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Overview

¢ Model data as a translucent gas or gel
— need to assign material properties to data values
¢ Classification — assign color / opacity to data val

— Opacity transfer function — maps data value and other
parameters (such as gradient) to opacity value

— Color transfer function — same for color
¢ Segmentation — applic-dependent “labeling” of data
values, typically a priori.
— gradient often used as ad hoc effort to segment

9/17/14 R. Daniel Bergeron




Volume Rendering Integral

¢

¢
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Treat volume as particles with density w.

Send ray through each pixel in image plane; for each wavelength A, the light
reaching pixel is

where L is ray length, C, (s) is light reflected at s in ray direction.
u(s) 1s a weight based on density — larger density means more reflected light.
Integral accumulates intensity, but attenuates it (the exponential) as it passes

through material.
u defines rate at which light is occluded per unit length due to scattering or

extinction
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Volume Rendering Integral Approximation

¢

¢
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Using Riemann sum approximation and using » as # samples
L, = 2ic0.0C, (iAs) u(iAs) AsIli i1 exp(-u(jAs) As))
Now replace exponential term with 2 terms of Taylor expans.

exp(-u(jAs) As)) = 1- u(jAs) As
and define transparency t(jAs) as

t(jAs) = exp(-u(jAs) As))
and opacity, a(jAs) =1 - t(jAs) = w(jAs) As

and: L, = Xi-0.nC,, (ihs) ains) Ilig i1 (1- aiAs))
for As=1, we get: £, = Yo 4G, () (i) Iizg iy (1- )

Do this for R,G,B: summing intensities of individual samples, each of which is
attenuated by the product of transparencies accumulated as light passes from sample
to pixel.
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Recursive Approximation

¢ Dropping A, and expanding we get
C=Cyo,+ Co,(l-0y) + Cyo, (1-a))(1-ap) + ...
Can compute recursively using
Cou = Cip T(1-04,) 0, G CoCi GG

Aoyt = Qi Jr(I'Otin) Q; I:} Qo |0 Py (O3

This is front-to-back image composition (Duff’s ever operator).

back-to-front ordering only needs to recursively compute color component
Cout = Ci + Cin (1'ai)

Gy IC, G, ICs Cs
QA (O o3 Qs

Note: compositing is associative, but D
not commutative: order matters
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DVR Approaches

¢ Image order approach: process from the image plane
to the object
— also called backward rendering
— ray casting 1s classic image order algorithm
¢ Object order approach: process from the object to the
image plane
— also called forward rendering
— splatting 1is the classic object order algorithm
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Image Order Issues

¢ Volume rendering equation approximation

— 1mprove accuracy and/or speed
¢ Interpolation

— calculating data values between grid points is vital
¢ Curvilinear and unstructured grids

— basic approaches map nicely to rectilinear grids, others are
more difficult to handle

¢ Faster ray traversal
¢ Hardware designed for volume rendering
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Volume Rendering Eqn. 2

¢ Has been much work to make integration faster and
more accurate

¢ Alternative is to dramatically simplify the
approximation at the cost of accuracy:

— Maximum Intensity Projection (MIP): simply find the
maximum data value along the ray and project its “color”.

— works well for angiography (highlight blood vessels)
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Drebin et al., Siggraph ‘88

¢ CT data

¢ Basic segmentation based on probabilities
— from segmentation, produced density, color and opacity

¢ Estimated gradient by simple forward differencing
— Used gradient to infer surfaces for reflections
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Segmentation

¢ Segmentation is often ad hoc, but shouldn’t make
binary decisions

— for CT, X-ray absorption of materials is known a priori as a
probability distribution function (pdf)

prob. air

soft tissue

CT value
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Segmentation 2

¢ Given a voxel has the value I,
probability of getting I, P(I) = . p, P,(I)
where p, is the probability of getting material / and
P.(I) is probability that material i has value 1

Using Bayesian estimation,
p(D= Pi(I)/(EJ. P].(I) ) which can be implemented as lookup

¢ Only 2 materials overlap: get simple relationship:

soft tissue

Y
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Density, color, opacity

¢ “density”, D, computed as
D(I) = 3. p; pi(I) where p, is density of material i
¢ color and opacity (rgba)
— C(D = 2;piD o (R,G;,By)
¢ For each x,y,z, estimate by forward differences
5 gradlent N(X9Yaz) (Dx+l Dy-‘r]_D z+1 -D )
— normalized gradient: n(x,y,z) = N(x,y,z)/|| N(X,y,z)
— strength: || N(x,y,z) ||

¢ n(x,y,z) 1s used in lighting model for reflected light from a light
source.
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Ray Tracing Volume Data

( Notes from Levoy in Introduction to Volume Rendering, Siggraph 91 tutorial.)

¢ Data assumed to be samples of a continuous scalar
function (voxel as point not volume)

¢ Sampling lattice is rectilinear and uniformly spaced
¢ Pixel spacing < voxel spacing
¢ Other typical simplifications

— one ray per pixel (no supersampling)
— parallel projection
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View Specification

¢ Need view specification, image plane, volume location
— Parallel projection along major axis

» integral mapping of voxel address space to pixel address space: 1-1
1s easiest; usually have projection of a voxel map to k x k pixels

» arbitrary mapping requires interpolation
— Arbitrary parallel projection
» need view direction and size of image space
» usually voxel address space as “world coordinates”
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Coordinate Systems

¢ Object space
— coordinate axes correspond to volume array indices
— typically NxNxN

¢ Image space
— PxP pixels in image
— PxPxW sample points Voxel i,j,k with value, color, opacity

Pixel u,v with color
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Resampling

¢ Calculating color/opacity inside a voxel is resampling
the functions

¢ Sample at even spacing along ray
¢ Sampling rate (for typical CT and MR data)

— less than voxel spacing introduces artifacts
— more than twice per voxel doesn’t help much

¢ Use trilinear interpolation
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Trilinear Interpolation

From Graphics Gems V, p. 521
¢ Linear interpolation between 2 sample values:
v.=(-f )v,+fv, where0=f =<1, also written as

V=V, T (V- V)
¢ In 2-dimensions, interpolate from 4 points
ny=(1—fx) (l—fy)V00 +(1-f) ny01 + fx(l—fy) VieT fxfy Vi
¢ But, more efficient (3 mults) to do 2 linear steps:
Vo~ Yoo T fx (Vig™ Vo)
Vg )

ny: VXO = fy (Vxl_ VXO)
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Trilinear Interpolation — 2

¢ And in 3D, interpolate from 8 points
Use 3 linear steps (7 mults)

V00~ Vooo T £ (V100 Vooo)
Veor= Voor T T (Vio1~ Voor)
Ve10= Voro T £ (Vi10™ Voro)

Vo= Vour T £ (Vin- Vo)

Vg0~ Vx00 T fy (Vx10~ Vxo0)
M fy s o)

nyz: nyO T fz (nyl_ nyO)
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Splatting

¢ Westover, VolVis Symposium 89 and Siggraph 90

¢ Each voxel drawn on 1image plane as a cloud of points
(footprint), covering many pixels

¢ Voxel treated as a single value “thrown at the screen”

¢ Example of feed forward convolution as opposed to a
feed backward convolution
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Feed Backward Convolution

¢ Output (pixel value) 1s weighted average of input data

¢ Center a convolution kernel at the output (pixel)
location and gather data points that project onto kernel

¢ Touch each output sample once
¢ Touch each input data point many times

Data points ®
Filter kernel

ole | o4 | o o
Pixel sample points
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Feed Forward Convolution

¢ Input energy spread to many outputs (pixels)

¢ Center kernel at data point and distribute to output
pixels (really a 3D convolution)

¢ Touch each input data point once
¢ Touch each output often

Data points o
Filter kernel

Pt

Pixel sample points
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Splatting: Ideal

¢ Feed forward and incremental reconstruction

¢ [deal splatting
center kernel at D
evaluate kernel

multiply by input value at D
contributiony(x,y,z) = h(X-Xp, y-Yp,2-zp)P(D)
where h evaluates the convolution function

— of course, this is terribly expensive
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Splatting: Dimension Reduction

¢ Want 2D 1mage from 3D data
— given pixel at (x,y), want the contribution for each point, D
— center kernel at D

— project weighted kernel onto (X,y) plane (assumes parallel
projection along the z-axis)
contribution(x,y) = p(D)f h(x-Xp, y-yp,W)dw
— Note integral is independent of the density (p); it depends
only on (X,y) projected location; leads to footprint function:
footprint(x,y) = [ h(x, y,w)dw

where (x,y) 1s the displacement from projected sample point
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Footprint Function Tables

¢ Can integrate the kernel function into a
generic footprint table

¢ for each voxel
transform to screen space

for each pixel in the extent of the footprint
map back to precomputed table

composite the weighted contribution
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