Direct Volume Rendering

R. Daniel Bergeron
Department of Computer Science
University of New Hampshire
Durham, NH 03824

Based on:
Brodlie and Wood, Recent Advances in Visualization of Volumetric Data, Eurographics 2000 State of the Art Report.
Drebin et al., Volume Rendering, Siggraph 88.
Sabella, A Rendering Algorithm for Visualizing 3D Scalar Fields, Siggraph 88.
Levoy, Westover, et al., Introduction to Volume Rendering, Siggraph 90 Course Notes

Overview

- Model data as a translucent gas or gel
- need to assign material properties to data values
- Classification - assign color / opacity to data val
- Opacity transfer function - maps data value and other parameters (such as gradient) to opacity value
- Color transfer function - same for color
- Segmentation - applic-dependent "labeling" of data values, typically a priori.
- gradient often used as ad hoc effort to segment

Volume Rendering Integral

- Treat volume as particles with density μ.
- Send ray through each pixel in image plane; for each wavelength λ, the light reaching pixel is

$$
I_{\lambda}=\int_{0}^{L} C_{\lambda}(s) \mu(s) e^{-\int_{0}^{s} \mu(t) d t} d s
$$

- where L is ray length, $C_{\lambda}(s)$ is light reflected at s in ray direction. $\mu(\mathrm{s})$ is a weight based on density - larger density means more reflected light. Integral accumulates intensity, but attenuates it (the exponential) as it passes through material.
μ defines rate at which light is occluded per unit length due to scattering or extinction

Volume Rendering Integral Approximation

- Using Riemann sum approximation and using n as \# samples

$$
\left.I_{\lambda}=\sum_{\mathrm{i}=0 . \mathrm{n}} C_{\lambda}(i \Delta s) \mu(i \Delta s) \Delta s \Pi_{\mathrm{j}=0 . . \mathrm{i}-1} \exp (-\mu(j \Delta s) \Delta s)\right)
$$

- Now replace exponential term with 2 terms of Taylor expans.

$$
\exp (-\mu(j \Delta s) \Delta s))=1-\mu(j \Delta s) \Delta s
$$

and define transparency $t(j \Delta s)$ as

$$
t(j \Delta s)=\exp (-\mu(j \Delta s) \Delta s))
$$

and opacity, $\alpha(j \Delta s)=1-t(j \Delta s)=\mu(j \Delta s) \Delta s$
and: $\quad I_{\lambda}=\sum_{\mathrm{i}=0 . . \mathrm{n}} C_{\lambda}(i \Delta s) \alpha(i \Delta s) \prod_{\mathrm{j}=0 . . \mathrm{i}-1}(1-\alpha(j \Delta s))$
for $\Delta s=1$, we get: $I_{\lambda}=\sum_{\mathrm{i}=0 . . \mathrm{n}} C_{\lambda}(i) \alpha(i) \prod_{\mathrm{j}=0 . . \mathrm{i}-1}(1-\alpha(j))$

- Do this for R,G,B: summing intensities of individual samples, each of which is attenuated by the product of transparencies accumulated as light passes from sample to pixel.

Recursive Approximation

- Dropping λ, and expanding we get

$$
C=C_{0} \alpha_{0}+C_{1} \alpha_{1}\left(1-\alpha_{0}\right)+C_{2} \alpha_{2}\left(1-\alpha_{1}\right)\left(1-\alpha_{0}\right)+\ldots
$$

- Can compute recursively using
$\mathrm{C}_{\text {out }}=\mathrm{C}_{\text {in }}+\left(1-\alpha_{\text {in }}\right) \alpha_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$
$\alpha_{\text {out }}=\alpha_{\text {in }}+\left(1-\alpha_{\text {in }}\right) \alpha_{\text {i }}$

7	C_{0}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}
α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}	

This is front-to-back image composition (Duff's over operator).
back-to-front ordering only needs to recursively compute color component $\mathrm{C}_{\text {out }}=\alpha_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}+\mathrm{C}_{\mathrm{in}}\left(1-\alpha_{\mathrm{i}}\right)$

Note: compositing is associative, but not commutative: order matters

DVR Approaches

- Image order approach: process from the image plane to the object
- also called backward rendering
- ray casting is classic image order algorithm
- Object order approach: process from the object to the image plane
- also called forward rendering
- splatting is the classic object order algorithm

Image Order Issues

- Volume rendering equation approximation
- improve accuracy and/or speed
- Interpolation
- calculating data values between grid points is vital
- Curvilinear and unstructured grids
- basic approaches map nicely to rectilinear grids, others are more difficult to handle
- Faster ray traversal
- Hardware designed for volume rendering

Volume Rendering Eqn. 2

- Has been much work to make integration faster and more accurate
- Alternative is to dramatically simplify the approximation at the cost of accuracy:
- Maximum Intensity Projection (MIP): simply find the maximum data value along the ray and project its "color".
- works well for angiography (highlight blood vessels)

Drebin et al., Siggraph '88

- CT data
- Basic segmentation based on probabilities
- from segmentation, produced density, color and opacity
- Estimated gradient by simple forward differencing
- Used gradient to infer surfaces for reflections

Segmentation

- Segmentation is often ad hoc, but shouldn't make binary decisions
- for CT, X-ray absorption of materials is known a priori as a probability distribution function (pdf)

Segmentation 2

- Given a voxel has the value I,
probability of getting $\mathrm{I}, \mathrm{P}(\mathrm{I})=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}(\mathrm{I})$
where p_{i} is the probability of getting material i and
$\mathrm{P}_{\mathrm{i}}(\mathrm{I})$ is probability that material i has value I
Using Bayesian estimation,

$$
\mathrm{p}_{\mathrm{i}}(\mathrm{I})=\mathrm{P}_{\mathrm{i}}(\mathrm{I}) /\left(\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}}(\mathrm{I})\right) \text { which can be implemented as lookup }
$$

- Only 2 materials overlap: get simple relationship:

Density, color, opacity

- "density", D, computed as
$D(I)=\sum_{i} \rho_{i} p_{i}(I)$ where ρ_{i} is density of material i
- color and opacity (rgbo)
$-\mathrm{C}(\mathrm{I})=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}(\mathrm{I}) \alpha_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}\right)$
- For each $\mathrm{x}, \mathrm{y}, \mathrm{z}$, estimate by forward differences
- gradient: $N(x, y, z)=\left(D_{x+1}-D_{x}, D_{y+1}-D_{y}, D_{z+1}-D_{z}\right)$
- normalized gradient: $\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \| \mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
- strength: || $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \|$
- $\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is used in lighting model for reflected light from a light source.

Ray Tracing Volume Data

(Notes from Levoy in Introduction to Volume Rendering, Siggraph 91 tutorial.)

- Data assumed to be samples of a continuous scalar function (voxel as point not volume)
- Sampling lattice is rectilinear and uniformly spaced
- Pixel spacing < voxel spacing
- Other typical simplifications
- one ray per pixel (no supersampling)
- parallel projection

View Specification

- Need view specification, image plane, volume location
- Parallel projection along major axis
» integral mapping of voxel address space to pixel address space: 1-1 is easiest; usually have projection of a voxel map to kx k pixels
» arbitrary mapping requires interpolation
- Arbitrary parallel projection
» need view direction and size of image space
» usually voxel address space as "world coordinates"

Coordinate Systems

- Object space
- coordinate axes correspond to volume array indices
- typically NxNxN
- Image space
- PxP pixels in image
- PxPxW sample points

Pixel u,v with color

Resampling

- Calculating color/opacity inside a voxel is resampling the functions
- Sample at even spacing along ray
- Sampling rate (for typical CT and MR data)
- less than voxel spacing introduces artifacts
- more than twice per voxel doesn't help much
- Use trilinear interpolation

Trilinear Interpolation

From Graphics Gems V, p. 521

- Linear interpolation between 2 sample values:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}=\left(1-\mathrm{f}_{\mathrm{x}}\right) \mathrm{v}_{0}+\mathrm{f}_{\mathrm{x}} \mathrm{v}_{1} \text { where } 0 \leq \mathrm{f}_{\mathrm{x}} \leq 1 \text {, also written as } \\
& \mathrm{v}_{\mathrm{x}}=\mathrm{v}_{0}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{1}-\mathrm{v}_{0}\right)
\end{aligned}
$$

- In 2-dimensions, interpolate from 4 points

$$
v_{x y}=\left(1-f_{x}\right)\left(1-f_{y}\right) v_{00}+\left(1-f_{x}\right) f_{y} v_{01}+f_{x}\left(1-f_{y}\right) v_{10}+f_{x} f_{y} v_{11}
$$

- But, more efficient (3 mults) to do 2 linear steps:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x} 0}=\mathrm{v}_{00}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{10}-\mathrm{v}_{00}\right) \\
& \mathrm{v}_{\mathrm{x} 1}=\mathrm{v}_{01}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{11}-\mathrm{v}_{01}\right) \\
& \mathrm{v}_{\mathrm{xy}}=\mathrm{v}_{\mathrm{x} 0}+\mathrm{f}_{\mathrm{y}}\left(\mathrm{v}_{\mathrm{x} 1}-\mathrm{v}_{\mathrm{x} 0}\right)
\end{aligned}
$$

Trilinear Interpolation - 2

- And in 3D, interpolate from 8 points Use 3 linear steps (7 mults)

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x} 00}=\mathrm{v}_{000}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{100}-\mathrm{v}_{000}\right) \\
& \mathrm{v}_{\mathrm{x} 01}=\mathrm{v}_{001}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{101}-\mathrm{v}_{001}\right) \\
& \mathrm{v}_{\mathrm{x} 10}=\mathrm{v}_{010}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{110}-\mathrm{v}_{010}\right) \\
& \mathrm{v}_{\mathrm{x} 11}=\mathrm{v}_{011}+\mathrm{f}_{\mathrm{x}}\left(\mathrm{v}_{111}-\mathrm{v}_{011}\right) \\
& \mathrm{v}_{\mathrm{xy0} 0}=\mathrm{v}_{\mathrm{x} 00}+\mathrm{f}_{\mathrm{y}}\left(\mathrm{v}_{\mathrm{x} 10}-\mathrm{v}_{\mathrm{x} 00}\right) \\
& \mathrm{v}_{\mathrm{xy1}}=\mathrm{v}_{\mathrm{x} 01}+\mathrm{f}_{\mathrm{y}}\left(\mathrm{v}_{\mathrm{x} 11}-\mathrm{v}_{\mathrm{x} 01}\right) \\
& \mathrm{v}_{\mathrm{xyz}}=\mathrm{v}_{\mathrm{xy0} 0}+\mathrm{f}_{\mathrm{z}}\left(\mathrm{v}_{\mathrm{xy1}}-\mathrm{v}_{\mathrm{xy0}}\right)
\end{aligned}
$$

Splatting

- Westover, VolVis Symposium 89 and Siggraph 90
- Each voxel drawn on image plane as a cloud of points (footprint), covering many pixels
- Voxel treated as a single value "thrown at the screen"
- Example of feed forward convolution as opposed to a feed backward convolution

Feed Backward Convolution

- Output (pixel value) is weighted average of input data
- Center a convolution kernel at the output (pixel) location and gather data points that project onto kernel
- Touch each output sample once
- Touch each input data point many times

Feed Forward Convolution

- Input energy spread to many outputs (pixels)
- Center kernel at data point and distribute to output pixels (really a 3D convolution)
- Touch each input data point once
- Touch each output often

\bullet	\bullet	\bullet
Data points	\bullet	\bullet

Pixel sample points

Splatting: Ideal

- Feed forward and incremental reconstruction
- Ideal splatting
- center kernel at D
- evaluate kernel
- multiply by input value at D
contribution $_{\mathrm{D}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{h}\left(\mathrm{x}-\mathrm{x}_{\mathrm{D}}, \mathrm{y}-\mathrm{y}_{\mathrm{D}}, \mathrm{z}-\mathrm{z}_{\mathrm{D}}\right) \rho(\mathrm{D})$
where h evaluates the convolution function
- of course, this is terribly expensive

Splatting: Dimension Reduction

- Want 2D image from 3D data
- given pixel at (x, y), want the contribution for each point, D
- center kernel at D
- project weighted kernel onto (x,y) plane (assumes parallel projection along the z -axis)

$$
\text { contribution }(x, y)=\rho(D) \int h\left(x-x_{D}, y-y_{D}, w\right) d w
$$

- Note integral is independent of the density (ρ); it depends only on (x, y) projected location; leads to footprint function: footprint $(\mathrm{x}, \mathrm{y})=\int \mathrm{h}(\mathrm{x}, \mathrm{y}, \mathrm{w}) \mathrm{dw}$
where (x, y) is the displacement from projected sample point

Footprint Function Tables

- Can integrate the kernel function into a generic footprint table
- for each voxel
transform to screen space
for each pixel in the extent of the footprint map back to precomputed table
composite the weighted contribution

