture map with a polygon
define a mapping from 2D plane of polygon to texture space

Map pixel to polygon plane and then to texture space

Blend texels to get pixel value

Texture Space

Texture-Based DVR 9/26/14 3 R. Daniel Bergeron

2D Texture Map Hardware

Define polygon to texture space mapping by assigning
texture coordinates to each vertex
Map the polygon to the screen space

Interpolate across texture space as scan convert
polygon across image space

Texture Space

t

R. Daniel Bergeron

2D Texture Map Hardware (cont)

Texture map support on graphics cards does most of the mapping and filtering
Most boards today also implement hierarchical texture map called A-buffer

Compress several resolution
levels into a single texture map
Hardware selects resolution
level and does interpolation
within and between resolutions

Supports opacity and RGB

Red pixels Green pixels
at highest at highest

3D Texture Map Review

resolution resolution
Blue pixels R G
at highes
resolution R |G
B
B HH
Texture-Based DVR 9/26/14 5 R. Daniel Bergeron

Define an RGBA volume as a texture in st space
Map polygon vertices to the 3D texture space
Interpolate through 3D texture space as scan convert
polygons

3D Texture Space

Texture-Based DVR 9/26/14 6 R. Daniel Bergeron

Basic 2D Texture-Based DVR

Original data slices are used to generate texture maps

Use xy or yz or xz planes, depending on the view
Generate 3 sets of texture maps as pre-processing step, or
Dynamically regenerate texture maps as orientation passes 45° steps

Each slice becomes a rectangle to render with its associated
texture mapped to its surface

Render from back to front
Artifacts at large angles

Imag}sm{

\.

[

Render from back to front

Texture-Based DVR 9/26/14 7 R. Daniel Bergeron

Voltx — Van Gelder & Kim

——

Polygons always parallel to image plane
fewer artifacts
smoother transitions
User-specified classification defines interior surfaces
Add light source reflection from classified surfaces
incorporate both reflection and ambient light into textures

need to recompute textures if light source changes or if
orientation of volume changes

Texture-Based DVR 9/26/14 8 R. Daniel Bergeron

Voltx: Creating Texture Maps

Each fexel in texture map corresponds to a voxel
it is a color and opacity derived from voxel data
combined ambient and reflective components

Ambient component

“luminous gas” model, but only needs to integrate through a single
“slab” of the volume (between two slices). Assume A for integration
is constant (not really true for perspective)

Reflective component

needs a classification algorithm to identify whether there is a
reflection; if so, just add standard shading model, using surface
normal (gradient)

Texture-Based DVR 9/26/14 9 R. Daniel Bergeron

Voltx: Classification

User specifies a set of boundary values and a scale factor for
each boundary that applies to a probability function in the
region of the boundary.

System uses the boundary value, the gradient at each point,
and the scaled probability function to generate the weight for
the reflective component.

E.g., if bone is identified as 110 or higher and have a voxel of
value 114 and gradient magnitude of 10, assume bone surface
is .4 units from voxel in negative gradient direction. But, 130

with same gradient is not reflective.

Texture-Based DVR 9/26/14 10 R. Daniel Bergeron

Voltx: Computing Texel Values

Texel values depend on light and orientation
Need to change maps often, needs to be fast

Build a lookup table for each material based on a quantized
representation of the gradient.

Generate points on a sphere that are “evenly” distributed
triangular tesselation
icosahedron (12 vertices) and a dodecahedron (20 vertices) produce an
initial set of 60 triangles that are recursively subdivided. They used 4 levels
of recursion yielding over 7600 directions.
Quantize a gradient to one of these directions map it to an index
into a table of colors for that material.

Texture-Based DVR 9/26/14 11 R. Daniel Bergeron

Voltx: Rendering Slices

Create new volume centered at origin
with sides = diagonal of original

and slices parallel to image plane.
Slices called a “proxy” geometry

Create 3D texture map in new volume

Force texture coordinates to range =
from 0-1 inside original volume

Can define transformation that maps world volume coord
(x,y,z) to texture coord (r,s,t)

Rotations done by rotating texture map

Texture-Based DVR 9/26/14 12 R. Daniel Bergeron

Voltx: Defining the View

Given volume is n, x n_ x n_ with spacing (Ax, Ay, Az) (0 /N, 0y /Ny, 0, /N,

Voltx: Defining the View-2

LetN, Ny, N_ be the least powers of 2 greater thann , n /

n

z

/

2,002, 12 >
Let L=N_Ax, L=N Ay, L=N Az, d=(L+L+L, nAx |
Map original lIf corner (-2 n_Ax, -V2 n Ay, -%2n Az) to

texture (0,0,0) and original opposite corner (2 n_Ax, /2 n Orig

Ay’ & nz AZ) to (nx /Nx’ ny /Ny’ nz /NZ) volume

Texture-Based DVR ~ 9/26/14 13

—

(0,0,0) ,,=(-Y2 n, Ax, -2 n, Ay, -/ n, Az) (L1 Diex
R. Daniel Bergeron

The mapping constraints are satistied with
r(x) = (x+2n Ax) /L,
s(y)=(y+2n Ay) /L,
t(z) = (z+/2n,Az) /L,

corners of bounding cube are at (+% d, £/ d, £}2 d)
map these to texture coords using r,s,t above, will be outside the range

(0,1)
(1,8,t) = (x,y,2)D'R'ST
where D! is uniform scale by 1/d, R is rotation of volume,
S is scale by (d/L_, d/Ly, d/L,), and
T is a translation by (Y2 n_Ax, 2 n, Ay, /2n, Az)

Texture-Based DVR 9/26/14 14 R. Daniel Bergeron

Voltx: Rendering Planes

Planes can have regions outside the volume

use OpenGL clipping planes so don’t “render” empty voxels
user can redefine clipping planes to clip even more

Number of planes

Texture-Based DVR 9/26/14 15

by default use d/Az planes; with default view each data point
is sampled by one plane; 643 volume has 110 planes

more planes means more accurate images; they use 2-4
times default since extra planes aren’t very costly

R. Daniel Bergeron

Multiresolution Volumes

(from LaMar, Hamann, and Joy in Visualization ’99)
Given a point of interest, render close regions at high
resolution, farther regions at coarser resolution
Generate multiresolution texture hierarchy
Generate octree representation of volume
Given point of interest and viewing parameters, traverse the
octree; at each node:
skip node entirely (subtree is outside viewing frustum)

render this node and skip all children
do not render this node, traverse its children

Texture-Based DVR 9/26/14 16 R. Daniel Bergeron

Generating Texture Hierarchies

Textures are composed of tiles

linear interpolation used between tile centers, but texture function is undefined outside the centers of boundary pixels. 1-d example of 8-pixel tile, function
defined over 7 pixels

2-level texture hierarchy — share boundary pixels

Image represented by A can be approximated by B with half the pixels and B can be the parent of A in a binary tree
In 3d, B is 1/8 the size of A and is the octree parent

texture function domain

LevelA [] [[[[[I F [| [[[[[¢]
|

LevelB [] [[

Texture-Based DVR 9/26/14 17 R. Daniel Bergeron

Rendering: Selecting Tiles

Traverse octree from root (coarsest level) down
If tile of the current node is outside viewing frustum, return

field-of-view criterion: select tile if it intersects the view frustum and tile’s
projected angle < field of view

distance criterion: select tile if distance from point of
interest to center of tile > diagonal length of tile.

If tile is selected

render it
else

visit its children

\ﬁe

\

Texture-Based DVR 9/26/14 18

1d of view

R. Daniel Bergeron

Distance Criterion: 2D example

Proxy Geometries

B
Level 0 Level 1 Level 2 Level 3 Level 4
256 tiles 64 tiles 16 tiles 4 tiles 1 tiles

Point of 1]
. I |
interest I I
1 1
Texture-Based DVR 9/26/14 19 R. Daniel Bergeron

Proxy geometry: the object to which textures are mapped
Object-aligned planes (OAP): original slices
fastest, supported by lots of boards only 2D texturing needed, needs 3 sets

of planes, light attenuation not correct if distance between planes not
constant (worst at 45 degree angles)

Viewport-aligned planes (VAP): slices parallel to image plane

only 1 3D texture, orthographic projections correct, not supported by all
boards, more complex, still has some artifacts

Viewpoint-centered spherical shells (VCSS): concentric
spherical shells centered at point of interest
3D textures needed, no artifacts in perspective projection, slower

Texture-Based DVR 9/26/14 20 R. Daniel Bergeron

Proxy Visual Differences

Viewpoint-centered
spherical shells

Object Aligned Planes

Viewport-Aligned Planes

Texture-Based DVR 9/26/14 21 R. Daniel Bergeron

Multiresolution Proxy Geometries

- - 'd \ N \ \
lo-Lor| o LONERN [
=11 [/)@/‘\“ Y
:
[---/?: T ,||/\\’b \
HE s [Vi) v L
; /
[~~~ ' \Ig/ Tl 1
i N 'd.>: o 7 {)’,
........ P / I
oo o

Object-Aligned Planes

\ T
2 N IR
SV REERR!
T g
<V 7O |
A AR
1
i (IR
[N R B
! T
NN [N
\H\.\‘\‘ [N
" o
! 1

Texture-Based DVR 9/26/14 22 R. Daniel Bergeron

Preserving Visual Properties

Varying resolutions introduce opacity properties

Traditional algorithms use equal step sizes along rays and
integral approximation is based on step size
Samples along proxy geometries are at different distances

from each other. Adjust opacity equations to compensate.
O‘():C() a,C ,,Cy

|
C

Can get approximately the same value for C and C* by letting
a*=1-(1-0)=20- o2

In general, if high resolution is k times resolution of low resolution:
a*=1—-(1-o)

Texture-Based DVR 9/26/14 23 R. Daniel Bergeron

Sample Output

Horse metacarpus
fixed full resolution

Horse metacarpus
adaptive resolution

VCSS VCSS
2.87 secs 1.53 secs
Texture-Based DVR 9/26/14 24 R. Daniel Bergeron

