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Overview

♦ Model data as a translucent gas or gel 
– need to assign material properties to data values 

♦ Classification – assign color / opacity to data val 
– Opacity transfer function – maps data value and other 

parameters (such as gradient) to opacity value 
– Color transfer function – same for color 

♦ Segmentation – applic-dependent “labeling” of data 
values, typically a priori. 
– gradient often used as ad hoc effort to segment
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Volume Rendering Integral

♦ Treat volume as particles with density µ. 
♦ Send ray through each pixel in image plane; for each wavelength λ, the light 

reaching pixel is  
 

!
♦ where L is ray length, Cλ(s) is light reflected at s in ray direction.  

µ(s) is a weight based on density – larger density means more reflected light. 
Integral accumulates intensity, but attenuates it (the exponential) as it passes 
through material.  
µ defines rate at which light is occluded per unit length due to scattering or 
extinction
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Volume Rendering Integral Approximation
♦ Using Riemann sum approximation and using n as # samples 

    Iλ = ∑i=0..nCλ (iΔs) µ(iΔs) ΔsΠj=0..i-1 exp(-µ(jΔs) Δs)) 
♦ Now replace exponential term with 2 terms of Taylor expans.  

               exp(-µ(jΔs) Δs)) = 1- µ(jΔs) Δs  
and define transparency t(jΔs) as  
               t(jΔs) = exp(-µ(jΔs) Δs))  
and opacity, α(jΔs) = 1 - t(jΔs)  = µ(jΔs) Δs  
and:      Iλ = ∑i=0..nCλ (iΔs) α(iΔs) Πj=0..i-1 (1- α(jΔs))  
for Δs=1, we get: Iλ = ∑i=0..nCλ (i) α(i) Πj=0..i-1 (1- α(j)) 

♦ Do this for R,G,B: summing intensities of individual samples, each of which is 
attenuated by the product of transparencies accumulated as light passes from sample 
to pixel.
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Recursive Approximation

♦ Dropping λ, and expanding we get 
C = C0α0 + C1α1(1-α0) + C2α2 (1-α1)(1-α0) + … 

♦ Can compute recursively using 
Cout = Cin +(1-αin) αi Ci  

αout = αin +(1-αin) αi 

This is front-to-back image composition (Duff’s over operator). 
!
back-to-front ordering only needs to recursively compute color component 
Cout = αi Ci  + Cin (1-αi) 
!
Note: compositing is associative, but  

not commutative: order matters

C0  C1  C2  C3   C4  C5   C6  C7 
α0   α1  α2   α3   α4   α5   α6  α7

C0  C1  C2  C3   C4  C5   C6  C7 
α0   α1  α2   α3   α4   α5   α6  α7
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DVR Approaches

♦ Image order approach: process from the image plane 
to the object 
– also called backward rendering 
– ray casting is classic image order algorithm 

♦ Object order approach: process from the object to the 
image plane 
– also called forward rendering 
– splatting is the classic object order algorithm
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Image Order Issues

♦ Volume rendering equation approximation 
– improve accuracy and/or speed 

♦ Interpolation 
– calculating data values between grid points is vital 

♦ Curvilinear and unstructured grids 
– basic approaches map nicely to rectilinear grids, others are 

more difficult to handle 
♦ Faster ray traversal 
♦ Hardware designed for volume rendering
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Volume Rendering Eqn. 2

♦ Has been much work to make integration faster and 
more accurate 

♦ Alternative is to dramatically simplify the 
approximation at the cost of accuracy: 
– Maximum Intensity Projection (MIP): simply find the 

maximum data value along the ray and project its “color”. 
– works well for angiography (highlight blood vessels)
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Drebin et al., Siggraph ‘88

♦ CT data 
♦ Basic segmentation based on probabilities 

– from segmentation, produced density, color and opacity 
♦ Estimated gradient by simple forward differencing 

– Used gradient to infer surfaces for reflections
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Segmentation

♦ Segmentation is often ad hoc, but shouldn’t make 
binary decisions 
– for CT, X-ray absorption of materials is known a priori as a 

probability distribution function (pdf)

air

fat soft tissue
bone

CT value

prob.
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Segmentation 2
♦ Given a voxel has the value I, 

probability of getting I, P(I) =  ∑i pi Pi(I)  
where pi is the probability of getting material i and  
Pi(I) is probability that material i has value I 

Using Bayesian estimation,  
 pi(I) = Pi(I)/(∑j Pj(I) )  which can be implemented as lookup 

♦ Only 2 materials overlap: get simple relationship: 
 

air fat soft tissue bone

CT value

100%

0%.
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Density, color, opacity

♦ “density”, D, computed as  
D(I) = ∑i ρi pi(I) where ρi is density of material i 

♦ color and opacity (rgbα) 
– C(I) = ∑i pi(I) αi (Ri,Gi,Bi) 

♦ For each x,y,z, estimate by forward differences 
– gradient: N(x,y,z) = (Dx+1-Dx, Dy+1-Dy, Dz+1-Dz) 
– normalized gradient: n(x,y,z) = N(x,y,z)/|| N(x,y,z) 
– strength: || N(x,y,z) || 

♦ n(x,y,z) is used in lighting model for reflected light from a light 
source.
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Ray Tracing Volume Data

( Notes from Levoy in Introduction to Volume Rendering, Siggraph 91 tutorial.) 
♦ Data assumed to be samples of a continuous scalar 

function (voxel as point not volume) 
♦ Sampling lattice is rectilinear and uniformly spaced 
♦ Pixel spacing < voxel spacing 
♦ Other typical simplifications 

– one ray per pixel (no supersampling) 
– parallel projection
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View Specification

♦ Need view specification, image plane, volume location 
– Parallel projection along major axis 

» integral mapping of voxel address space to pixel address space: 1-1 
is easiest; usually have projection of a voxel map to k x k pixels 

» arbitrary mapping requires interpolation 
– Arbitrary parallel projection 

» need view direction and size of image space 
» usually voxel address space as “world coordinates”
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Coordinate Systems
♦ Object space 

– coordinate axes correspond to volume array indices 
– typically NxNxN 

♦ Image space 
– PxP pixels in image 
– PxPxW sample points

Pixel u,v with color

Voxel i,j,k with value, color, opacity

Sample u,v,w with color and opacity
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Resampling
♦ Calculating color/opacity inside a voxel is resampling 

the functions  
♦ Sample at even spacing along ray 
♦ Sampling rate (for typical CT and MR data) 

– less than voxel spacing introduces artifacts 
– more than twice per voxel doesn’t help much 

♦ Use trilinear interpolation
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Trilinear Interpolation

From Graphics Gems V, p. 521 
♦ Linear interpolation between 2 sample values: 

vx=(1-fx)v0 + fxv1   where 0 ≤fx ≤ 1, also written as 
vx= v0 + fx (v1- v0) 

♦ In 2-dimensions, interpolate from 4 points 
vxy=(1-fx) (1-fy)v00 + (1-fx) fyv01 + fx(1-fy) v10 + fxfy v11 

♦ But, more efficient (3 mults) to do 2 linear steps: 
vx0= v00 + fx (v10- v00) 

vx1= v01 + fx (v11- v01) 
vxy= vx0 + fy (vx1- vx0)
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Trilinear Interpolation – 2

♦ And in 3D, interpolate from 8 points  
Use 3 linear steps (7 mults) 
vx00= v000 + fx (v100- v000) 

vx01= v001 + fx (v101- v001) 
vx10= v010 + fx (v110- v010) 
vx11= v011 + fx (v111- v011) 
vxy0= vx00 + fy (vx10- vx00) 
vxy1= vx01 + fy (vx11- vx01) 
vxyz= vxy0 + fz (vxy1- vxy0)

vx00

vx10

vx01

vx11vxy1

vxy0

vxyz
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Splatting 

♦ Westover, VolVis Symposium 89 and Siggraph 90 
♦ Each voxel drawn on image plane as a cloud of points 

(footprint), covering many pixels 
♦ Voxel treated as a single value “thrown at the screen” 
♦ Example of feed forward convolution as opposed to a 

feed backward convolution
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Feed Backward Convolution

♦ Output (pixel value) is weighted average of input data 
♦ Center a convolution kernel at the output (pixel) 

location and gather data points that project onto kernel 
♦ Touch each output sample once 
♦ Touch each input data point many times

Pixel sample points
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Filter kernel
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Feed Forward Convolution
♦ Input energy spread to many outputs (pixels) 
♦ Center kernel at data point and distribute to output 

pixels (really a 3D convolution) 
♦ Touch each input data point once 
♦ Touch each output often

Data points
Filter kernel

Pixel sample points
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Splatting: Ideal

♦ Feed forward and incremental reconstruction 
♦ Ideal splatting 

– center kernel at D 
– evaluate kernel 
– multiply by input value at D 

contributionD(x,y,z) = h(x-xD, y-yD,z-zD)ρ(D) 
where h evaluates the convolution function 

– of course, this is terribly expensive
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Splatting: Dimension Reduction

♦ Want 2D image from 3D data 
– given pixel at (x,y), want the contribution for each point, D 
– center kernel at D 
– project weighted kernel onto (x,y) plane (assumes parallel 

projection along the z-axis) 
contribution(x,y) = ρ(D)∫ h(x-xD, y-yD,w)dw 

– Note integral is independent of the density (ρ); it depends 
only on (x,y) projected location; leads to footprint function:  

footprint(x,y) = ∫ h(x, y,w)dw 
where (x,y) is the displacement from projected sample point
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Footprint Function Tables

♦ Can integrate the kernel function into a 
generic footprint table 

♦ for each voxel 
transform to screen space 
for each pixel in the extent of the footprint 

map back to precomputed table 
composite the weighted contribution


