
9/17/14 R. Daniel Bergeron1

Direct Volume Rendering
R. Daniel Bergeron

Department of Computer Science
University of New Hampshire

Durham, NH 03824
!
Based on:
Brodlie and Wood, Recent Advances in Visualization of Volumetric Data, Eurographics 2000

State of the Art Report.
Drebin et al., Volume Rendering, Siggraph 88.
Sabella, A Rendering Algorithm for Visualizing 3D Scalar Fields, Siggraph 88.
Levoy, Westover, et al., Introduction to Volume Rendering, Siggraph 90 Course Notes

9/17/14 R. Daniel Bergeron2

Overview

♦ Model data as a translucent gas or gel
– need to assign material properties to data values

♦ Classification – assign color / opacity to data val
– Opacity transfer function – maps data value and other

parameters (such as gradient) to opacity value
– Color transfer function – same for color

♦ Segmentation – applic-dependent “labeling” of data
values, typically a priori.
– gradient often used as ad hoc effort to segment

9/17/14 R. Daniel Bergeron3

Volume Rendering Integral

♦ Treat volume as particles with density µ.
♦ Send ray through each pixel in image plane; for each wavelength λ, the light

reaching pixel is  
 

!
♦ where L is ray length, Cλ(s) is light reflected at s in ray direction.  

µ(s) is a weight based on density – larger density means more reflected light.
Integral accumulates intensity, but attenuates it (the exponential) as it passes
through material.  
µ defines rate at which light is occluded per unit length due to scattering or
extinction

∫ ∫=
−L dtt

dsessCI
s

0

)(
0)()(
µ

λλ µ

9/17/14 R. Daniel Bergeron4

Volume Rendering Integral Approximation
♦ Using Riemann sum approximation and using n as # samples

 Iλ = ∑i=0..nCλ (iΔs) µ(iΔs) ΔsΠj=0..i-1 exp(-µ(jΔs) Δs))
♦ Now replace exponential term with 2 terms of Taylor expans.  

 exp(-µ(jΔs) Δs)) = 1- µ(jΔs) Δs  
and define transparency t(jΔs) as  
 t(jΔs) = exp(-µ(jΔs) Δs))  
and opacity, α(jΔs) = 1 - t(jΔs) = µ(jΔs) Δs  
and: Iλ = ∑i=0..nCλ (iΔs) α(iΔs) Πj=0..i-1 (1- α(jΔs))  
for Δs=1, we get: Iλ = ∑i=0..nCλ (i) α(i) Πj=0..i-1 (1- α(j))

♦ Do this for R,G,B: summing intensities of individual samples, each of which is
attenuated by the product of transparencies accumulated as light passes from sample
to pixel.

9/17/14 R. Daniel Bergeron5

Recursive Approximation

♦ Dropping λ, and expanding we get
C = C0α0 + C1α1(1-α0) + C2α2 (1-α1)(1-α0) + …

♦ Can compute recursively using
Cout = Cin +(1-αin) αi Ci

αout = αin +(1-αin) αi

This is front-to-back image composition (Duff’s over operator).
!
back-to-front ordering only needs to recursively compute color component
Cout = αi Ci + Cin (1-αi)
!
Note: compositing is associative, but  

not commutative: order matters

C0 C1 C2 C3 C4 C5 C6 C7
α0 α1 α2 α3 α4 α5 α6 α7

C0 C1 C2 C3 C4 C5 C6 C7
α0 α1 α2 α3 α4 α5 α6 α7

9/17/14 R. Daniel Bergeron6

DVR Approaches

♦ Image order approach: process from the image plane
to the object
– also called backward rendering
– ray casting is classic image order algorithm

♦ Object order approach: process from the object to the
image plane
– also called forward rendering
– splatting is the classic object order algorithm

9/17/14 R. Daniel Bergeron7

Image Order Issues

♦ Volume rendering equation approximation
– improve accuracy and/or speed

♦ Interpolation
– calculating data values between grid points is vital

♦ Curvilinear and unstructured grids
– basic approaches map nicely to rectilinear grids, others are

more difficult to handle
♦ Faster ray traversal
♦ Hardware designed for volume rendering

9/17/14 R. Daniel Bergeron8

Volume Rendering Eqn. 2

♦ Has been much work to make integration faster and
more accurate

♦ Alternative is to dramatically simplify the
approximation at the cost of accuracy:
– Maximum Intensity Projection (MIP): simply find the

maximum data value along the ray and project its “color”.
– works well for angiography (highlight blood vessels)

9/17/14 R. Daniel Bergeron9

Drebin et al., Siggraph ‘88

♦ CT data
♦ Basic segmentation based on probabilities

– from segmentation, produced density, color and opacity
♦ Estimated gradient by simple forward differencing

– Used gradient to infer surfaces for reflections

9/17/14 R. Daniel Bergeron10

Segmentation

♦ Segmentation is often ad hoc, but shouldn’t make
binary decisions
– for CT, X-ray absorption of materials is known a priori as a

probability distribution function (pdf)

air

fat soft tissue
bone

CT value

prob.

9/17/14 R. Daniel Bergeron11

Segmentation 2
♦ Given a voxel has the value I,

probability of getting I, P(I) = ∑i pi Pi(I)  
where pi is the probability of getting material i and  
Pi(I) is probability that material i has value I

Using Bayesian estimation,  
 pi(I) = Pi(I)/(∑j Pj(I)) which can be implemented as lookup

♦ Only 2 materials overlap: get simple relationship:
 

air fat soft tissue bone

CT value

100%

0%.

9/17/14 R. Daniel Bergeron12

Density, color, opacity

♦ “density”, D, computed as  
D(I) = ∑i ρi pi(I) where ρi is density of material i

♦ color and opacity (rgbα)
– C(I) = ∑i pi(I) αi (Ri,Gi,Bi)

♦ For each x,y,z, estimate by forward differences
– gradient: N(x,y,z) = (Dx+1-Dx, Dy+1-Dy, Dz+1-Dz)
– normalized gradient: n(x,y,z) = N(x,y,z)/|| N(x,y,z)
– strength: || N(x,y,z) ||

♦ n(x,y,z) is used in lighting model for reflected light from a light
source.

9/17/14 R. Daniel Bergeron13

Ray Tracing Volume Data

(Notes from Levoy in Introduction to Volume Rendering, Siggraph 91 tutorial.)
♦ Data assumed to be samples of a continuous scalar

function (voxel as point not volume)
♦ Sampling lattice is rectilinear and uniformly spaced
♦ Pixel spacing < voxel spacing
♦ Other typical simplifications

– one ray per pixel (no supersampling)
– parallel projection

9/17/14 R. Daniel Bergeron14

View Specification

♦ Need view specification, image plane, volume location
– Parallel projection along major axis

» integral mapping of voxel address space to pixel address space: 1-1
is easiest; usually have projection of a voxel map to k x k pixels

» arbitrary mapping requires interpolation
– Arbitrary parallel projection

» need view direction and size of image space
» usually voxel address space as “world coordinates”

9/17/14 R. Daniel Bergeron15

Coordinate Systems
♦ Object space

– coordinate axes correspond to volume array indices
– typically NxNxN

♦ Image space
– PxP pixels in image
– PxPxW sample points

Pixel u,v with color

Voxel i,j,k with value, color, opacity

Sample u,v,w with color and opacity

9/17/14 R. Daniel Bergeron16

Resampling
♦ Calculating color/opacity inside a voxel is resampling

the functions
♦ Sample at even spacing along ray
♦ Sampling rate (for typical CT and MR data)

– less than voxel spacing introduces artifacts
– more than twice per voxel doesn’t help much

♦ Use trilinear interpolation

9/17/14 R. Daniel Bergeron17

Trilinear Interpolation

From Graphics Gems V, p. 521
♦ Linear interpolation between 2 sample values:

vx=(1-fx)v0 + fxv1 where 0 ≤fx ≤ 1, also written as
vx= v0 + fx (v1- v0)

♦ In 2-dimensions, interpolate from 4 points
vxy=(1-fx) (1-fy)v00 + (1-fx) fyv01 + fx(1-fy) v10 + fxfy v11

♦ But, more efficient (3 mults) to do 2 linear steps:
vx0= v00 + fx (v10- v00)

vx1= v01 + fx (v11- v01)
vxy= vx0 + fy (vx1- vx0)

9/17/14 R. Daniel Bergeron18

Trilinear Interpolation – 2

♦ And in 3D, interpolate from 8 points  
Use 3 linear steps (7 mults)
vx00= v000 + fx (v100- v000)

vx01= v001 + fx (v101- v001)
vx10= v010 + fx (v110- v010)
vx11= v011 + fx (v111- v011)
vxy0= vx00 + fy (vx10- vx00)
vxy1= vx01 + fy (vx11- vx01)
vxyz= vxy0 + fz (vxy1- vxy0)

vx00

vx10

vx01

vx11vxy1

vxy0

vxyz

9/17/14 R. Daniel Bergeron19

Splatting

♦ Westover, VolVis Symposium 89 and Siggraph 90
♦ Each voxel drawn on image plane as a cloud of points

(footprint), covering many pixels
♦ Voxel treated as a single value “thrown at the screen”
♦ Example of feed forward convolution as opposed to a

feed backward convolution

9/17/14 R. Daniel Bergeron20

Feed Backward Convolution

♦ Output (pixel value) is weighted average of input data
♦ Center a convolution kernel at the output (pixel)

location and gather data points that project onto kernel
♦ Touch each output sample once
♦ Touch each input data point many times

Pixel sample points

Data points
Filter kernel

•

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•

•

•

•

•

9/17/14 R. Daniel Bergeron21

Feed Forward Convolution
♦ Input energy spread to many outputs (pixels)
♦ Center kernel at data point and distribute to output

pixels (really a 3D convolution)
♦ Touch each input data point once
♦ Touch each output often

Data points
Filter kernel

Pixel sample points

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • •

•

9/17/14 R. Daniel Bergeron22

Splatting: Ideal

♦ Feed forward and incremental reconstruction
♦ Ideal splatting

– center kernel at D
– evaluate kernel
– multiply by input value at D

contributionD(x,y,z) = h(x-xD, y-yD,z-zD)ρ(D)
where h evaluates the convolution function

– of course, this is terribly expensive

9/17/14 R. Daniel Bergeron23

Splatting: Dimension Reduction

♦ Want 2D image from 3D data
– given pixel at (x,y), want the contribution for each point, D
– center kernel at D
– project weighted kernel onto (x,y) plane (assumes parallel

projection along the z-axis)
contribution(x,y) = ρ(D)∫ h(x-xD, y-yD,w)dw

– Note integral is independent of the density (ρ); it depends
only on (x,y) projected location; leads to footprint function:

footprint(x,y) = ∫ h(x, y,w)dw
where (x,y) is the displacement from projected sample point

9/17/14 R. Daniel Bergeron24

Footprint Function Tables

♦ Can integrate the kernel function into a
generic footprint table

♦ for each voxel
transform to screen space
for each pixel in the extent of the footprint

map back to precomputed table
composite the weighted contribution

