
IEEE Visualization 2004 Tutorial

Interactive Texture-Based
Flow Visualization

Organizer

• Daniel Weiskopf (University of Stuttgart)

Speakers

• Gordon Erlebacher (Florida State University)

• Robert S. Laramee (VRVis)

• Daniel Weiskopf (University of Stuttgart)

Table of Contents

A. Tutorial Description A-1
B. Literature on Texture-Based Flow Visualization B-1
C. Reprint: “The State of the Art in Flow Visualization: Dense and C-1

Texture-Based Techniques” (R.S. Laramee, H. Hauser,
H. Doleisch, B. Vrolijk, F.H. Post, D. Weiskopf)

Tutorial Slides:
D. Introduction (D. Weiskopf) D-1
E. Basics of GPU-Based Programming (D. Weiskopf) E-1
F. 2D Texture-Based Flow Visualization (G. Erlebacher) F-1
G. 2.5D Flow Visualization (R.S. Laramee) G-1
H. 3D Texture-Based Flow Visualization (D. Weiskopf) H-1

Tutorial Description

Abstract

Interactive texture-based flow visualization has become an active field of research in the last
three or four years. Recent progress in this field has led to efficient vector field visualization
methods and, in particular, to improved techniques for time-dependent data. This tutorial
covers approaches for vector fields given on 2D planes, on surfaces, and within 3D volumes.
Both the theoretical background and the GPU-oriented implementations of many of these
techniques are presented, along with a demonstration of their usefulness by means of typical
applications.

Tutorial Web Page

http://www.vis.uni-stuttgart.de/vis04 tutorial
This web page contains example images, slides, and additional material.

Duration

Half-day.

Level of the Tutorial

Intermediate.

The tutorial is aimed at scientific researchers and developers of visualization tools. Par-
ticipants should have basic programming skills and some background knowledge of flow
visualization; they should be familiar with OpenGL and / or DirectX. Basic knowledge of
graphics hardware and GPU programming is helpful, although a brief introduction to GPU
programming will be given in the tutorial. Basic previous knowledge of flow visualization is
recommended.

A–1

Organization and List of Topics

1. Introduction [15 min] (D. Weiskopf):
Introductory words; motivation; visualization pipeline; traditional flow visualization tech-
niques (glyphs, geometric streamlines, feature-based approaches), overview of the
course.

2. Basics of GPU-Based Programming [15 min] (D. Weiskopf):
Structure of modern GPUs (graphics processing units); rendering pipeline; low-level
programming; shading languages.

3. 2D Texture-Based Flow Visualization [60 min] (G. Erlebacher):
Line integral convolution (LIC), texture advection, Lagrangian-Eulerian Advection (LEA),
Image Based Flow Visualization (IBFV), dye advection, large data visualization via
tiling, generalization of time-dependent 2D flow visualization within a generic frame-
work, CPU vs. GPU implementations, applications (meteorology, CFD).

4. 2.5D Flow Visualization [40 min] (R. S. Laramee):
Object space vs. surface parameterization (e.g., on curvilinear grids) vs. image space
approaches, Image-Space Advection (ISA), Image Based Flow Visualization on Sur-
faces (IBFVS), flow on isosurfaces, CPU vs. GPU implementations, applications (visu-
alization of CFD simulation data, in-cylinder flow of automotive engines, oceanography).

5. 3D Texture-Based Flow Visualization [40 min] (D. Weiskopf):
3D LIC, 3D texture advection, 3D IBFV, preprocessing of streamlines in textures (Cha-
meleon system), GPU implementations, perception issues.

6. Summary, Questions and Answers [10+ min] (all speakers)

Description of Topics

Introduction. The tutorial starts with a short introduction that contains an outline of the time
schedule, some examples of areas of application for flow visualization, a few example images
for alternative visualization approaches (streamlines or similar geometric objects, feature-
based techniques), and the classification scheme that we follow to structure the topics of this
tutorial. The following classification parameters are used: spatial dimension of the visualiza-
tion domain (2D, 2.5D = on surfaces, and 3D), steady vs. unsteady flow, CPU vs. GPU-based
approaches, and type of internal representation (object space vs. image space). Dimension-
ality serves as basis for the overall organization, the other aspects are indicated along the
discussion of the corresponding visualization methods.

GPU Programming. A brief summary of some background of GPU programming is in-
cluded to support participants that have some previous knowledge of GPU programming. A

A–2

comprehensive presentation of GPU programming, however, is beyond the scope of this tu-
torial.

2D Flow Visualization. This part deals with texture-based flow visualization techniques
for 2D planar domains. We start with fundamental “classic” approaches like LIC and orig-
inal texture advection. Subsequently, more recent techniques for time-dependent flow are
explained in detail, ranging from LEA to IBFV and dye advection. Building on this algorithmic
background, application, implementation, and large-data visualization topics are discussed
for these techniques. Implementation issues are focused on details of GPU realizations. Fi-
nally, a generic framework is presented to compare the previously mentioned techniques and
to relate them to each other.

2.5D Flow Visualization. This part focuses on recent developments for texture-based flow
visualization on surfaces. Both ISA and IBFVS work on image space to avoid problems of
older approaches that require a time-consuming computation in object space or a parame-
terization of the surface. A brief comparison between object-space, image-space, and pa-
rameterization approaches serves as introduction to this part. Special attention is paid to the
application of these techniques to real-world examples from CFD because a good choice for
the surface is essential to an intuitive and effective visualization.

3D Flow Visualization. We discuss 3D texture-based flow visualization in the last part.
A brief presentation of 3D LIC is followed by an in-depth discussion of 3D texture advec-
tion. One major issue of dense 3D representations is the large amount of numerical oper-
ations involved. Therefore, efficient GPU implementations play an important role and are
compared for 3D IBFV and GPU-based texture advection. As an alternative approach, a
pre-computation of streamlines within a volumetric texture, as in the Chameleon system,
overcomes some of these efficiency problems. Finally, some perception issues of visual clut-
ter and spatial perception are mentioned and an outlook on possible future developments for
perception-oriented interactive representations is given.

Summary. The tutorial closes with an overall questions & answers session.

A–3

Speakers’ Background

Gordon Erlebacher
School of Computational Science & Information Technology
Florida State University
Tallahassee, FL 32306-4120
email: erlebach@csit.fsu.edu

Gordon Erlebacher currently works in the School of Computational Science & Information
Technology at Florida State University. His fields of expertise span the intersection of nu-
merical flow simulations, flow visualization, and Information Technology. He received his un-
dergraduate degree at the Polytechnique Institute at the Free University of Brussels in 1979
and his Ph.D at Columbia University, both in the field of Plasma Physics. His work at NASA
Langley Research Center (1983-1996) centered primarily on the simulation of compressible
fluid transition and turbulence. During this time, he developed extensive graphical software
to help better understand the massive datasets produced by the simulations. This included
techniques to display particle paths, streamlines, and volume rendering. Early experiments
with remote visualization were also performed during this period. He has been a Professor
in the Department of Mathematics and Computer Science at Florida State University since
1996. He has taught several courses on flow visualization and feature extraction. He has
contributed several papers and case studies to IEEE Visualization, TVCG, and two articles
on vector field visualization (together with D. Weiskopf) in the upcoming Handbook of Visu-
alization. His current research focuses on the use of modern graphics hardware to develop
real-time algorithms for vector field visualization. Other interests include shape recognition,
use and development of distributed visualization services across heterogeneous systems,
fluid simulation, and geometric algebra.

More information on his research projects is available online at:
http://www.csit.fsu.edu/ erlebach

Robert S. Laramee
VRVis Research Center for Virtual Reality and Visualization
TechGate Vienna
Donau-City-Str. 1
1220 Vienna
Austria
email: laramee@vrvis.at

Robert S. Laramee received a bachelors degree in physics, cum laude, from the University
of Massachusetts, Amherst in 1997. In 2000, he received a masters degree in computer
science from the University of New Hampshire, Durham. He is currently a PhD candidate

A–4

at the Vienna University of Technology, Austria at the Institute of Computer Graphics. His
research interests are in the areas of scientific visualization, computer graphics, and human-
computer interaction. He has contributed refereed articles to IEEE Visualization, the Joint
Eurographics-IEEE TVCG Symposium on Visualization, EuroGraphics, and the CHI confer-
ence on Human-Computer Interaction.

For more detailed description of his research, please visit:
http://www.vrvis.at/ar3/pr2/laramee

Daniel Weiskopf
Institute of Visualization and Interactive Systems
University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart
Germany
email: weiskopf@vis.uni-stuttgart.de

Daniel Weiskopf is senior researcher and teacher of computer science at the Institute of
Visualization and Interactive Systems at the University of Stuttgart (Germany). He studied
physics at the University of Tübingen (Germany), San Francisco State University, and the
University of California at Berkeley. He received a Diplom (Masters) of physics in 1997 and
a PhD in theoretical astrophysics in 2001, both from the University of Tübingen. Daniel
Weiskopf authored several articles on scientific visualization and computer graphics, and he
is regularly teaching courses and seminars on computer graphics, visualization, geometric
modeling, and computer animation. He was co-organizer of the SIGGRAPH 2001 Course
on “Visualizing Relativity” and organizer of the IEEE Visualization 2003 Tutorial on “Interac-
tive Visualization of Volumetric Data on Consumer PC Hardware”; and he participated in the
Eurographics 2002 Tutorial “Programmable Graphics Hardware for Interactive Visualization”
and the Eurographics 2003 Tutorial “Programming Graphics Hardware”. His research inter-
ests include scientific visualization, real-time graphics, virtual reality, interaction techniques,
non-photorealistic rendering, computer animation, special and general relativity.

Detailed information about his research projects are available online at:
http://www.vis.uni-stuttgart.de/˜weiskopf

A–5

Literature on Texture-Based Flow Visualization

D. Weiskopf
University of Stuttgart

R. S. Laramee
VRVis Research Center,

Vienna

Survey Papers and Course Notes

The goal of this short note is to provide references for further reading on flow visualization
and, in particular, on texture-based flow visualization. Because of the large number of re-
search papers in this field, we cannot include an exhaustive list of references here but rather
point to corresponding survey papers and course notes.

An overview of flow visualization in general can be found in the state-of-the-art report by Post
et al. [8] and a flow visualization chapter [13] in the forthcoming “Handbook on Visualization”
[3].

According to one possible classification scheme (see the survey paper [4], which is included
as a reprint in Section C), there are different approaches to flow visualization:

• Direct flow visualization: This category of techniques uses a translation that is as di-
rect as possible for representing flow data in the resulting visualization. Common ap-
proaches are drawing arrows or color coding velocity (see [8, 13] for more details and
references).

• Dense, texture-based flow visualization: A texture is computed that is used to generate
a dense representation of the flow. A notion of where the flow moves is incorporated
through correlated texture values along the vector field. In most cases this effect is
achieved through filtering of texture values according to the local flow vector. This
approach is the focus of this tutorial. A description of the state-of-the-art can be found
in Section C (a reprint of [4]). Texture-based flow visualization is also covered in other
surveys [1, 10].

• Geometric flow visualization: For a better communication of the long-term behavior in-
duced by flow dynamics, integration-based approaches first integrate the flow data and
use geometric objects as a basis for flow visualization. The resulting integrated objects
have a geometry that reflects the properties of the flow. Examples include streamlines,

B–1

streaklines, and pathlines. A description of geometric techniques is presented by Post
et al. [8].

• Feature-based flow visualization: Another approach makes use of an abstraction and/or
extraction step that is performed before visualization. Special features are extracted
from the original data set, such as important phenomena or topological information
of the flow. Visualization is then based on these flow features. Feature-based flow
visualization is covered in the state-of-the-art report by Post et al. [9], a chapter [2]
in the “Handbook on Visualization” [3], and this year’s IEEE Visualization Tutorial on
“Feature Oriented Methods in Flow Visualization”.

Recent Papers

In this section, some of the most recent papers on texture-based flow visualization (which are
not contained in any of the aforementioned survey articles) are briefly described.

Laramee et al. [6] present a side-by-side analysis of two recent image space approaches
for the visualization of vector fields on surfaces. The two methods, Image Space Advection
(ISA) [5] and Image Based Flow Visualization for Curved Surfaces (IBFVS) [11]generate
dense representations of time-dependent vector fields with high spatio-temporal correlation.
While the 3D vector fields are associated with arbitrary surfaces represented by triangular
meshes, the generation and advection of texture properties is confined to image space. Fast
frame rates are achieved by exploiting frame-to-frame coherency and graphics hardware. In
the comparison of ISA and IBFVS the authors point out the strengths and weaknesses of
each approach and give recommendations as to when and where they are best applied.

In [14], the aforementioned approaches for a dense texture-based visualization of vector
fields on curved surfaces are extended. The advection mechanism relies on a Lagrangian
particle tracing that is simultaneously computed in the physical space of the object and in the
device space of the image plane. This approach retains the benefits of previous image-space
techniques [5, 11], such as output sensitivity, independence from surface parameterization
or mesh connectivity, and support for dynamic surfaces. At the same time, frame-to-frame
coherence is achieved even when the camera position is changed.

In [12], an approach for dye advection is proposed to avoid the artificial blurring that is present
in previous texture-based implementations of dye advection that make use of permanent
resampling by bilinear or trilinear interpolation. The interface between dye and background
is modeled as a level-set within a signed distance field. The level-set evolution is governed
by the underlying flow field and is computed by a semi-Lagrangian method. A reinitialization
technique is used to counteract the distortions introduced by the level-set evolution and to
maintain a level-set function that represents a local distance field.

B–2

An IEEE Visualization 2004 Application Paper [7] investigates two important, common fluid
flow patterns from computational fluid dynamics (CFD) simulations, namely, swirl and tum-
ble motion typical of automotive engines. The authors investigate and visualize swirl and
tumble flow using three different flow visualization techniques: direct, geometric, and texture-
based. When illustrating these methods side-by-side, they describe the relative strengths
and weaknesses of each approach within a specific spatial dimension and across multiple
spatial dimensions typical of an engineer’s analysis. Based on this investigation perspectives
are offered on where and when these techniques are best applied in order to visualize the
behavior of swirl and tumble motion.

References

[1] G. Erlebacher, B. Jobard, and D. Weiskopf. Flow textures: High-resolution flow visu-
alization. In C. R. Johnson and C. D. Hansen, editors, Visualization Handbook, pages
271–285. Academic Press, 2004. In print.

[2] M. Jiang, R. Machiraju, and D. S. Thompson. Detection and visualization of vortices.
In C. R. Johnson and C. D. Hansen, editors, Visualization Handbook. Academic Press,
2004. In print.

[3] C. R. Johnson and C. D. Hansen, editors. Visualization Handbook. Academic Press,
2004.

[4] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. The
state of the art in flow visualization: Dense and texture-based techniques. Computer
Graphics Forum, 23(2):143–161, 2004.

[5] R. S. Laramee, B. Jobard, and H. Hauser. Image space based visualization of unsteady
flow on surfaces. In IEEE Visualization ’03, pages 131–138, 2003.

[6] R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS: Image space
based visualization of flow on surfaces. IEEE Transactions on Computer Graphics and
Visualization, 10(6), 2004. Forthcoming.

[7] R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating swirl and tumble
flow with a comparison of visualization techniques. In IEEE Visualization ’04, 2004.
Forthcoming.

[8] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Feature extraction
and visualization of flow fields. In Eurographics 2002 State-of-the-Art Reports, pages
69–100, 2002.

B–3

[9] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state of the
art in flow visualization: Feature extraction and tracking. Computer Graphics Forum,
22(4):775–792, 2003.

[10] A. Sanna, B. Montrucchio, and P. Montuschi. A survey on visualization of vector fields
by texture-based methods. Recent Res. Devel. Pattern Rec., 1:13–27, 2000.

[11] J. J. van Wijk. Image based flow visualization for curved surfaces. In IEEE Visualization
’03, pages 123–130, 2003.

[12] D. Weiskopf. Dye advection without the blur: A level-set approach for texture-based
visualization of unsteady flow. Computer Graphics Forum (Proceedings of Eurographics
2004), 23(3), 2004.

[13] D. Weiskopf and G. Erlebacher. Flow textures. In C. R. Johnson and C. D. Hansen,
editors, Visualization Handbook, pages 253–270. Academic Press, 2004. In print.

[14] D. Weiskopf and T. Ertl. A hybrid physical/device-space approach for spatio-temporally
coherent interactive texture advection on curved surfaces. In Proceedings of Graphics
Interface, pages 263–270, 2004.

B–4

Reprint

R.S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F.H. Post, D. Weiskopf: The State
of the Art in Flow Visualization: Dense and Texture-Based Techniques, Computer
Graphics Forum (2)23, 203-221, 2004.

Reprinted with kind permission from Eurographics Association and Blackwell Pub-
lishing Ltd.

C–1

Volume 23 (2004), number 2 pp. 203–221 COMPUTER GRAPHICS forum

The State of the Art in Flow Visualization: Dense
and Texture-Based Techniques

Robert S. Laramee,1 Helwig Hauser,1 Helmut Doleisch,1 Benjamin Vrolijk,2 Frits H. Post2 and Daniel Weiskopf3

1 VRVis Research Center, Austria
2 Delft University of Technology, Netherlands

3 VIS, University of Stuttgart, Germany

Abstract
Flow visualization has been a very attractive component of scientific visualization research for a long time.
Usually very large multivariate datasets require processing. These datasets often consist of a large number of
sample locations and several time steps. The steadily increasing performance of computers has recently become
a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this
paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide
a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing
closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages
and disadvantages of the methods.

Keywords: visualization, flow visualization, vector field visualization, texture-based flow visualization.

ACM CCS: I.3 [Computer Graphics]: visualization, flow visualization, computational flow visualization

1. Introduction

Flow visualization (FlowVis) is one of the classic subfields
of visualization, covering a rich variety of applications, from
the automotive industry, aerodynamics, turbomachinery de-
sign, to weather simulation, meteorology, climate modeling,
ground water flow and medical visualization. Consequently,
the spectrum of FlowVis solutions is very rich, spanning mul-
tiple technical challenges: 2D versus 3D solutions and tech-
niques for steady or time-dependent data.

Bringing many of those solutions in linear order (as neces-
sary for a text like this) is neither easy nor intuitive. Several
options of subdividing this broad field of literature are pos-
sible. Hesselink et al., for example, addressed the problem
of how to categorize techniques in their 1994 overview of
research issues [24] and consider dimensionality as a means
to classify the literature. In the following, several aspects are
discussed on an abstract level before literature is addressed
directly.

1.1. Classification

According to the different needs of the users, there are dif-
ferent approaches to flow visualization (cf. Figure 1):
! Direct flow visualization: This category of techniques

uses a translation that is as direct as possible for repre-
senting flow data in the resulting visualization. The result
is an overall picture of the flow. Common approaches are
drawing arrows (Figure 2, left) or color coding velocity.
Intuitive pictures can be provided, especially in the case
of two dimensions. Solutions of this kind allow immedi-
ate investigation of the flow data.

! Dense, texture-based flow visualization: Similar to direct
flow visualization, a texture is computed that is used to
generate a dense representation of the flow (Figure 2,
middle). A notion of where the flow moves is incorpo-
rated through corelated texture values along the vector
field. In most cases this effect is achieved through filter-
ing of texture values according to the local flow vector.

c© The Eurographics Association and Blackwell Publishing Ltd
2004. Published by Blackwell Publishing, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA. 203

Submitted December 2002
Revised February 2003
Accepted March 2004

rdb

rdb

rdb

rdb

204 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 1: Classification of flow visualization techniques—
(left) direct, (middle-left) texture-based, (middle-right) based
on geometric objects and (right) feature-based.

! Geometric flow visualization: For a better communica-
tion of the long-term behavior induced by flow dynam-
ics, integration-based approaches first integrate the flow
data and use geometric objects as a basis for flow visu-
alization. The resulting integral objects have a geometry
that reflects the properties of the flow. Examples include
streamlines (Figure 2, right), streaklines and pathlines.
These geometric objects are based on integration as op-
posed to other geometric objects, like isosurfaces, that
may also be useful for visualization. A description of
geometric techniques is presented by Post et al. [55].

! Feature-based flow visualization: Another approach
makes use of an abstraction and/or extraction step which
is performed before visualization. Special features are ex-
tracted from the original dataset, such as important phe-
nomena or topological information of the flow. Visual-
ization is then based on these flow features (instead of the
entire dataset), allowing for compact and efficient flow
visualization, even of very large and/or time-dependent
datasets. This can also be thought of as visualization of
derived data. Post et al. [56] cover feature-based flow
visualization in detail.

Figure 1 illustrates a classification of the aforementioned
classes and Figure 2 shows three typical examples. Note
that there are different amounts of computation associated
with each category. In general, direct flow visualization tech-
niques require less computation than the other three cate-
gories, whereas feature-based techniques require the most
computation. This overview focuses on the body of research
related to dense, texture-based techniques.

1.2. Spatial temporal and data dimensionality

Solutions in flow visualization differ with respect to the di-
mensionality of the flow data. Useful techniques for 2D flow
data, like color coding or arrow plots, sometimes lack similar
advantages in 3D. Here, the spatial dimensionality of the flow
data is indicated as either 2D, 2.5D or 3D. In our classifica-
tion the dimensionality of the results from each technique is

marked with a corresponding label indicating dimensionality
(see Figure 4).

By 2.5D we mean flow visualization restricted to surfaces
in 3D. We draw attention to the notion that in many cases
like CFD, the simulation sets all velocities on a surface to
zero. One way to approach this is to extrapolate the vector
field just inside the surface to the boundary. In any case, the
vector component normal to the surface is usually lost in
the visualization. Furthermore, another vector field can be
calculated on a surface, such as skin friction.

In addition to spatial dimension, temporal dimension (di-
mensionality with respect to time) is of great importance.
Firstly, velocity incorporates a notion of time—flows are of-
ten interpreted as differential data with respect to time (cf.
Equation 1), i.e. when integrating the data, instantaneous
paths such as streamlines may be obtained (cf. Equation 3).
We call this steady velocity time. Additionally, the flow data
itself can change over time resulting in time-dependent (or
unsteady) flow. We refer to this as unsteady velocity time.
The visualization must carefully distinguish between both.
Performing integration in the case of unsteady data results in
pathlines or streaklines as opposed to streamlines.

The distinction between steady and unsteady velocity time
is important especially when animation is used in the visu-
alization. Then, even a third notion of time, i.e. animation
time, may affect the visualization. Animation time can be an
arbitrary feature added to the visualization in order to create
motion. Sometimes, geometric objects like streamlines are
animated in order to show flow orientation, e.g. the motion
of color controlled by a color table [31]. Animation is also
often added to texture-based methods with the same goal in
mind. Special attention is required for correct interpretation
of animation time.

In many cases, further data dimensions, i.e. attributes are
supplied with the data, such as temperature, pressure or vor-
ticity in addition to spatial and temporal dimensions. The
dimension of the data values is also associated with the terms
multivariate and multi-field data. Flow visualization may also
take these values into account, e.g. by using color or isosur-
face extraction.

Although we do not have space to focus on experimen-
tal flow visualization, it is interesting to recognize that many
computational solutions more or less mimic the visual appear-
ance of well-accepted techniques in experimental visualiza-
tion (cf. particle traces, dye injection or Schlieren techniques
[77]).

1.3. Data sources

Computational flow visualization, in general, deals with data
that exhibits temporal dynamics like the results from (a)
flow simulation (e.g. the simulation of fluid flow through a
turbine), (b) flow measurements (possibly acquired through

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 205

Figure 2: An example of circular flow at the surface of a ring to help illustrate our flow visualization classification: (left) direct
visualization by the use of arrow glyphs, (middle) texture-based by the use of LIC and (right) visualization based on geometric
objects, here streamlines.

laser-based technology) or (c) analytic models of flows (e.g.
dynamical systems [1], given as set of differential equations).

We focus on visualization of data from computational flow
simulation, i.e. flow data given as a set of samples on a grid.
In many cases, the velocity information in a flow dataset
(encoded as a set of velocity vectors) represents the focus.
Therefore, flow visualization is strongly related to vector field
visualization, which may also deal with vector fields other
than velocity fields.

The relation of computational and experimental visualiza-
tion is worthy of mention. Experimental flow visualization,
as in a wind tunnel, is also used to validate computational
flow simulation. In such a case the computational visualiza-
tion needs to be set up in a way such that results can be easily
compared.

2. Fundamentals

Before outlining some of the most important texture-based
techniques, a short overview of common mathematics as well
as some general concepts with regard to the computation of
results are presented.

Flow simulations are often solutions to systems of PDEs,
such as the Navier Stokes, Euler or Advection-Diffusion
equations [82]. In general, discretized solution methods are
used. Noteworthy are finite volume (FV) and finite element
(FE) analysis, which subdivide the domain into small ele-
ments like hexahedral or tetrahedral cells. A solution is de-
fined on the computation grid in physical space: unstructured
for FE and structured curvilinear for FV solutions. In the dis-
cussion that follows, we assume that vector data are defined
on the grid nodes (cell vertices).

2.1. Reconstruction of flow data

An inherent characteristic of flow data is that derivative in-
formation is given with respect to time, which is laid out with

respect to an n-dimensional spatial domain ! ⊆ Rn, e.g. n =
3 for representing 3D fluid flow. Temporal derivatives v of
nD locations p within the flow domain ! are n-dimensional
vectors:

v = dp/dt, p ∈ ! ⊆ Rn, v ∈ Rn, t ∈ R. (1)

A general formulation of (possibly unsteady) flow data v is

v(p, t) : ! × " → Rn, (2)

where p ∈ ! ⊆ Rn represents the spatial reference of the flow
data and t ∈ " ⊆ R represents the system time. For steady
flow data, the simpler case of v(p) : ! → Rn is given (v not
dependent on t).

In results from nD flow simulation, such as from automo-
tive applications or airplane design, vector data v is usually
not given in analytic form, but requires reconstruction from
the discrete simulation output. The numerical methods used
for the flow simulation, such as finite element methods, out-
put simulation values usually on large-sized grids of many
sample vectors vi, which discretely represent the solution of
the simulation process. Furthermore, it is assumed that the
flow simulation is based on a continuous model of the flow
allowing continuous reconstruction of the flow data v. One
option is to apply a reconstruction filter h : Rn → R to com-
pute v(p) =

∑
i h(p − pi)vi . For practical reasons, filter h

usually has only local extent. Efficient procedures for finding
flow samples vi, which are nearest to the query point p, are
needed to do proper reconstruction.

2.2. Grids

In flow simulation, the vector samples vi usually are laid
out across the flow domain with respect to a certain type of
grid. Grid types range from simple rectilinear or Cartesian
grids to curvilinear grids to complex unstructured grids (cf.
Figure 3). Typically, simulation grids exhibit large variations
in cell sizes. This variety of cell sizes stems from the influence

c© The Eurographics Association and Blackwell Publishing Ltd 2004

206 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 3: Grids involved in flow simulation—(a) Carte-
sian, (b) regular, (c) general rectilinear, (d) structured or
curvilinear, (c) unstructured and (f) unstructured triangular
[37,89].

of grid generation onto the flow simulation process. The qual-
ity of the grid model and its implementation impact the qual-
ity of the simulation results.

Although the principal theory of reconstruction from dis-
crete samples does not exhibit many differences with respect
to grid cell types, the practical handling does. While neigh-
bor searching might be trivial in a rectilinear grid, it usually
is not in a tetrahedral grid. Similar differences hold for the
problems of point location and vector reconstruction. In the
following we shortly describe some fundamental operations
which form the basis for visualization computations on sim-
ulation grids.

Starting with point location, i.e. the problem of finding the
grid cell in which a given nD-point lies, usually two cases
are distinguished. For general point location, special data
structures can be used that subdivide the spatial domain to
speed up the search. For iterative point location, often needed
during integral curve computation, algorithms are used that
efficiently exploit spatial coherence during the search. One
kind of such algorithms starts with an initial guess for the
target cell, checks for point containment and refines accord-
ingly afterward. This process is iterated until the target cell
is found. More details can be found in text books about flow
visualization fundamentals [53,68].

Beside point location, flow reconstruction, or interpola-
tion, within a cell of the dataset is a crucial issue. Often,
once the cell containing the query location is found, only
the sample vectors at the cell’s vertices are considered for
reconstruction. The approach used most often is first-order
reconstruction by performing linear interpolation within the
cell. For example, trilinear flow reconstruction may be used
within a 3D hexahedral cell.

After point location and flow reconstruction, visualization
begins: vectors can be represented with glyphs; virtual parti-
cles can be injected and traced across the flow domain. Nev-
ertheless, the computation of derived data may be necessary
to do more sophisticated flow visualization. Usually, the first
step is to request second-order gradient information for arbi-
trary points in the flow domain, i.e. ∇v|p, which gives infor-
mation about local properties of the flow (at point p) such as
flow convergence and divergence, or flow rotation and shear.
For feature extraction, flow vorticity ω = ∇ × v can be of
high interest. Further details about local flow properties can
be found in previous work [45,54].

2.3. Integration

Recalling that flow data in most cases is derivative informa-
tion with respect to time, the idea of integrating flow data over
time is natural to provide an intuitive notion of evolution in-
duced by the flow. One example is visualization by the use
of particle advection. A respective particle path p(t)—here
through unsteady flow—can be defined by

p(t) = p0 +
∫ t

τ=0
v(p(τ), τ) dτ, (3)

where p0 represents the location of the particle path at seed
time 0. Note that Equations 1 and 3 are complimentary to each
other. For other types of integral curves, such as streaklines
see previous work [36,68].

In addition to the theoretical specification of integral
curves, it is important to note that respective integral equa-
tions like Equation 3 usually cannot be resolved for the
curve function analytically, and thereby numerical integra-
tion methods are employed. The most simple approach is to
use a first-order Euler method to compute an approximation
pE(t)—one iteration of the curve integration is specified by

pE (t + %t) = p(t) + %t · v(p(t), t), (4)

where %t usually is a very small step in time and p(t) denotes
the location to start this Euler step from. A more accurate but
also more costly technique is the second-order Runge-Kutta
method [57], which uses the Euler approximation pE as a
look-ahead to compute a better approximation pRK2(t) of the
integral curve:

pRK 2(t + %t) = p(t) + %t · (v(p(t), t)

+ v(pE (t + %t), t))/2. (5)

Higher-order methods like the often used fourth-order Runge-
Kutta integrator utilize more such steps to better approximate
the local behavior of the integral curve. Also, adaptive step
sizes are used to compute smaller steps in regions of high
curvature.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 207

3. Dense and Texture-Based Flow Visualization

Dense, texture-based techniques in flow visualization gener-
ally provide full spatial coverage of the vector field. In our
classification we group these methods into the following cat-
egories based on their respective primitive: the fundamental
object upon which the algorithm is based. Our classification
subdivides the techniques based on their similarity.

! Spot Noise techniques: These methods (Section 3.1) are
based on a technique introduced by Van Wijk [78]. In this
category, the basic primitive on which the algorithms op-
erate is the so-called spot: an ellipse or other shape that
is warped and distributed in order to reflect the charac-
teristics of a vector field.

! LIC techniques: The methods in this category (Sec-
tion 3.2) are derived from an algorithm introduced by
Cabral and Leedom [8], namely, line integral convolution
(LIC). The basic primitive here is a noise texture: the
properties of texture are convolved, or smeared, using a
kernel filter in the direction of the underlying vector field.

! Texture advection and GPU-based techniques: The prim-
itive in this case (Section 3.3) is a moving texel [50]. In-
dividual texels/texel properties, or groups of texels are
advected in the direction of the vector field. Many of
the techniques in this category utilize more computation
on the GPU (Graphics Processing Unit)—rather than the
CPU—in order to realize performance gains.

! Related techniques: Most of the dense, texture-based
flow visualization research falls into one of the previ-
ous categories. Related research that does not fit cleanly
into one of the previous classifications is discussed in
Section 3.4.

We have included a section of meta-research papers in Sec-
tion 4 after the individual research techniques. These papers
attempt to provide an alternative, higher-level framework that
incorporates many of the techniques discussed here.

3.1. Spot noise

Spot noise, introduced by Van Wijk [78], was one of the first
dense, texture-based techniques for vector field visualization.
Spot noise generates a texture by distributing a set of intensity
functions, or spots, over the domain. Each spot represents a
particle warped over a small step in time and results in a streak
in the direction of the local flow from where the particle is
seeded. A spot noise texture is defined by: [78]

f (x) =
∑

ai h(x − xi , v(xi)) (6)

in which h() is called the intensity function, ai is a scaling
factor, and xi is a random position. A spot is a function with
unity intensity value for the spot, e.g. a ellipse and its inte-
rior, and zero everywhere else. The summation denotes the

Figure 4: The spot noise hierarchy of related research. Chil-
dren in the hierarchy build upon the work of their parent.

Figure 5: A snapshot of the unsteady spot noise algorithm
[16]. Image courtesy of De Leeuw and Van Liere.

blending of each instance of the intensity function at random
positions.

The hierarchy shown in Figure 4 illustrates the relationship
amongst spot noise related methods. Follow-up research that
builds upon a previous technique is shown as a child in the
hierarchy. Children that share a common parent are presented
in chronological order of appearance when reading from left
to right. Each node in the hierarchy is labeled and the corre-
sponding description can be matched in the text of this article.
The dimensionality of the flow data used to generate the re-
sults is indicated for convenience. The time dimension label
is given a different shape to distinguish it from the spatial
dimensions. We believe the spot noise hierarchy (Figure 4)
and the LIC hierarchy (Figure 7) will be valuable assets in
helping the reader navigate the related research literature. In
what follows, we visit each node in the hierarchy in depth-
first-search order.

Comparative visualization: Spot noise has been used to sim-
ulate the results from the field of experimental flow visual-
ization [14]. First, the parameters of the spot noise technique
are tuned in order to simulate the smearing of oil on a surface.
A postprocessing step is then added to enhance the visual-
ization result such that it looks closer to the smearing of real
oil from experimental flow visualization.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

208 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 6: Visualization of flow past a box using (left) spot noise and (right) LIC.

Enhanced spot noise: One limitation of the original spot
noise algorithm was the inability to represent high, local ve-
locity curvature especially with high speeds. Enhanced spot
noise [12] by De Leeuw and Van Wijk addresses these chal-
lenges through the use of bent spot primitives.

Parallel and unsteady spot noise: In order to accelerate
the performance of enhanced spot noise towards interactive
frame rates, a parallel implementation of the algorithm was
introduced by De Leeuw [13]. The parallel implementation
was applied to the steering of a smog prediction simulation
and searching a very large data set resulting from a numerical
simulation of turbulence.

The first application of spot noise to unsteady flow is pre-
sented by De Leeuw and Van Liere [16] (Figure 5). The
motion of spots is modeled after particles in unsteady flow.
In order to visualize unsteady flow, the distribution of spots
with respect to the temporal domain is discussed. Unsteady
spot noise also introduces support for zooming views of the
vector field. Spot noise with zooming is also utilized by De
Leeuw and Van Liere when visualizing topological features
of 2D flow [10].

Spot noise related literature: A combination of both texture-
based FlowVis on 2D slices and 3D arrows for 3D flow vi-
sualization is employed by Telea and Van Wijk [74]. Arrows
denote the main characteristics of the 3D flow after clustering
and a 2D slice with spot noise visualization serves as context.
The focus of this work is on vector field clustering.

Löffelmann et al. [44] use anisotropic spot noise created
from a grid-shaped spot to visualize streamlines and timelines
concurrently on stream surfaces. Another interesting appli-

cation of spot noise is its use for the depiction of discrete
maps (noncontinuous flow) [43].

Spot noise has also been applied to the visualization of
turbulent flow [15] and in combination with the visualization
of flow topology [10,11]. We refer the reader to Post et al.
[55,56] for more on the subject of flow topology.

Spot noise versus LIC: A visual comparison of LIC (the
focus of the next section) and spot noise is shown in Figure 6.
Spot noise is capable of reflecting velocity magnitude within
the amount of smearing in the texture, thus freeing up hue
for the visualization of another attribute such as pressure,
temperature, etc. On the other hand, LIC is more suited for
the visualization of critical points which is a key element
in conveying the flow topology. The vector magnitudes are
normalized thus retaining lower spatial frequency texture in
areas of low velocity magnitude. De Leeuw and Van Liere
also compare spot noise to LIC [17]. They report that LIC
is better at showing direction than spot noise, but it does not
encode velocity magnitude. By flow direction, we refer to the
path along which a massless particle follows when injected
into the flow.

3.2. Line integral convolution

Line integral convolution (LIC), first introduced by Cabral
and Leedom [8], has spawned a large collection of research as
indicated in Figure 7. The original LIC method takes as input
a vector field on a 2D, Cartesian grid and a white noise texture
of the same size. Texels are convolved (or correlated) along
the path of streamlines using a filter kernel in order to create a
dense visualization of the flow field. More specifically, given
a streamline σ, LIC consists of calculating the intensity I for

c© The Eurographics Association and Blackwell Publishing Ltd 2004

rdb

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 209

Figure 7: The LIC hierarchy of related research. Node labels correspond to paragraphs in the text, which then lead to specific
entries in the bibliography.

a pixel located at x0 = σ(s 0) by: [70]

I (x0) =
∫ s0+L/2

s0−L/2
k(s − s0)T (σ(s)) ds (7)

where T stands for an input noise texture, k denotes the filter
kernel, s is an arc length used to parameterize the streamline
curve and L represents the filter kernel length. See Figure 2
(middle) for a result. LIC was one of the first dense, texture-
based algorithms able to accurately reflect velocity fields with
high local curvature.

The research in LIC-based flow visualization described
here extends LIC in several directions: (1) adding flow orien-
tation cues, (2) showing local velocity magnitude, (3) adding
support for nonrectilinear grids, (4) animating the resulting
textures such that the animation shows the upstream and
downstream flow direction, (4) allowing real-time and inter-
active exploration, (5) extending LIC to 3D and (6) extending
LIC to unsteady vector fields. In the following, we visit the
LIC hierarchy of Figure 7 in depth-first-search order.

Curvilinear grids and unsteady LIC: Forssell [20] was early
to extend LIC to surfaces represented by curvilinear grids.
The original LIC method portrays a vector field with uniform
velocity magnitude. Forssell introduces a technique for dis-
playing vector magnitude. She also describes one approach
to animate the resulting LIC textures. Forssell and Cohen ex-
tend this work to visualize unsteady flow [21]. Their approach
modifies the convolution such that the filter kernel operates
on streaklines rather than streamlines. In other words, they
modify the LIC algorithm to trace a path that incorporates
multiple time steps.

Fast LIC: Many algorithms are built on fast LIC introduced
by Stalling and Hege [70]. Fast LIC is approximately one
order of magnitude faster than the original. The speedup is
achieved through two key observations: (1) fast LIC min-
imizes the computation of redundant streamlines present in
the original method and (2) fast LIC exploits similar convolu-
tion integrals along a single streamline and thus re-uses parts
of the convolution computation from neighboring streamline

texels. They also introduce support for filtered images at ar-
bitrary resolution.

Parallel fast LIC: Amongst the first parallel implementa-
tions of fast LIC is that of Zöckler et al. [90]. The proposed
algorithm computes animation sequences on a massively
parallel distributed memory computer. Parallelization is per-
formed in image space rather than in time in order to take
advantage of the strong temporal coherence between frames.
Luckily, as we shall see later, flow visualization research in
this area has evolved far enough such that expensive paral-
lel processing hardware is not always necessary to achieve
interactive visualization [28,29,38,79]. However, for 3D and
unsteady flow there is still need for parallelization. For the
sake of completeness, we also mention the work of Cabral
and Leedom on parallelization of LIC [7] although this is a
parallel processing version of the original LIC algorithm, not
fast LIC.

Fast LIC on surfaces: Battke et al. [2] extend fast LIC to
surfaces represented by arbitrary grids in 3D. The approach
by Forssell and Cohen [21] was limited to surfaces repre-
sented by curvilinear grids. The method works by tessellat-
ing a given surface representation with triangles. The trian-
gles are packed (or tiled) into texture memory and a local
LIC texture is computed for each triangle. The results pre-
sented here are limited to relatively small simple surface rep-
resentations composed of equilateral triangles (1,600–4,000
triangles).

Volume LIC: Interrante and Grosch [25,26] visualize true
3D flow using the fast LIC algorithm as a starting point.
Clearly, there are perceptual challenges related to 3D flow
visualization such as occlusion, depth perception and visual
complexity. Volume LIC introduces the use of halos in order
to enhance depth perception such that the user has a better
chance at perceiving the 3D space covered in the visualization
(Figure 8). Areas of higher velocity magnitude are mapped
to higher texture opacity. It is interesting to note that with
the introduction of halos, we are then able to identify dis-
tinct entities in the 3D field, a property generally not present
in other LIC techniques. Thus, the 3D LIC takes a step in

c© The Eurographics Association and Blackwell Publishing Ltd 2004

210 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 8: A result from the Volume LIC method [25,26].
Image courtesy of Interrante and Grosch.

the direction of being a geometric flow visualization tech-
nique where discrete integral objects such as streamlines
can be distinguished. Without introducing some notion of
sparseness into the visualization, the results would not be
very useful. However, with the introduction of sparseness, a
trade-off is made between flow field coverage and reducing
occlusion.

Enhanced fast LIC and LIC with normal: Two useful exten-
sions to the fast LIC algorithm are introduced by Hege and
Stalling [22] and Scheuermann et al. [64]. Hege and Stalling
[22] experiment with higher order filter kernels in order to
enhance the quality of the resulting LIC textures.

In the case of slices, vector components orthogonal to the
slice are removed when using texture-based and geometric
methods for visualization results. Scheuermann et al. [64]
address this missing orthogonal vector field component by
extending fast LIC to incorporate a normal component into
the visualization.

DLIC: Sundquist [71] presents an extension to fast LIC,
DLIC (Dynamic LIC), in order to visualize time-dependent
electromagnetic fields. According to Sundquist, the motion
of the field is not necessarily along the direction of the field
itself in the case of electromagnetic fields. The algorithm pro-
posed here handles the case of when the vector field and the
direction of the motion of the field lines are independent. Con-
ceptually, there are two vector fields used in this approach:
(1) the electromagnetic field itself and (2) the vector field that
describes the evolution of streamlines as a function of time.

Multivariate LIC: Urness et al. [76] present an extension to
fast LIC that incorporates a new coloring scheme that can be
used to incorporate multiple 2D scalar and vector attributes.
Color weaving assigns a specific attribute represented by a
color to an individual streamline thread in the visualization.
The streamline patterns may interweave and thus so may the
color patterns. Using multiple colors allows visualization of
more than one variate in the result. Their second contribution
is called texture stitching: an extension to the idea presented
by Kiu and Banks [34], namely multifrequency LIC. How-

Figure 9: Dye injection is used to highlight areas of the flow
in combination on the boundary surface of an intake port and
combustion chamber.

ever, in the case of Urness et al. [76] the multifrequency noise
textures are used to highlight regions of interest as opposed
to velocity magnitude as by Kiu and Banks [34].

Dye injection: Shen et al. address the problem of directional
cues in LIC by incorporating animation and introducing dye
advection into the computation [66]. The simulation of dye
may be used to highlight features of the flow. In addition,
they incorporate volume rendering methods that map a LIC
texture onto a 3D surface. Thus the user is able to visualize the
dye throughout the volume. We point out that the modeling
of dye transport is not always physically correct since dye is
dispersed not only by advection, but also by diffusion. Note
that dye advection techniques can be classified differently.
Dye injection can result in discrete geometric objects used
to visualize the flow, and thus, could be classified as a group
of geometric visualization techniques. Dye injection is also
implemented by some of the texture advection and GPU-
based techniques described in Section 3.3.

Again, in Shen et al. we see the notion of a sparser visu-
alization in order to see into the 3D flow. The resulting 3D
visualization approaches that of a geometric technique such
as the use of streamsurfaces. And just as with the other geo-
metric techniques, the notion of where to place or inject the
dye into the flow becomes important. Figure 9 illustrates the
use of dye injection.

Multifrequency LIC: Kiu and Banks propose to use a mul-
tifrequency noise for LIC [34]. The spatial frequency of the
noise is a function of the magnitude of the local velocity.
Long, fat streaks indicate regions of the flow with higher
velocity magnitude.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 211

One problem with many curvilinear grid LIC algorithms
is that the resulting LIC textures may be distorted after being
mapped onto the geometric surfaces, since a curvilinear grid
usually consists of cells of different sizes. Mao et al. propose
a solution to the problem by using multigranularity noise as
the input image for LIC [46].

OLIC and FROLIC: Wegenkittl et al. address the problem
of direction of flow in still images with their OLIC (Oriented
LIC) approach [84]. By orientation, they mean the upstream
and downstream directions of the flow, not visible in the orig-
inal LIC implementation. Conceptually, the OLIC algorithm
makes use of a sparse texture consisting of many separated
spots that are smeared in the direction of the local vector field
through integration. A fast version of OLIC, called FROLIC
(Fast Rendering of OLIC), is achieved by Wegenkittl and
Gröller [83] via a trade-off of accuracy for time. FROLIC ap-
proximates the simulated droplet trace resulting from OLIC
with a sequence of disks of varying intensity, with disk in-
tensity increasing towards the downstream direction.

Animated FROLIC [4] achieves animation of the result
via a color-table and is based on the observation that only
the colors of the FROLIC disks need to be changed. Each
pixel is assigned a color-table index that points to a specific
entry in the color-table. Color-table animation then changes
the entries of the color-table itself rather than the pixels of
the corresponding image.

LIC on surfaces: Mao et al. [47] extend the original LIC
method by applying it to surfaces represented by arbitrary
grids in 3D. Former LIC methods targeted at surfaces were
restricted to structured grids [20,21,66]. Also, mapping a
computed 2D LIC texture to a curvilinear grid may intro-
duce distortions in the texture. Mao el al. propose solutions
to overcome these limitations. The principle behind their al-
gorithm relies on solid texturing [52]. The convolution of a
3D white noise image, with filter kernels defined along the
local streamlines, is performed only at visible ray-surface
intersections.

This idea has an advantage over that of Battke et al. [2]
in that it avoids what can be a timely and complex assembly
of triangles into texture space. However, ray-tracing is also
costly. The method here is view-point dependent and required
relatively lengthy processing time for an unstructured mesh
composed of 10,000 triangles.

A significant body of research is dedicated to the extension
of LIC onto boundary surfaces. Teitzel et al. [73] present
an approach that works on both 2D unstructured grids and
directly on triangulated grids in 3D space. This topic itself is
the subject of a survey by Stalling [69].

UFLIC: Shen and Kao [67] extend the original LIC algorithm
to handle unsteady flows. Their extension, called UFLIC (Un-
steady Flow LIC), handles the case of unsteady flow fields
by introducing a new convolution filter that better models

Figure 10: An LIC visualization showing a simulation of
flow around a wheel [59]. The appropriate choice of transfer
function results in a sparser noise texture. Image courtesy of
Rezk-Salama et al. [59].

the nature of unsteady flow. The convolution is done along
pathlines (as opposed to streamlines). They improve upon
the shortcomings of the previous unsteady LIC attempt pre-
sented by Forssell and Cohen [21]. According to Shen and
Kao, Forssell and Cohen’s approach has multiple limitations
including: (1) lack of clarity with respect to spatial coherence,
(2) deriving current flow values from future flow values, (3)
unclear exposition with respect to temporal coherence and
(4) lack of accurate time stepping. All of these problems are
addressed by UFLIC. Shen and Kao also apply UFLIC to
the visualization of time-dependent flow to parameterized
surfaces. UFLIC is also extended using a parallel implemen-
tation by Shen and Kao [65].

AUFLIC: AUFLIC (Accelerated UFLIC) is an extension to
UFLIC that enhances performance times [41]. The princi-
ple behind AUFLIC is to save, reuse, and update pathlines
in a vector field seeding strategy. AUFLIC requires approxi-
mately one half of the time required by UFLIC and generates
similar results.

3D LIC: Rezk-Salama et al. [59] propose rendering methods
to effectively display the results of 3D LIC computations.
They utilize texture-based volume rendering in an effort to
provide exploration of 3D LIC textures at interactive frame
rates. Like Interrante [26], they address the perceptual prob-
lems posed by dense, 3D visualization. They approach these
challenges through the use of transfer functions and clipping
planes, as in Figure 10. Transfer functions allow the user to
see through portions of the LIC textures deemed uninterest-
ing by the user. In addition to conventional clipping planes,

c© The Eurographics Association and Blackwell Publishing Ltd 2004

212 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 11: A comparison of 3 LIC techniques: (left) UFLIC [65], (middle) ELIC [51], and (right) PLIC [81]. Image courtesy
of Verma et al. [81].

Rezk-Salama et al. also use clipping with arbitrary closed-
surface geometries.

The use of transfer functions and geometric clipping ob-
jects are interesting choices for dealing with the perceptual
problems associated with 3D. In some sense, these can be
compared with the seeding problem of the geometric class of
visualization techniques. Seeding strategies address where to
start streamlines and other integration-based geometric ob-
jects. Selective seeding of geometric objects in 3D is of-
ten considered a key to successful visualization. However,
knowledge of the proper seed locations is a requisite for
this approach. And just as proper seed placement is a requi-
site when using geometric objects, knowledge of the transfer
function(s) and closed-object clipping geometries is required
in the case of 3D LIC.

Geometric LIC: We make a distinction between geometric
flow visualization and dense, texture-based flow visualiza-
tion. However, these two topics are closely coupled. Concep-
tually, the path from using geometric objects to texture-based
visualization is obtained via a dense seeding strategy. That
is, densely seeded geometric objects result in an image sim-
ilar to that obtained by dense, texture-based techniques [30].
Likewise, the path from dense, texture-based visualization to
visualization using geometric objects is obtained using some-
thing such as a sparse texture for texture advection [84].

Here we have grouped together techniques that synthesize
LIC results by mapping a precomputed LIC texture onto ge-
ometric primitives such as streamlines. By using geometric
primitives, researchers hope to speed up performance times
of the LIC results. The drawback of these methods is that they
require careful seeding strategies to gain the complete cov-
erage of the flow field offered by traditional LIC techniques.

Motion map: Jobard and Lefer use a motion map [31] in
order to animate 2D steady flows. First, the domain is covered

completely with streamlines. Next, a color is mapped to the
streamlines and a color-table animation technique is used to
animate the flow. It offers the advantage of saving memory
and computation time since only one image of the flow has
to be computed and stored in the motion map data structure.
This technique is not applicable to unsteady flow however. It
relies on a one-time cost of computing a set of streamlines.

PLIC: Verma et al. present a method for visual compari-
son of streamlines and LIC called PLIC [81] (Pseudo-LIC).
They attempt to identify the relevant parameters to generate
LIC-like images from a dense set of streamlines and for gen-
erating streamline-like images through the use of different
filters used for convolution. By experimenting with different
input textures for LIC, both streamline-like images and LIC-
like results can be obtained. ELIC (enhanced LIC), placed
here because of its visual comparison with PLIC, builds on
the original LIC algorithm in four ways: (1) by incorporating
an algorithm to improve the delineation of streamlines, (2)
increasing the image contrast, (3) removing texture distortion
introduced by applying LIC to curvilinear grids and (4) using
color to highlight flow separation and reattachment bound-
aries. A visual comparison between UFLIC [65], ELIC [51],
and PLIC is shown in Figure 11.

Hierarchical LIC: Bordoloi and Shen [5] introduce a hier-
archical approach to LIC based on a quadtree data structure
used to support level of detail (LOD). The idea is to replace
portions of the vector field of lower complexity with rectan-
gular LIC texture-mapped patches. The LIC texture is taken
from a previously calculated LIC image of a straight vector
field. Here, complexity is a direct function of the amount of
curl in the local vector field.

Decoupled LIC: Li et al. [40] present a technique for the
visualization of 3D flow based on texture mapped primitives,
namely streamlines. They decouple the visualization into a

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 213

Figure 12: The classification of texture advection and GPU-based techniques. The columns indicate the primitive used during
advection while the rows indicate the advection scheme.

preprocessing type stage that computes the streamlines and
a stage which maps various textures to the streamlines com-
puted in the first stage. The result is volume rendered at inter-
active frame rates. To address the perceptual challenges posed
by 3D visualization, depth cues, lighting effects, silhouettes,
shading and interactive volume culling are described.

3.3. Texture advection and GPU-based techniques

In this section we describe research based on moving texels
or moving groups of texels, i.e. texture-mapped polygons
whose motion is directed by the vector field. Figure 12 shows
an overview of the different techniques and classifies them
according to two properties: (1) the advection scheme used
and (2) the primitive used during advection. Some of the
literature focuses mainly on the integration scheme used to
advect textures or texels. By the term texel means texture
element. Some methods focus on the mapping to advected
primitives and some focus on both. Figure 12 also shows the
dimensionality of the flow data. In our discussion, we visit
the methods in clockwise order starting at 12 o’clock. Within
each sub-block the methods are listed in chronological order.
This is because the mapping of texel properties between two
time steps in the visualization is not 1-to-1 in this case. For a
more detailed discussion see Jobard et al. [28,29].

One characteristic common to many of the texture advec-
tion techniques in this section [28,29,38,48] is the use of
backward coordinate integration (or backward advection).
None of the methods described here use forward advection
(i.e. forward integration) and individual texels as a primi-
tive. This is because the combination of forward integration
and texel primitives leaves holes in the visual domain after
the forward integration computation [29]. Given a position,
x0(i , j) = (i , j) of each particle in a 2D flow, backward in-
tegration over a time interval h determines its position at a
previous time step [28]:

x−h(i, j) = x0(i, j) +
∫ h

τ=0
v−τ (x−τ (i, j)) dτ (8)

where h is the integration step, x−τ (i , j) represents interme-
diary positions along the pathline passing through x0(i, j),

Figure 13: A screen shot from the image based flow visual-
ization algorithm. Image courtesy of Van Wijk [79].

and vτ is the vector field at time τ . We note that the meth-
ods in this category are generally implemented in an iterative
fashion. That is for each animated frame an integration is
performed over a small time-step h, followed by an update
of visual properties. This is opposed to geometric methods in
which a longer particle path may be computed over several
time steps before the results are displayed.

IBFV: Image based flow visualization (IBFV) by Van Wijk
[79] is one of the fastest algorithms for dense, 2D, unsteady
vector field representations (Figure 13). It is based on the ad-
vection and decay of textures in image space. Each frame of
the visualization is defined as a blend between the previous
image, warped according to the flow direction, and a num-
ber of background images composed of filtered white noise
textures. One reason it is faster than many texture-based flow
visualization methods is because it reduces the number of

c© The Eurographics Association and Blackwell Publishing Ltd 2004

214 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 14: Snapshots from the visualization of a time-dependent surface mesh composed of 79 K polygons with dynamic geometry
and topology [38].

integration computations that need to be performed via ad-
vecting small quadrilaterals rather than individual pixels.

Moving textures: Max and Becker were early to introduce the
idea of moving textures in order to visualize vector fields [48].
One of the primary goals of this work was to use textures in
motion to produce near-real-time animation of flow. Texture-
mapped triangles are advected, or distorted, in the direction
of the flow. Also, applying this technique to 3D flows with
no modification provides results that are difficult to perceive,
at least in the case of a still image.

ISA and IBFVS: IBFV has been extended to the visualization
of flow on surfaces [38,80]. Van Wijk presents an extension
called IBFVS, IBFV for Surfaces. Laramee et al. [38] present
a similar dense, texture-based visualization technique on sur-
faces for unsteady flow called ISA (Image Space Advection).
Both methods produce animated textures on arbitrary 3D
triangle meshes in the same manner as the original IBFV
method. Textures are generated, advected and blended in im-
age space. The methods generate dense representations of
time-dependent vector fields with high spatio-temporal cor-
relation. While the 3D vector fields are associated with arbi-
trary triangular surface meshes, the generation and advection
of texture properties is confined to image space. Both spot
noise and LIC-like results can be attained. In both techniques,
[38,40] fast frame rates are achieved in part by exploiting the
GPU.

Van Wijk’s method is applied to potential field visualiza-
tion and surface visualization. Laramee et al.’s algorithm is
applied to unsteady flow on boundary surfaces of large, com-
plex meshes from computational fluid dynamics, dynamic
meshes with time-dependent geometry and topology. It has
also been applied to medical simulation data as well as iso-
surfaces [39]. Figure 14 shows the results applied to a time-
dependent geometry and topology.

3D IBFV: IBFV has also been applied to the visualization
of 3D flow [75]. The problem of how to see inside the flow

volume is addressed by varying both the noise sparsity, rem-
iniscent of Interrante and Grosch [26], and through varying
the opacity of the rendered volume similar to Rezk-Salama
et al. [59]. In order to achieve sparseness, Telea and Van Wijk
inject empty holes of noise into the 3D field, in addition to
the noise described by the original IBFV. One important com-
ponent of their method is to define a threshold value which
eliminates all close-to-transparent texel values. One disad-
vantage of the method is that the range of velocity values it
can display is limited: A texel property cannot be advected
by more than one slice along the z axis of the volume in one
animation frame. This problem is addressed by Weiskopf and
Ertl [87].

3D Texture Advection: Kao et al. discuss the use of 3D and
4D texture advection for the visualization of 3D fluid flows
[32]. The results show sparse texture noise in order to vi-
sualize inside the 3D vector field. Formidable challenges are
introduced by the memory requirements involved in using 3D
and 4D textures. The proposed method does not work well
for the case of flows containing critical points for incoming
flows from the grid boundary.

GPU-based LIC: Heidrich et al. [23] exploit pixel tex-
tures to accelerate LIC computation. Pixel textures are an
OpenGL extension by SGI that provides the functionality of
dependent textures in combination with multipass rendering.
Heidrich et al.’s implementation supports 2D, steady vector
fields only, and achieves sub-second computation times for
LIC image generation. While this method could be catego-
rized as a GPU-accelerated LIC technique, we position it here
due to its comparability with the following texture advection
techniques [27,88] that use the same proposed OpenGL ex-
tension, handle unsteady flow and thus can be considered an
extension of this technique.

LEA: Jobard et al. [27] introduce a GPU-assisted texture
advection technique for the dense visualization of 2D, un-
steady flow. While the method of Max and Becker [49]

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 215

Figure 15: Three images taken from an animation of an unsteady vector field created with the Lagrangian-Eulerian advection
algorithm. [28,29] Image courtesy of Jobard et al.

advects textures based on coarse triangular meshes, Jobard
et al. advect textures on a per-pixel basis by means of pixel
textures, which are used in a similar way as by Heidrich et al.
[23]. The gray-scale texture from the previous time step is
dragged along the flow field by modifying the texture coordi-
nates for the dependent texture lookup according to the flow
data. Nearest-neighbor sampling is combined with an update
of fractional texture coordinates to represent subtexel motion
and, at the same time, maintain a high contrast. An itera-
tive injection of additional noise is used to compensate for a
possible loss of contrast over time. Jobard et al. also discuss
the treatment of inflow at boundaries, image enhancement by
color masking and the use of dye advection. Because of the
limited functionality of the graphics hardware that supports
pixel textures, the implementation requires many rendering
passes and advects a texture of size 2562 at approximately
two frames per second. Moreover, the maximum resolution
of textures is restricted to 2562.

Jobard et al. extend this method to the more flexible
Lagrangian-Eulerian Advection (LEA) scheme [28] for the
visualization of unsteady, 2D flow. Here, they rely on a CPU
implementation that leads to better advection quality, higher
speed, and no limitations of the maximum flow size. Particle
paths are integrated as a function of time, referred to as the
Lagrangian step, while the color distribution of the image
pixels is stored in a texture and updated in place (Eulerian
step). The temporal coherence of the advected noise textures
is transformed into spatial coherence by blending textures
from subsequent time steps, i.e. each still frame depicts the
instantaneous structure of the flow, whereas an animated se-
quence of frames still reveals the motion of the advected tex-
ture. Jobard et al. demonstrate that the combination of noise
and dye advection is useful for an effective visualization and
exploration of unsteady flow. Some results from the technique
are shown in Figure 15. This work is extended by Jobard et al.
[29] in order to improve the quality of dye advection.

Weiskopf et al. [86] present a GPU-accelerated version
of the LEA algorithm using per-fragment operations. The

GPU-based texture advection by Weiskopf et al. [88] sup-
ports bilinear dependent texture lookups without taking into
account the update of fractional coordinates. Therefore, this
approach is mainly suitable for dye advection at high frame
rates. Weiskopf et al. also demonstrate how GPU-accelerated
visualization of unsteady, 3D flows can be implemented with
pixel textures.

UFAC: Weiskopf et al. [85] introduce a generic texture-based
framework for visualizing 2D, time-dependent vector fields.
They propose unsteady flow advection convolution (UFAC)
as an application of the framework for visualizing unsteady
fluid flow. Also, their approach can reproduce other tech-
niques such as LEA [29], IBFV [79], UFLIC [65], and DLIC
[71]. Weiskopf et al. describe a GPU-accelerated implemen-
tation that, among other things, allows the user to trade-off
quality for speed.

3.4. Related dense, texture-based methods

The literature described here is not, in general, as strongly
interrelated as the literature in the spot noise, LIC, texture ad-
vection and GPU-based categories. For this reason we sought
an alternative schema in order to relate the different tech-
niques. Figure 16 shows the related methods and classifies
them based on the density of their results. In this case each
technique is given a subjective rating on a sparse-to-dense
scale. Sparse results look more like the results from flow vi-
sualization using geometric objects whereas dense techniques
produce results resembling spot noise or LIC. These methods
do not fit cleanly into one of the previous categories; nonethe-
less, they are important to the dedicated topic and are briefly
outlined here. Reading from top to bottom in Figure 16, we
visit the techniques in chronological order.

Texture Splats: As an extension of the technique of splatting
from volume rendering, Crawfis and Max [9] introduce the
notion of texture splats for flow visualization. Being a vol-
ume rendering technique, it is targeted at the depiction of 3D
vector fields. As with Rezk-Salama et al. [59], it is a selective

c© The Eurographics Association and Blackwell Publishing Ltd 2004

216 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Figure 16: Related dense, texture-based flow visualization
methods. Each method is compared with respect to the density
of the resulting visualization.

transfer function that ultimately decides which subsets of the
3D data are shown and which are not. The transfer functions
are used to emphasize or suppress spatial regions as opposed
to ranges of data values.

Texture Transport: The texture transport method of Becker
and Rumpf [3] introduces a mathematical framework based
on the solution of a time-dependent transport equation. La-
grangian coordinates are computed from the transport equa-
tion and visualized using a texture mapping. The results in
this case resemble those from the geometric class of solutions.
Individual lines in the texture can be distinguished. The major
drawback of this approach is the computation time required.

Furlike Texture: Khouas et al. synthesize LIC-like images in
2D with furlike textures [33]. Their technique is able to locally
control attributes of the output texture such as orientation,
length, density and color via a model based on filaments
resembling fur.

Diffusion and Unsteady Diffusion: Preußer and Rumpf [58]
as well as Diewald et al. [18] borrow a well known technique
from image analysis for visualization of fluid flow. The non-
linear, anisotropic diffusion equations from image analysis
are adopted and applied to vector fields. A noisy texture cov-
ering the domain is strongly smoothed along integral lines
while still retaining and enhancing edges in directions or-
thogonal to the flow, i.e. streamline-aligned diffusion. Suc-
cessively coarse patterns representing the vector field can
also be generated. It is applied to 2D, 2.5D, and 3D vector
fields [18,58]. In the case of 3D, the resulting enhanced edges
are discretized and resemble streamlines or streamribbons. In
this case, occlusion becomes an important issue because the
3D results appear somewhat cluttered.

Bürkle et al. extend this technique to the case of time-
dependent flow [6]. Instead of streamline-like patterns,

streakline patterns are generated. A blending strategy, com-
parable to noise or dye injection, is introduced in order to pro-
vide the new time-dependent texture necessary for the case of
long-term flow evolution. They propose a solution based on
the blending of different results from the transport diffusion
evolution started at successively incremented times. Again,
the disadvantage of this approach is the required computa-
tional time. Also, no attempt is made to apply this method to
time-dependent 3D flow, a formidable challenge.

Contrast Analysis: Sanna et al. [63] focus on the issue of
encoding another scalar value into the texture used to visu-
alize the flow, in addition to flow direction, orientation and
local magnitude of the field. It is an extension of a previous
technique called TOSL—Thick Oriented Streamline Algo-
rithm [62]. Areas of higher scalar values are characterized
by higher contrast levels in the texture and streamline tones
are generated in order to highlight these areas. The goal is
to allow an additional variable into the visualization beyond
previous techniques.

MRF: Taponecco and Alexa apply Markov Random Field
(MRF) texture synthesis methods to vector fields [72]. The
results resemble a mixture of traditional texture-based meth-
ods and geometric methods. In the resulting texture, distinct
streamline patterns can be seen. One drawback to this method
is performance. MRF texture synthesis methods may require
hours of computation time. How it may be applied to unsteady
flow is an open question.

4. Comparisons and Discussion

In this section we briefly introduce literature that compares
and discusses dense, texture-based techniques at a meta-level.
Sanna et al. also provide a summary of this area of research,
with a different classification [61]. The methods are classified
according to the dimensionality outlined here in Section 1.2.

Flow Textures: Erlebacher et al. [19] present a class of flow
visualization algorithms called flow textures within a com-
mon conceptual framework. Flow textures are textures that
encode dense, 2D, time-dependent representations of flow.
The framework allows important ingredients of flow texture
algorithms to be understood with respect to spatial and tem-
poral correlation. A subset of the more recent visualization
techniques is described.

User Studies: Laidlaw et al. [35] present one of the few find-
ings related to human-computer interaction (HCI). They at-
tempt to assess some different visualization techniques from
the viewpoint of the user in terms of searching for and classi-
fying critical points in the flow and predicting where a particle
may end after advection. Error was highest for the LIC tech-
nique in conjunction with classifying critical points and the
prediction of particle advection. This is probably due to the
fact that LIC images do not distinguish between upstream
and downstream flow. User error was higher than expected
for all methods. Hedgehog techniques and LIC were also

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 217

associated with high error for locating critical points. The
authors postulate that this was because in many cases critical
points near the borders of the vector field were difficult to
identify.

5. Conclusions and Future Prospects

Texture-based flow visualization algorithms are effective,
versatile, and applicable to a wide spectrum of applications. A
large number of techniques have been developed and refined.
In general, which techniques are best depends strongly on
the goal of the visualization, such as for exploration, detailed
analysis, or presentation and on the kind of data involved.
Therefore, we believe that a large variety of techniques should
be available in order to allow researchers to choose the most
suitable one.

The problem of dense, 2D, unsteady flow visualization is
close to being solved [79]. And with recent follow-up work
[38,80], unsteady flow visualization on surfaces is not far
behind. However, the generalization to 3D flow fields is still
unsolved, especially in the case of unsteady flow. Hardware,
arguably, will not be the primary bottleneck to solving this
challenge, but perceptual issues will. Perceiving three spatial
and three data dimensions directly is a difficult job for the
human eye and brain. So far, techniques based on geometric
objects and particle animation generalize better to 3D fields.

The scale of numerical flow simulations, and thus the
size of the resulting datasets, continues to grow rapidly—
generally faster than the size of computer memory. For these
reasons more simplification strategies must be conceived,
such as spatial selection (slicing, regions of interest), geom-
etry simplification and feature extraction.

Slicing in a 3D field reduces the problem to 2D, allowing
use of good 2D techniques, but care must be taken with in-
terpretation, as the loss of the third dimension may lead to
physically irrelevant results and wrong interpretation. Taking
a single 3D time slice from a 3D time-dependent dataset has
similar dangers. Other spatial selections such as 3D region-
of-interest selection are less risky, but may lead to loss of con-
text. Reduction of data dimension, such as reducing vector
quantities to scalars will give more freedom of choice in vi-
sualization techniques (such as using volume rendering), but
will not lead to much data reduction. Geometry simplification
techniques such as polygon mesh decimation, levels-of-detail
or multiresolution techniques will be effective in managing
very large datasets and interactive exploration, enabling users
to trade accuracy with response time. Some areas that need
additional work are:

! dense visualization techniques in 3D,
! multifield visualization with scalar, vector and tensor

data,
! handling and exploring huge time-dependent flow

datasets,

! user studies for evaluation, validation and field testing of
flow visualization techniques,

! visualization of inaccuracy and uncertainty [42,60],
! more robust feature extraction techniques, especially in

the case of 3D flow.

We also note that much of the research literature presented
here demonstrates methods operating on structured, uniform
resolution grids. However, the grids used in the private, com-
mercial industry sector are often adaptive resolution and un-
structured, especially in the case of CFD [37,38]. Thus, fur-
ther research is necessary in order to integrate many of the
these methods into practical industrial applications.

Acknowledgements

The authors thank all those who have contributed to this re-
search including AVL (www.avl.com), the Austrian govern-
mental research program called K plus (www.kplus.at) and
the VRVis Research Center (www.VRVis.at). Furthermore,
the authors thank all the colleagues from the research commu-
nity who permitted to use the images as shown in the paper.
CFD simulation data used in Figures 2, 6, 9 and 14 courtesy
of AVL.

This project was partly supported by the Netherlands Or-
ganization for Scientific Research (NWO) on the NWO-EW
Computational Science Project, “Direct Numerical Simu-
lation of Oil/Water Mixtures Using Front Capturing Tech-
niques”, and by the Landesstiftung Baden-Württemberg
within the “Eliteförderprogramm für Postdoktoranden”.

For supplementary material, including additional,
higher resolution images and animations, please visit:
http://www.vrvis.at/ar3/pr2/star/

References

1. D. Arrowsmith and C. Place. An Introduction to Dynam-
ical Systems. Cambridge University Press, USA, 1990.

2. H. Battke, D. Stalling and H. Hege. Fast Line Integral
Convolution for Arbitrary Surfaces in 3D. In Visual-
ization and Mathematics, Springer-Verlag, Heidelberg,
pp. 181–195. 1997.

3. J. Becker and M. Rumpf. Visualization of Time-
Dependent Velocity Fields by Texture Transport. In Vi-
sualization in Scientific Computing ’98, Eurographics,
pp. 91–102, 1998.

4. S. Berger and E. Gröller. Color-Table Animation of Fast
Oriented Line Intgral Convolution for Vector Field Vi-
sualization. In WSCG 2000 Conference Proceedings,
pp. 4–11, 2000.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

218 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

5. U. Bordoloi and H. W. Shen. Hardware Accelerated
Interactive Vector Field Visualization: A level of de-
tail approach. In Eurographics 2002 Proceedings, vol-
ume 21(3) of Computer Graphics Forum, pp. 605–614,
2002.

6. D. Bürkle, T. Preußer and M. Rumpf. Transport and
Anisotropic Diffusion in Time-Dependent Flow Visu-
alization. In Proceedings IEEE Visualization ’01, IEEE
Computer Society, pp. 61–67, 2001.

7. B. Cabral and C. Leedom. Highly Parallel Vector Visu-
alization Using Line Integral Convolution. In Proceed-
ings of the 27th Conference on Parallel Processing for
Scientific Computing, SIAM Press, USA, pp. 802–807,
1995.

8. B. Cabral and L. C. Leedom. Imaging Vector Fields Us-
ing Line Integral Convolution. In Poceedings of ACM
SIGGRAPH 1993, Annual Conference Series, ACM
Press/ACM SIGGRAPH, pp. 263–272, 1993.

9. R. A. Crawfis and N. Max. Texture Splats for 3D Scalar
and Vector Field Visualization. In Proceedings IEEE Vi-
sualization ’93, IEEE Computer Society, pp. 261–267,
Oct. 1993.

10. W. de Leeuw and R. van Liere. Visualization of Global
Flow Structures Using Multiple Levels of Topology. In
Data Visualization ’99, Eurographics, Springer-Verlag,
pp. 45–52, May 1999.

11. W. de Leeuw and R. van Liere. Multi-Level Topol-
ogy for Flow Visualization. Computers and Graphics,
24(3):325–331, June 2000.

12. W. de Leeuw and J. van Wijk. Enhanced Spot Noise for
Vector Field Visualization. In Proceedings IEEE Visual-
ization ’95, IEEE Computer Society, pp. 233–239, Oct.
1995.

13. W. C. de Leeuw. Divide and Conquer Spot Noise. In
Proceedings of Supercomputing’97 (CD-ROM), ACM
SIGARCH and IEEE, Nov. 1997.

14. W. C. de Leeuw, H. Pagendarm, F. H. Post and B.
Waltzer. Visual Simulation of Experimental Oil-Flow
Visualization by Spot Noise from Numerical Flow Sim-
ulation. In Visualization in Scientific Computing ’95,
Springer-Verlag, pp. 135–148, May 1995.

15. W. C. de Leeuw, F. H. Post and R. W. Vaatstra. Visu-
alization of Turbulent Flow by Spot Noise. In Virtual
Environments and Scientific Visualization ’96, Springer-
Verlag, pp. 286–295, Apr. 1996.

16. W. C. de Leeuw and R. van Liere. Spotting Structure
in Complex Time Dependent Flow. In H. Hagen, G. M.

Nielson and F. H. Post eds Scientific Visualization, IEEE,
Dagstuhl Seminar 9724, pp. 9–13, June 1997.

17. W. C. de Leeuw and R. van Liere. Comparing LIC
and Spot Noise. In Proceedings IEEE Visualization ’98,
IEEE Computer Society, pp. 359–366, 1998.

18. U. Diewald, T. Preußer and M. Rumpf. Anisotropic
Diffusion in Vector Field Visualization onEuclidean
Domains and Surfaces. In IEEE Transactions on Vi-
sualization and Computer Graphics, 6(2):139–149,
2000.

19. G. Erlebacher, B. Jobard and D. Weiskopf. Flow Tex-
tures. In C. R. Johnson and C. D. Hansen (eds), The
Visualization Handbook. Academic Press, Oct. 2003.

20. L. K. Forssell. Visualizing Flow over Curvilinear Grid
Surfaces Using Line Integral Convolution. In Proceed-
ings IEEE Visualization ’94, IEEE Computer Society,
pp. 240–247, Oct. 1994.

21. L. K. Forssell and S. D. Cohen. Using Line Integral
Convolution for Flow Visualization: Curvilinear Grids,
Variable-Speed Animation, and Unsteady Flows. IEEE
Transactions on Visualization and Computer Graphics,
1(2):133–141, June 1995.

22. H. Hege and D. Stalling. Fast LIC with Piecewise Poly-
nomial Filter Kernels. In Mathematical Visualization,
Springer Verlag, pp. 295–314, 1998.

23. W. Heidrich, R. Westermann, H.-P. Seidel and T. Ertl.
Applications of Pixel Textures in Visualization and Real-
istic Image Synthesis. In ACM Symposium on Interactive
3D Graphics, pp. 127–134, 1999.

24. L. Hesselink, F. H. Post and J. van Wijk. Research Issues
in Vector and Tensor Field Visualization. IEEE Com-
puter Graphics and Applications, 14(2):76–79, Mar.
1994.

25. V. Interrante and C. Grosch. Strategies for Effectively
Visualizing 3D Flow with Volume LIC. In Proceedings
IEEE Visualization ’97, pp. 421–424, 1997.

26. V. Interrante and C. Grosch. Visualizing 3D flow. IEEE
Computer Graphics & Applications, 18(4):49–53, 1998.

27. B. Jobard, G. Erlebacher and M. Y. Hussaini. Hardware-
Accelerated Texture Advection. In Proceedings IEEE
Visualization 2000, IEEE Computer Society, pp. 155–
162, 2000.

28. B. Jobard, G. Erlebacher and M. Y. Hussaini.
Lagrangian-Eulerian Advection for Unsteady Flow Vi-
sualization. In Proceedings IEEE Visualization ’01,
IEEE, October 2001.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 219

29. B. Jobard, G. Erlebacher and Y. Hussaini. Lagrangian-
Eulerian Advection of Noise and Dye Textures for Un-
steady Flow Visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 8(3):211–222, 2002.

30. B. Jobard and W. Lefer. Creating Evenly–Spaced
Streamlines of Arbitrary Density. In Proceedings of
the Eurographics Workshop on Visualization in Scien-
tific Computing ’97, volume 7, Eurographics, Springer-
Verlag, April 28–30, 1997.

31. B. Jobard and W. Lefer. The Motion Map: Efficient
Computation of Steady Flow Animations. In Proceed-
ings IEEE Visualization ’97, IEEE Computer Society,
pp. 323–328, Oct. 19–24, 1997.

32. D. Kao, B. Zhang, K. Kim and A. Pang. 3D Flow Visual-
ization Using Texture Advection. In International Con-
ference on Computer Graphics and Imaging ’01, August
2001.

33. L. Khouas, C. Odet and D. Friboulet. 2D Vec-
tor Field Visualization Using Furlike Texture. In
Joint Eurographics-IEEE TVCG Symposium on Visu-
alization (VisSym ’99), Eurographics, Springer-Verlag,
pp. 35–44, May 1999.

34. M. Kiu and D. C. Banks. Multi-frequency Noise for LIC.
In Proceedings IEEE Visualization ’96, IEEE, pp. 121–
126, Oct. 27–Nov. 1, 1996.

35. D. H. Laidlaw, R. M. Kirby, J. S. Davidson, T. S. Miller,
M. da Silva, W. H. Warren and M. Tarr. Quantitative
Comparative Evaluation of 2D Vector Field Visualiza-
tion Methods. In Proceedings IEEE Visualization 01,
IEEE Computer Society, pp. 143–150, October 2001.

36. D. A. Lane. Scientific Visualization of Large-Scale Un-
steady Fluid Flows, Scientific Visualization: Overviews,
Methodologies, and Techniques. IEEE Computer Sci-
ence Press, Los Alamitos, chapter 5, pp. 125–145,
1997.

37. R. S. Laramee. FIRST: A Flexible and Interactive Re-
sampling Tool for CFD Simulation Data. Computers &
Graphics, 27(6):905–916, 2003.

38. R. S. Laramee, B. Jobard and H. Hauser. Image Space
Based Visualization of Unsteady Flow on Surfaces. In
Proceedings IEEE Visualization ’03, IEEE Computer
Society, pp. 131–138, 2003.

39. R. S. Laramee, J. Schneider and H. Hauser. Texture-
Based Flow Visualization on Isosurfaces from Com-
putational Fluid Dynamics. In Joint Eurographics—
IEEE TVCG Symposium on Visualization (VisSym ’04),
Konstanz, Germany, May 19–21, 2004, forthcoming.

40. G. S. Li, U. Bordoloi and H. W. Shen. Chameleon:
An Interactive Texture-based Framework for Visualizing
Three-dimensional Vector Fields. In Proceedings IEEE
Visualization ’03, IEEE Computer Society, pp. 241–248,
2003.

41. Z. P. Liu and R. J. Moorhead, II. AUFLIC: An Acceler-
ated Algorithm for Unsteady Flow Line Integral Convo-
lution. In Proceedings of the Joint Eurographics—IEEE
TCVG Symposium on Visualizatation (VisSym ’02),
pp. 43–52, 2002.

42. S. K. Lodha, A. Pang, R. E. Sheehan and C. M. Witten-
brink. UFLOW: Visualizing Uncertainty in Fluid Flow.
In Proceedings IEEE Visualization ’96, pp. 249–254,
Oct. 27–Nov. 1, 1996.

43. H. Löffelmann, T. Kučera and E. Gröller. Visualizing
Poincaré Maps Together with the Underlying Flow. In
Mathematical Visualization, Springer Verlag, pp. 315–
328, 1998.

44. H. Löffelmann, L. Mroz, E. Gröller and W. Purgathofer.
Stream Arrows: Enhancing the Use of Streamsurfaces
for the Visualization of Dynamical Systems. The Visual
Computer, 13:359–369, 1997.

45. H. Löffelmann, Z. Szalavàri and E. Gröller. Local Analy-
sis of Dynamical Systems—Concepts and Interpretation.
In WSCG 1996 Conference Proceedings, pp. 170–180,
Feb. 1996.

46. X. Mao, L. Hong, A. Kaufman, N. Fujita and M.
Kikukawa. Multi-Granularity Noise for Curvilinear Grid
LIC. In Graphics Interface, pp. 193–200, June 1998.

47. X. Mao, M. Kikukawa, N. Fujita and A. Imamiya. Line
Integral Convolution for 3D Surfaces. In Visualization
in Scientific Computing ’97. Proceedings of the Euro-
graphics Workshop, pp. 57–70. Eurographics, 1997.

48. N. Max and B. Becker. Flow Visualization Using Mov-
ing Textures. In Proceedings of the ICASW/LaRC Sym-
posium on Visualizing Time-Varying Data, pp. 77–87,
Sept. 1995.

49. N. Max, B. Becker and R. Crawfis. Flow Volumes for
Interactive Vector Field Visualization. In Proceedings
IEEE Visualization ’93, IEEE Computer Society, pp. 19–
24, Oct. 1993.

50. N. Max, R. Crawfis and D. Williams. Visualizing Wind
Velocities by Advecting Cloud Textures. In Proceed-
ings IEEEVisualization ’92, IEEE Computer Society,
1992.

51. A. Okada and D. L. Kao. Enhanced Line Integral Con-
volution with Flow Feature Detection. In SPIE Vol. 3017

c© The Eurographics Association and Blackwell Publishing Ltd 2004

220 R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques

Visual Data Exploration and Analysis IV , pp. 206–217,
Feb. 1997.

52. D. R. Peachey. Solid Texturing of Complex Surfaces.
Computer Graphics (Proceedings of ACM SIGGRAPH
85), 19(3):279–286, 1985.

53. F. H. Post and T. van Walsum. Fluid flow visualization.
In Focus on Scientific Visualization, Springer, pp. 1–40,
1993.

54. F. H. Post and J. van Wijk. Visual Representation of
Vector Fields: Recent Developments and Research Di-
rections. In L. Rosenblum et al. (eds), Scientific Visual-
ization: Advances and Challenges. Springer, chapter 23,
pp. 367–390, 1994.

55. F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee and
H. Doleisch. Feature Extraction and Visualization of
Flow Fields. In Eurographics 2002 State-of-the-Art Re-
ports, The Eurographics Association, pp. 69–100, 2–6,
September 2002.

56. F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee and
H. Doleisch. The State of the Art in Flow Visualization:
Feature Extraction and Tracking. Computer Graphics
Forum, 22(4):775–792, Dec. 2003.

57. W. H. Press, S. A. Teukolsky, W. T. Vettering and B. P.
Flannery. Numerical Recipes in C++: The Art of Scien-
tific Computing. 2 edition, Cambridge University Press,
Cambridge, 2002.

58. T. Preußer and M. Rumpf. Anisotropic Nonlinear Diffu-
sion in Flow Visualization. In Proceedings IEEE Visual-
ization ’99, IEEE Computer Society, pp. 325–332, Oct.
1999.

59. C. Rezk-Salama, P. Hastreiter, C. Teitzel and T. Ertl. In-
teractive exploration of volume line integral convolution
based on 3D-texture mapping. In Proceedings IEEE Vi-
sualization ’99, IEEE Computer Society, pp. 233–240,
1999.

60. P. J. Rhodes, R. S. Laramee, R. D. Bergeron and T. M.
Sparr. Uncertainty Visualization Methods in Isosurface
Rendering. In M. Chover, H. Hagen and D. Tost (eds),
Eurographics 2003, Short Papers, The Eurographics As-
sociation, pp. 83–88, September 1–5, 2003.

61. A. Sanna, B. Montrucchio and P. Montuschi. A survey on
visualization of vector fields by texture-based methods.
Recent Research Developments in Pattern Recognition,
1(1):13–27, 2000.

62. A. Sanna, B. Montrucchio, P. Montuschi and A. Spar-
avigna. Visualizing Vector Fields: The Thick Oriented

Stream-Line Algorithm (TOSL). Computers and Graph-
ics, 25(5):847–855, Oct. 2001.

63. A. Sanna, C. Zunino, B. Montucchio and P. Mon-
tuschi. Adding a Scalar Value to Texture-Based Vec-
tor Field Representations by local contrast analysis. In
Proceedings of the Joint Eurographics—IEEE TCVG
Symposium on Visualizatation (VisSym ’02), pp. 35–41,
2002.

64. G. Scheuermann, H. Burbach and H. Hagen. Visualiz-
ing Planar Vector Fields with Normal Component Using
Line Integral Convolution. In Proceedings IEEE Visual-
ization ’99, IEEE Computer Society, pp. 255–262, 1999.

65. H. Shen and D. L. Kao. A New Line Integral Con-
volution Algorithm for Visualizing Time-Varying Flow
Fields. IEEE Transactions on Visualization and Com-
puter Graphics, 4(2), Apr.–June, pp. 98–108, 1998.

66. H. W. Shen, C. R. Johnson and K. L. Ma. Visualizing
Vector Fields Using Line Integral Convolution and Dye
Advection. In 1996 Volume Visualization Symposium,
IEEE, pp. 63–70, Oct. 1996.

67. H. W. Shen and D. L. Kao. UFLIC: A Line Integral
Convolution Algorithm for Visualizing Unsteady Flows.
In Proceedings IEEE Visualization ’97, IEEE Computer
Society, pp. 317–323, 1997.

68. D. Silver, F. Post, and I. Sadarjoen. Flow Visualization,
volume 7 of Wiley Encyclopedia of Electrical and Elec-
tronics Engineering, John Wiley & Sons, New York,
pp. 640–652, 1999.

69. D. Stalling. LIC on Surfaces. In Texture Synthesis with
Line Integral Convolution, ACM SIGGRAPH 97, Inter-
national Conference on Computer Graphics and Interac-
tive Techniques, pp. 51–64, 1997.

70. D. Stalling and H. Hege. Fast and Resolution Indepen-
dent Line Integral Convolution. In Proceedings of ACM
SIGGRAPH 95, Annual Conference Series, ACM SIG-
GRAPH, ACM Press/ACM SIGGRAPH, pp. 249–256,
1995.

71. A. Sundquist. Dynamic Line Iintegral Convolution for
Visualizing Streamline Evolution. IEEE Transactions
on Visualization and Computer Graphics, 9(3):273–282,
2003.

72. F. Taponecco and M. Alexa. Vector Field Visualization
using Markov Random Field Texture Synthesis. In Pro-
ceedings of the Joint Eurographics–IEEE TCVG Sympo-
sium on Visualizatation (VisSym ’03), Springer-Verlag,
pp. 195–202, May 2003.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

R. S. Laramee et al. /Flow Visualization: Dense and Texture-Based Techniques 221

73. C. Teitzel, R. Grosso and T. Ertl. Line Integral Convo-
lution on Triangulated Surfaces. In WSCG 1997 Confer-
ence Proceedings, pp. 572–581, 1997.

74. A. Telea and J. van Wijk. Simplified Representation of
Vector Fields. In Proceedings IEEE Visualization ’99,
IEEE Computer Society, pp. 35–42, 1999.

75. A. Telea and J. J. van Wijk. 3D IBFV: Hardware-
Accelerated 3D Flow Visualization. In Proceedings
IEEE Visualization ’03, IEEE Computer Society,
pp. 233–240, 2003.

76. T. Urness, V. Interrante, I. Marusic, E. Longmire, and
B. Ganapathisubramani. Effectively Visualizing Multi-
Valued Flow Data using Color and Texture. In Proceed-
ings IEEE Visualization ’03, IEEE Computer Society,
pp. 115–122, 2003.

77. M. van Dyke. An Album of Fluid Motion. The Parabolic
Press, 1982.

78. J. J. van Wijk. Spot noise-Texture Synthesis for Data Vi-
sualization. InT. W. Sederberg (ed), Computer Graphics
(Proceedings of ACM SIGGRAPH 91), ACM, volume
25, pp. 309–318, 1991.

79. J. J. van Wijk. Image Based Flow Visualization. ACM
Transactions on Graphics, 21(3):745–754, 2002.

80. J. J. van Wijk. Image Based Flow Visualization for
Curved Surfaces. In Proceedings IEEE Visualization ’03,
IEEE Computer Society, pp. 123–130, 2003.

81. V. Verma, D. Kao and A. Pang. PLIC: Bridging the
Gap Between Streamlines and LIC. In Proceedings
IEEE Visualization ’99, N.Y., pp. 341–348, Oct. 25–29,
1999.

82. H. K. Versteeg and W. Malalasekera. Addison-Wesley,
February 1996.

83. R. Wegenkittl and E. Gröller. Fast Oriented Line Inte-
gral Convolution for Vector Field Visualization via the
Internet. In Proceedings IEEE Visualization ’97, IEEE
Computer Society, pp. 309–316, Oct. 19–24, 1997.

84. R. Wegenkittl, E. Gröller and W. Purgathofer. Animat-
ing Flow Fields: Rendering of Oriented Line Integral
Convolution. In Computer Animation ’97 Proceedings,
IEEE Computer Society, pp. 15–21, June 1997.

85. D. Weiskopf, G. Erlebacher and T. Ertl. A Texture-
Based Framework for Spacetime-Coherent Visualization
of Time-Dependent Vector Fields. In Proceedings IEEE
Visualization ’03, IEEE Computer Society, pp. 107–114,
2003.

86. D. Weiskopf, G. Erlebacher, M. Hopf and T.
Ertl. Hardware-Accelerated Lagrangian-Eulerian Tex-
ture Advection for 2D Flow Visualizations. In Proceed-
ings of the Vision Modeling and Visualization Confer-
ence 2002 (VMV-01), pp. 439–446, Nov. 21–23, 2002.

87. D. Weiskopf and T. Ertl. GPU-Based 3D Texture Ad-
vection for the Visualization of Unsteady Flow Fields.
In WSCG 2004 Conference Proceedings, Short Papers,
pp. 259–266, February 2004.

88. D. Weiskopf, M. Hopf and T. Ertl. Hardware-
Accelerated Visualization of Time-Varying 2D and 3D
Vector Fields by Texture Advection via Programmable
Per-Pixel Operations. In Proceedings of the Vision Mod-
eling and Visualization Conference 2001 (VMV 01),
pp. 439–446, Nov. 21–23, 2001.

89. R. Yagel, D. M. Reed, A. Law, P. Shih and N. Shareef.
Hardware Assisted Volume Rendering of Unstructured
Grids by Incremental Slicing. In Proceedings 1996 Sym-
posium on Volume Visualization, pp. 55–62, Sept. 1996.

90. M. Zöckler, D. Stalling and H.-C. Hege. Parallel Line
Integral Convolution. Parallel Computing, 23(7):975–
989, 1997.

c© The Eurographics Association and Blackwell Publishing Ltd 2004

Tutorial Introduction

D-1

Daniel

Weiskopf

Gordon

Erlebacher

Bob

Laramee

IEEE Visualization 2004 Tutorial:
Interactive Texture-Based Flow Visualization

Interactive Texture-Based
Flow Visualization

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

2

Schedule

Bob LarameeTexture-Based Flow Visualization
on Surfaces

10.30 – 11.10

All speakersSummary, Questions & Answers11.50 – 12.15

Daniel
Weiskopf

3D Texture-Based Flow
Visualization

11.10 – 11.50

Coffee Break10.00 – 10.30

Gordon
Erlebacher

2D Texture-Based Flow
Visualization

9.00 – 10.00

Daniel
Weiskopf

Introduction to the Tutorial
Intro to GPU Programming

8.30 – 9.00

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

3

Graphics Hardware Trends
• Faster development than Moore’s law

– Double transistor functions every 6-12 months

– Driven by game industry

• Improvement of performance and functionality

– Textures and multi-textures

– Pixel operations (transparency, blending, pixel shaders)

– Geometry and lighting modifications (vertex shaders)

time

p
e
rf

o
rm

a
n
c
e

network

graphics CPU

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

4

Transistor Functions

0

10

20

30

40

50

60

Month/

year

T
ra

n
s
is

to
rs

 (
m

ill
io

n
s
)

Riva 128 (3M)

NVIDIA GeForce3 (57M) ATI Radeon 8500 (60M)

70

80

90

100
ATI Radeon 9700 Pro (110M)

NVIDIA GeForce FX 5800 (125M)

NVIDIA GeForce4 (63M)

9/97 3/98 9/98 3/99 9/99 3/00 9/00 3/01 9/01 3/02 9/02 3/03

110

120

9/03 3/04

NVIDIA GeForce

FX 6800 (222M)

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

5

sensors data basessimulation

raw data

vis data

renderable
representations

visualizations
images videos

geometry:

• lines

• surfaces

• voxels

attributes:

• color

• texture

• transparency

filter

render

map

interaction

visualization pipeline classification

1D

3D

2D

scalar vector tensor/MV

volume rend.
isosurfaces

height fields
color coding

stream
ribbons

topology
arrows

LIC
attribute
symbols

glyphs
icons

different grid types → different algorithms

3D scalar fields
Cartesian

(eg. medical datasets)

3D vector fields
un/structured

(eg. CFD)

trees, graphs, tables,
data bases

Visualization Pipeline and Classification

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

6

GPU and Visualization Pipeline
• Filtering

– Data filtering in graphics memory

– Compression/decompression (of textures)

• Mapping
– Integrate particle traces

– Classification in volume rendering

• Rendering
– Texture-based techniques (e.g., for volume rendering)

Tutorial Introduction

D-2

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

7

Flow Visualization
• Flow:

– Vector field

– Additional attributes: pressure, temperature, etc.

• Vector field = velocity field

• Particle tracing (Lagrangian)

– Initial value problem

),(t
dt
d rvr =

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

8

Flow Visualization

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

9

Classification: Level 1
• Direct flow visualization

– Arrows, color coding, etc.

• Geometric flow visualization

– Streamlines, streaklines, pathlines

– Geometric objects

• Feature-based flow visualization

– Topology, vortices, etc.

– IEEE Visualization 2004 Tutorial

“Feature Oriented Methods in Flow Visualization”

• Dense, texture-based flow visualization

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

10

Texture-Based Flow Visualization
• Focus of this tutorial

• Dense representation

– Cover domain “everywhere”,

at each texel

– Patterns through filtering

– Overcomes seed-point

positioning problem

• Issues

– Performance: Many texels, many computations

– Interactivity?

– Time-dependent flow?

– Perception problems in 3D

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

11

Classification: Level 2 and Beyond
• Classification of texture-based techniques

• Dimensionality of the domain

– 2D on planar surfaces

– 2.5D on curved surfaces within 3D space

– 3D in 3D volume

• Further categories

– Steady vs. unsteady flow

– Internal representation (grid type, scattered data,

image space vs. object space)

– Implementation: CPU-based vs. GPU-based

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

12

Goals of this Tutorial
• Recent developments (last 3-5 years)

• Theoretical and algorithmic background

• Practical implementation aspects

• Applications, case studies

Tutorial Introduction

D-3

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Introduction

13

Tutorial Web Page
• Updated slides

• Additional images and material

http://www.vis.uni-stuttgart.de/vis04_tutorial

Basics of GPU-Based Programming

E-1

IEEE Visualization 2004 Tutorial:
Interactive Texture-Based Flow Visualization

Daniel Weiskopf

Institute of Visualization and Interactive Systems
University of Stuttgart

Basics of GPU-Based Programming

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

2

Overview
• Rendering pipeline on current GPUs
• Low-level languages
• High-level shading languages

• Also see tutorial
„GPGPU: General-Purpose Computation on
Graphics Processors”

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

3

Graphics Pipeline

PixelsVertices Primitives Fragments

Scene description

Geometry
processing Rasterization Fragment

operations

Lighting,
Transformations

Texturing,
Blending

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

4

Programmable Pipeline

3D application

3D API GPU front end
vertex

processor
primitive assembly

rasterization

fragment
processor

raster operations

frame buffer

CPU

GPU Shaders

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

5

Issues
• How are vertex and pixel shaders specified?

– Low-level, assembler-like
– High-level language

• Data flow between components
– Per-vertex data (for vertex shader)
– Per-fragment data (for pixel shader)
– Uniform (constant) data: e.g. model-view matrix,

material parameters

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

6

What Are Low-Level APIs?
• Current low-level APIs:

– OpenGL extensions: GL_ARB_vertex_program,
GL_ARB_fragment_program

– DirectX 9: Vertex Shader 2.0, Pixel Shader 2.0, Vertex
Shader 3.0, Pixel Shader 3.0

• Older low-level APIs:
– DirectX 8.x: Vertex Shader 1.x, Pixel Shader 1.x
– OpenGL extensions: GL_ATI_fragment_shader,

GL_NV_vertex_program, …

Basics of GPU-Based Programming

E-2

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

7

Applications of Vertex Programming
• Customized computation of vertex attributes
• Computation of anything that can be interpolated

linearly between vertices
• Limitations:

– Vertices can neither be generated nor destroyed
– No information about topology or ordering of vertices

is available

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

8

Applications of Fragment Shaders
• Customized computation of fragment attributes
• Computation of anything that should be

computed per pixel

ĺ Basis for texture-based flow visualization

• Limitations:
– Fragments cannot be generated
– Position of fragments cannot be changed
– No information about geometric primitive is available

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

9

Fragment Shader
• Circumvents the traditional fragment pipeline
• What is not replaced?

– Fragment tests (alpha, stencil, and depth tests)
– Blending

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

10

Fragment Shader: Programming Model

Input
registers

Shader

Output
registers

Constants

Registers

Textures

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

11

DirectX 9: Pixel Shader 2.0
• Pixel Shader 2.0 introduced in DirectX 9.0

– Syntax of Pixel Shader 3.0 is closely related
• Instruction set

– Numerical operations
– Texture operations (lookup)

• Similar functionality and limitations in
GL_ARB_fragment_program
– Similar registers and syntax

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

12

DirectX 9: Pixel Shader 2.0
• Declaration of texture samplers

– Examples:

• Declaration of input color and texture coordinate

dcl_type s*

dcl_2d s0
dcl_volume s1

dcl v*[.mask]
dcl t*[.mask]

Basics of GPU-Based Programming

E-3

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

13

Pixel Shader 2.0: Instructions
• Instruction set

– Operate on floating-point scalars or 4-vectors
– Basic syntax:

– Example:

• Texture sampling
– Syntax:

– Example:

op destination [, source1 [, source2 [, source3]]]

mov oC0, v0; // sets resulting color oC0

op destination, source, sn

texld r2, t1, s0;

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

14

Pixel Shader 2.0: Simple Example

ps_2_0

dcl_2d s0
dcl t0.xy

texld r1, t0, s0
mov oC0, r1

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

15

High-Level Shading Languages
• Why?

– Avoids programming, debugging, and maintenance of
long assembly shaders

– Easy to read
– Easier to modify existing shaders
– Automatic code optimization
– Wide range of platforms

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

16

Assembler vs. High-Level Language

Assembler

…
dp3 r0, r0, r1
max r1.x, c5.x, r0.x
pow r0.x, r1.x, c4.x
mul r0, c3.x, r0.x
mov r1, c2
add r1, c1, r1
mad r0, c0.x, r1, r0
...

High-level language

…
float4 cSpec = pow(max(0, dot(Nf, H)), phongExp).xxx;
float4 cPlastic = Cd * (cAmbi + cDiff) + Cs * cSpec;
…

Blinn-Phong shader
expressed in both
assembly and high-level
language

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

17

Data Flow through Pipeline
• Vertex shader program
• Fragment shader program
• Connectors

frame buffer

connector

3D application
vertex

program
fragment
program

high-level
shader

high-level
shader

connectorconnector

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

18

High-Level Shading Languages
• Cg

– “C for Graphics”
– By NVIDIA

• HLSL
– “High-level shading language”
– Part of DirectX 9 (Microsoft)

• OpenGL 2.0 Shading Language

Basics of GPU-Based Programming

E-4

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

19

Cg
• Typical concepts for a high-level shading

language
• Language is (almost) identical to DirectX HLSL
• Syntax, operators, functions from C/C++
• Conditionals and flow control

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

20

Cg: Pixel Shader
• Connectors: What kind of data is transferred to /

from pixel program?
• Actual pixel shader

frame buffer

connector

3D application
vertex

program
fragment
program

shader shader
mainPS

connector
pixelOut

connector
vertexOut

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

21

Cg: Pixel Shader Example
// vertex shader to pixel shader
struct vertexOut {

float4 Position : POSITION;
float4 Diffuse : COLOR0;
float4 TexCoord : TEXCOORD0;

};

// final pixel output: data from pixel shader to frame buffer
struct pixelOut {
float4 Col : COLOR;

};

// pixel shader
pixelOut mainPS(

vertexOut IN, // input from vertex shader
uniform float param, // constant parameter

) {
pixelOut OUT;
... // more code
OUT.Col = IN.Diffuse;
return OUT; // output of pixel shader

}

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
Basics of GPU-Based Programming

22

What’s Next?

• Usage of GPU and CPU for flow visualization

IEEE Visualization 2004 Tutorial:
Interactive Texture-Based Flow Visualization

Gordon Erlebacher

School of Computational Science

Florida State University

2D Texture-Based Flow
Visualization

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

2/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

3/73

What are Textures?

• Textures = 1D, 2D, 3D arrays

• Texture array element = Ai, Aij, Aijk

– Aij: texel (2D texture element)

– Aijk: voxel (3D volume element)

• A texture can encode, 1, 2, 3, or 4 pieces of
information

– each piece can be a (u)byte, (u)int, or float

• n components and mD

– byte: nm bytes per texture array element

– int/float: 4nm bytes per texture array element

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

4/73

Eulerian Approach

• Properties given on a grid, not wrt particles

• Position is implicit

• Sampling of particles on regular grid (=texture)

y

x

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

5/73

Texture Encoding

• What to encode?

– Color: any combination of RGBA

– Normal vectors: nx, ny, nz

– Transparency/opacity: alpha

– Any kind of information:

- particle positions

- velocity components

- velocity magnitude

- diffusivity

- CFD simulation data attributes (P, T, …)

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

6/73

Textures

texel i,j

Position encoding

ijx

min

min

i

j

x x i x
y y j y

= + ∆
= + ∆

(),ij i jx y=x
2-component texture

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

7/73

Textures

texel i,j

Velocity encoding

iju
(),ij ij iju v=u

2-component texture

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

8/73

Textures

0 or 1ij =N
1-component texture

Noise encoding

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

9/73

Texture Initialization

• Executed on the CPU

• Textures are modified on the GPU during the
advection process

• Each texel encodes a single particle

– particle is treated as a point at position
within texel ij

ijx

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

10/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

11/73

k(t-s) : convolution filter
t1

t2

s

s

Common section L

-

+

() () ()/ 2*

/ 2

L

L
N t N t s k s ds

−
= +³

k(t-s)

()N s

()*N s

1D Convolution

: original signal

: smoothed signal

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

12/73

Line Integral Convolution (LIC)

() ()() ()* s l

s l
t s k s ds

+

−
= +³N x N x

Vector Field

Curved

Streamline

Input

Noise

Output image

()N x

curved

streamline

[Cabral and Leedom 91]

()sx

Steady Flow

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

13/73

Discretization of Convolution Integral

• x(s) is a streamline

• xij = x(0)

() ()()
() ()()

*

L

ij
k L

s ds

k s
=−

=

≈ ∆

³

¦

N x N x

N x N x

ijx

3L = ()s∆x

()s−∆x

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

14/73

GPU Implementation (1)

()
() ()

()

, 0
for 1,

end for

Ka
l L

t

K l s s

Ka Ka K l s

= =
=
= + ∆
= + ∆ ∆

= + ∆

n N

x x v x

n n v x

/ij ij Ka=n n

Forward
integration

Backward
integration

......

Dependent
texture

Filter

normalization

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

15/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

16/73

Time-Dependent Flows

• Velocity field is a function of time:

• Several ways to visualize the vector field:

– track a dense collection of particles

– release (multi-)colored dye into the flow

– track streaklines, pathlines, timelines

• Objectives

– Visualize the “structure” of the flow

– Visualize the motion of particles

– Minimize numerical artifacts

– Maintain uniform density of particles

(),tv x

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

17/73

Particle Path in Space-Time

A particle is at x at t=0

The particle is transported
according to the velocity field
v(x,t).

The particle follows the 3D path
seen in the figure.

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

18/73

Curves of Interest

• Particle path

– path follwed by a particle immersed in a time-
dependent velocity field

• Streamline

– path followed by a particle when the velocity field is
frozen at a particular time

• Streakline

– locus of fluid particles that originate from a fixed point
in space

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

19/73

Potential Problems

• Accumulation of particles in regions of flow
convergence

• Dispersal of particles in regions of flow
divergence (necessitates particle injection)

• Injection of particles at boundary inflow

• Treatment of particles at outflow regions

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

20/73

Particle Property P
• P remains constant over the lifetime of a particle

• Equate property value of a given particle at times and

• P is often particle “color” (RGB)

• Particle property is encoded in a noise texture

0D
dt t

∂= + ⋅∇ =
∂

P P v P

t h−
t

() (), ,ij ij ijt h t h= − −P x P x v

() ()1 1, ,n n n nt t+ + =P x P x

single particle

texture

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

21/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

22/73

Lagrange-Euler Advection (LEA)

• Feedbak algorithm

• Each texel encodes a single particle

• Particle property of each texel is computed from
the particle position at some previous time

• Advect noise texture with nearest neighbor
interpolation

• Alpha blend successive noise textures into the
framebuffer

– similar to long exposure photography

[Jobard et al. 00]

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

23/73

Flowchart

Initialization (x,v,N)

Update particles

one particle
per texel

for each texel

Blend

Postprocess

Avection

Injection

Edge treatment

CPU

GPU

GPU

GPU

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

24/73

Property Assignment

v

-h.v

Advection of noise texture N(x,t) for one time step

() (), ,t h tt t h−= − −N x N x v

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

25/73

Issue: Small Displacements

v

-h.v

Problem

Particle remains in the texel

Particle property
does not change

Solution

Keep track of explicit particle
position within texel

Eventually, particle leaves
texel

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

26/73

Solution: Fractional Correction

(a) (b)(a) (b)

No fractional correction Fractional correction

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

27/73

GPU Implementation

x : particle position texture

varies by one unit across one texel

() ()
()

*

*

*

h

frac

← −
←

←

x x v

N x N x

x x

Dependent texture

Fractional part

LIC (N(x))Render Buffer

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

28/73

Noise Injection (1)

Noise frequency decreases in region
of flow divergence

Vector Field Advected Noise

Problem:

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

29/73

Noise Injection (2)

Maintain high frequency by swapping
2-3% of pixels

Solution:

Vector Field Advected Noise Sparse Noise

Blend, XOR

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

30/73

GPU Implementation

• Create sparse noise texture (2 percent black, 98
percent white texels) on CPU with GL_REPEAT

• Maintain texture on the GPU

• Every iteration, shift the texture randomly

– (maintain list of random numbers on CPU)

• XOR advected noise and random noise

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

31/73

Edge Treatment

Physical domain

Buffer zone

• Noise has no spatial

correlation

• Noise is time-dependent

• Width < h |v|max

• Noise is advected

according to v(x,t)

• Minimal spatial

correlation

-h.v

v

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

32/73

GPU Implementation

() ()
()

*

*

*

h

frac

← −

←

←

x x v

N x N x

x x

() () () ()()* * *1R Bα α← + −F x x N x x N

BN
N

α
RF

: Boundary buffer noise

: Advected noise

: Transparency mask

: Render buffer

Noise advection

Fractional correction

Boundary treatment

()* *

*

0, buffer region

1, physical domain

α = ∈

= ∈

x x

x

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

33/73

LEA: - blending

α=0.10

α=1.00

α=0.50

α=0.03

α=0.10

α=1.00

α=0.50

α=0.03

α
Introduces
spatial correlation

()
() () ()1

D t t

t t D tα α
+ ∆ =

+ ∆ + −N

D(t): framebuffer at t

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

34/73

Velocity Mask

• Use of velocity textures to enhance regions of
higher velocity magnitude

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

35/73

GPU Implementation

• D: rendered framebuffer

• mask in channel α

()
()

D.xy . 1 N.xy

D.w mag v.xy

D xyα α= + −
=

pC=M v

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

36/73

Post-processing

LIC

Smoothing

Aliasing

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

37/73

Ocean Circulation, Gulf of Mexico

•Background texture

•Masking to emphasize strong currents

Three frames in a time sequence

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

38/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

39/73

Image-Based Flow Visualization (IBFV)

• Feedforward algorithm

• Advect a textured mesh

• Texture encodes particle properties

• Mesh nodes are advected according to v(x,t)
• Advect noise texture with linear interpolation

• Blend in a background image

[Van Wijk 02]

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

40/73

Basic Idea

background
images

image advect image render image blend background

nG1nG −

nF
1nF +

()1 1n n nF F Gα α+ = − +() ()1, 1 ,n nF n F n+ + =x x

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

41/73

Practical Implementation

• Clear screen to black

• Render previous image onto a warped (i.e.,
advected) mesh

• Blend in a background image

ISSUE: Inflow boundaries

• inflow regions remain
close to black

advected

region S’

inflow

region

B=S’-S

Physical

domain S

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

42/73

CPU/GPU Implementation

• Mesh-based so very efficient using fixed pipeline
(no shaders)

Initialize property texture N (noise)

for each polygon P in mesh
- advect 4 vertices
- draw polygon defined by using texture
coordinates at

- -blend background imageα

* h= +x x v
*x

x

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

43/73

Samples from IBFV Demo Program

http://www.win.tue.nl/~vanwijk/ibfv

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

44/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

45/73

Large Datasets: Tiling
• On older machines and cheaper graphics cards

– depth of color channels: 8 or 12 bits

– coordinate textures of 256x256: 4 remaining bits for fractional
coordinates: mininum displacement: 1/16 texel

– if texture is 1024x1024, particles can only advance in units of one
texel

• Solution: simulate a 1024x1024 texture by 16 tiles of
256x256, leading to fractional displacements of 1/16
texel

• In practice, use texture with 16 bit channels (Radeon)

– 32 bit textures on Radeon and Nvidia

– 256x256 textures: minimum increment: 1/256

– 1024x1024 texture: minimum increment :1/64

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

46/73

Tiled Texture Advection
power of 2 texture

non-power of 2

Divide texture with

overlap regions

Advect each tile
independently

Reconstruct final
advected texture

Tk

FR

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

47/73

GPU Implementation

• Global rendering texture FR

• Loop over tiles Tk
– standard LEA in each tile

– composite Tk into FR through blending

()() ()1R k R k kα α← − +F T F T T

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

48/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

49/73

Generic Framework

• All texture advection techniques for time-
dependent flows depend on 4 elements:

– spatial correlations

– temporal correlations

– a property texture (noise, dye, …)

– the shape of the convolution kernels

• Correlations occur along curves in space-
time and satisfy

() ()()
() ()()

*

L

ij
k L

s ds

k s
=−

= Γ

≈ Γ ∆

³

¦

N x N

N x N

()tΓ

[Erlebacher et al. 02]

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

50/73

Generic Framework

• Temporal correlations

– Maintain particle identity along particle trajectories

– Avoid Lagrangian tracking

– Responsible for visual tracking of spatial structures

• Spatial correlations

– Introduces spatial structures into an otherwise random
collection of particles

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

51/73

Noise Volume in Space-Time

Fill space-time (x-y-t) volume
with noise

Perform a temporal convolution
of this noise (i.e., smoothing)
operation along the pathlines of
a field VT(x,t)

Perform a spatial convolution of
this noise (i.e., smoothing)
operation along the pathlines of
a field VS(x,t)

Convolution

path

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

52/73

Effect of Temporal Filter Width

5 t∆

50 t∆

25 t∆

150 t∆

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

53/73

Brute Force GPU Implementation

• Specify two vector fields: VT(x,t) and VS(x,t)

• Temporal phase

– For each time

- Convolution along pathlines of VT in 3D noise texture N

- Store resulting particle texture Tn

• Spatial phase

– For each time

- Convolution along pathlines of VS in 3D collection {Tn}

- Display result in framebuffer F

nt

nt

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

54/73

GPU Implementation

• Problem: In practice, cannot store full 3D
textures in GPU memory

• Solutions:

– Reduce width of temporal filter

- LEA: width of 2h

– Freeze VS to perform spatial convolution at fixed time

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

55/73

Temporal convolution: Vertical
Spatial conv.: Streaklines
Constant Noise: Pathlines

Temporal Convolution: Pathlines
Spatial Conv.: Streaklines
Constant Noise: Vertical

[Jobard et al. 01] [Van Wijk 02])

LEA IBFV

LEA versus IBFV: General Framework

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

56/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

57/73

Unsteady Flow Advection-Convolution (UFAC)

• Temporal convolution along pathlines

• Spatial convolution along streamlines

Problem

• Pathlines and streamlines through a point x are tangent
but different

• Resulting streamlines do not change smoothly

Solution

• Support of spatial convolution filter is proportional to
degree of unsteadiness

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

58/73

UFAC

0
t

∂ =
∂

(),
0

t
t

∂
>>

∂
v x

small
t

∂
∂

large
t

∂
∂

streamline = pathline

streamline != pathline

filte
r support

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

59/73

Comparison: UFAC, LIC, LEA

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

60/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Generic Framework

– Unsteady Flow Advection Code

– Dye Advection

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

61/73

Dye Advection

• Dye is a particle property

• A connected group of particles have the same
property: dye color

• Noise initialization

– Particles in a connected set have color A
– Remainder of particles have color B
– Apply LEA, IBFV or other texture advection method

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

62/73

LEA: Dye Advection

• Track noise texture N (black and white) using
nearest neighbor interpolation

• Track a dye texture D using bilinear interpolation

• Add additional dye to the dye texture when dye
is injected into the fluid

() ()
()

*

*

1

h

α α

← −

←

← + −

x x v

N x N x

F F N

() ()
()

*

*

1R D Dα α

←

← + −

←

D x D x

F F D

x x

noise advection dye advection

RF : rendering bufferF : intermediate buffer

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

63/73

IBFV: Dye Advection

• Inject the dye into the current image

• Advect resulting image (with dye) at next
iteration

• Consequence: diffusion of dye due to first order
Euler integration scheme (numerical dissipation)

Image and dye

advection are combined

() () () ()
() ()

*

*1

1 1D

h

α α

α α

← −

← − +

← − + −

x x v

F x F x N x

F F D

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

64/73

Timelines (LEA)

Periodic dye injection

from a fixed set of points

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

65/73

Circular Flow around a Cylinder (LEA)

Diffusion of dye Antidiffusive correction

Periodic release

Alternate coloring: better tracking
Maintain sharpness of dye boundaries: CHALLENGE!

[Jobard et al. 02]

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

66/73

Dye Advection: Numerical Diffusion

Framework Bilinear resampling

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

67/73

Overview

• Textures

• Line Integral Convolution

• Time-dependent flows

– Lagrange-Eulerian Advection (LEA)

– Image-Base Flow Visualization (IBFV)

– Tiling (large datasets)

– Dye Advection

– Generic Framework

– Unsteady Flow Advection Code

• Applications

• References

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

68/73

[Jobard et al. 01]

High spatial and temporal
correlation

Natural interpretation of
unsteady flows

Motion follows pathlines,
each frame depicts
streamlines

Unsteady Flow-Animated Textures

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

69/73

2D Vector Fields

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

70/73

http://www.cscs.ch/~bjobard/Projects/Meteo_Swiss/Forecast/forecast.html
http://srnwp.cscs.ch/Gallery/texture_loop.html

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

71/73

• Grey dye is released (for short duration) along
two vertical lines periodically in time

• Flow velocity: proportional to distance between
two consecutive releases

Gulf of Mexico: Timelines

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

72/73

Shock-Vortex Interaction

Primary shock

Secondary shock

Slip line

Internal Shock

• Superimpose
masking with
contours of
density gradient

• Additional
features become
visible

Gordon ErlebacherInteractive Texture-Based Flow Visualization:
2D Flow Visualization

73/73

References
• [Cabral and Leedom 93] B. Cabral and L. Leedom. Imaging vector fields using line

integral convolution. In Proceedings of ACM SIGGRAPH 93, pages 263–272, 1993.

• [Erlebacher et al. 04] Erlebacher, G., Jobard, B., and Weiskopf, D., Flow Textures,
Handbook of Visualization, Academic Press, (2004).

• [Jobard et al. 00] B. Jobard, G. Erlebacher, and M. Y. Hussaini.Tiled hardware-
accelerated texture advection for unsteady flow visualization. In Proceedings of
Graphicon 2000, pages 189–196, 2000.

• [Jobard et al. 02] B. Jobard, G. Erlebacher, and M. Hussaini. Lagrangian-Eulerian
advection for unsteady flow visualization. IEEE Transactions on Visualization and
Computer Graphics, 8(3):211–222, 2002.

• [Max and Becker 95] N. Max and B. Becker. Flow visualization using moving textures.
In Proceedings of the ICASE/LaRC Symposium on Visualizing Time-Varying Data,
pages 77–87, 1995.

• [Van Wijk et al. 02] J. J. van Wijk. Image based flow visualization. ACM Transactions
on Graphics, 21(3):745–754, 2002.

• [Weiskopf et al. 02] D. Weiskopf, G. Erlebacher, M. Hopf, and T. Ertl. Hardware-
accelerated Lagrangian-Eulerian texture advection for 2D flow visualization. In Vision,
Modeling, and Visualization VMV ’02 Conference, pages 439–446, 2002.

• [Weiskopf et al. 2003] Weiskopf, D., Erlebacher, G., and Ertl, T., A Texture-Based
Framework for Spacetime Coherent Visualization of Time-Dependent Vector Fields,"
IEEE Visualization 2003 Proceedings, October 2003, pp. 107-114.

2.5D Flow Visualization

G-1

IEEE Visualization 2004 Tutorial:
Interactive Texture-Based Flow Visualization

Robert S. Laramee

VRVis Research Center
Vienna, Austria

2.5D Flow Visualization

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

2

Overview
– parameter vs object vs

image space
approaches

– Image Space
Advection (ISA)
[Laramee et al 03]

– Image Based Flow
Visualization for
Curved Surfaces
(IBFVS) [Van Wijk 03]

– applications: including
texture-based flow
visualization on
isosurfaces

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

3

Parameter vs Object vs Image Space
– parameter space: not all

surfaces easily
parameterized, e.g.,
isosurfaces

– parameter space: distortion
introduced by 2D to 2.5D
mapping

– object space: slow, too
many polygons

– 3D textures: inefficient,
problem with zooming,
limited memory

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

4

Image Space Advection (ISA)
supports [Laramee et al

03] :
• texture advection

on surfaces
• unsteady flow
• fast frame rates
• user rotation,

translation,
zooming

• dynamic,
unstructured, AR
meshes

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

5

ISA Method Overview
Vector Field Projection

Edge Detection

Compute Advection Mesh

Image Advection

Noise Blending

Edge Blending

Image Overlay Application

D
y
n

a
m

ic
 C

a
s
e

S
ta

ti
c
 C

a
s
e

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

6

ISA Vector Field Encoding
– assign colors to the mesh

vertices as a function of
velocity

– colored image used as the
simplified (view dependent) 3D
vector field

sample velocity
image

– 3D vectors are projected to
image space transforming
the computation from 3D to
2D

– no more computation time
spent on occluded polygons

2.5D Flow Visualization

G-2

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

7

ISA Advection Mesh Computation (1/2)

Euler approximation of a
pathline

pk+1 = pk + vp(pk;t) dt

backward integration
Pk-1 = pk - vp(pk-1;t) dt

advect noise

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

8

ISA Advection Mesh Computation (2/2)

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

9

Edge Detection and Blending (1/5)

discontinuity condition

|zk-1 - zk | > e |pk-1 - pk|

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

10

Edge Detection and Blending (2/5)
discontinuity

condition

|zk-1 - zk | > e |pk-1 - pk|

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

11

Edge Detection and Blending (3/5)

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

12

Edge Detection and Blending (4/5)
– can also be

used to prevent
background
color(s) from
leaking

– edge detection
enabled

2.5D Flow Visualization

G-3

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

13

Edge Detection and Blending
(5/5)– 1st 100 frames,

edge detection
disabled

– 2nd 100 frames,
edge detection
enabled

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

14

Noise Injection and Blending (1/3)
– why noise

injection and
blending?

– for full coverage

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

15

Noise Injection and Blending (2/3)

– both spatial and
temporal
characteristics

– spatial characteristic:
linearly interpolated
sequence of random
values

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

16

Noise Injection and Blending (3/3)

– can be implemented
using pre-computed
texture stack

– more textures,
higher quality

– temporal
characteristics: a
black and white
pulsing function

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

17

Image Overlay Application
– final stage
– computed once

for each dynamic
case

– applied last for
each animated
frame

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

18

Image Overlay Application
– opacity of

overlay is
arbitrary

– therefore, user
controlled

2.5D Flow Visualization

G-4

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

19

Putting Pieces Together
Vector Field Projection

Edge Detection

Compute Advection Mesh

Image Advection

Noise Blending

Edge Blending

Image Overlay Application

D
y
n

a
m

ic
 C

a
s
e

S
ta

ti
c
 C

a
s
e

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

20

Texture Clipping (1/2)
– texture clipped along edges to reduce artifacts

resulting from rectilinear advection mesh
(no texture clipping) (clipping enabled)

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

21

Texture Clipping (2/2)
– illustration is

exaggerated for
exposition

– can be
implemented
trivially as part
of image
overlay

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

22

IBFV for Curved Surfaces (IBFVS)
– IBFVS [Van Wijk 03],

introduced at same
time as ISA
[Laramee et al 03]

– another image
space based
solution to the
same problem

– comparison of ISA
and IBFVS gives
greater
understanding of
both algorithms
[Laramee et al 04]

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

23

Method Overview of ISA and IBFVS,
Side-by-Side

– conceptually share several overlapping components
– differences stem from object vs image space

implementations

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

24

Projection: Image vs Object space
ISA

– hardware based
vector field projection

– implemented using
velocity image

Advantage(s)

– no further
computation time for
polygons smaller
than one pixel

– HW accelerated
occlusion culling

IBFVS

– distorted vertices
projected on per-
mesh-vertex basis

– no actual vectors are
projected (coords
only)

Advantage(s)

– avoids read-back of
frame buffer

– no resampling or
interpolation
necessary

2.5D Flow Visualization

G-5

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

25

Advection: Image vs Object space
ISA

– distorts 2D,
rectilinear mesh in
image space

– vectors
reconstructed using
velocity image

Advantage(s)

– advection time
independent of
original mesh size

– no advection for
occluded polygons

IBFVS

– distorted vertices
are computed in 3D
object space

– distorted vertices
projected to image
plane

Advantage(s)

– resolution of
polygonal advection
mesh matches that
of original mesh

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

26

Edge Detection: Image vs Object
space ISA

– compares spatially
adjacent depth values

– built into integration
step

Advantage(s)

– takes advantage of
information provided by
graphics hardware

IBFVS

– silhouette edges identified
between front and back
facing polygons

– separate processing step
Advantage(s)

– avoids read-back of depth
buffer

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

27

Edge Detection: Boundaries
ISA

– edge detection blends
in extra noise at inlets

IBFVS

– use gray background
– implement object space

based silhouette edge
detection

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

28

Noise Injection and Image Overlay
The same for both

ISA and IBFVS:
– noise injection and

blending, from
original IBFV

– application of
image overlay with
arbitrary opacity

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

29

A Perceptual Consequence

For both ISA and IBFVS

– density of texture constant in image space
– may appear unnatural, but does avoid aliasing

artifacts

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

30

ISA and IBFVS, Performance
– Nvidia 980XGL

Quadro
– 2.8 GHz dual

processor

2.5D Flow Visualization

G-6

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

31

ISA and IBFVS, Which One?
ISA

– good for large meshes
(polygons > 200,000)

– good for complex,
adaptive resolution
meshes

IBFVS

– faster for smaller meshes
– easier to implement

– both are much faster than previous attempts in this
area

– UFLIC was last attempt at unsteady flow [Shen and
Kao 1998]

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

32

Applications: Oceanography

– LEA originally 2D, extended to
time surfaces, 2.5D [Grant et al.
02]

– surfaces used to study
thermocline movement (layer
with high temperature gradient)

– goal: gain better understanding
of vertical movement

– three time surfaces at 200,
400, and 800 meter depth (top
to bottom)

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

33

Applications: Complex, AR Data

– cooling jacket
– 228,000

unstructured,
adaptive
resolution
polygons

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

34

Applications: CFD

– can be used to
highlight
undesirable
properties of the
flow

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

35

Applications: Surface Vis

– texture, aligned
with principle
directions, aids
in understanding
surface shape

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

36

Applications: Medical Data

– visualization of
blood flow
through an
aneurysm

2.5D Flow Visualization

G-7

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

37

Applications:Swirl Flow
Hi Bob,
…

•“I hope many people from the
CFD side will read it [case
study paper]. I think it is not
only to have something for
papers, I think it is very useful
in CFD engineer's daily work.
This feature really makes
sense !!” …

Keep in touch, Jürgen [AVL
engineer]

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

38

Application to Isosurfaces
• why isosurfaces?

– show 3D characteristics that
slices and boundary surfaces
alone cannot

• why texture-based flow
visualization?

– provides even more insight
into flow motion

– highlights non-ideal flow
motion

– only recently feasible [Laramee
et al 04]

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

39

Applying a Normal Mask (1/2)
– flow may be characterized by a strong

component normal to the surface

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

40

Applying a Normal Mask (2/2)
– a closer look

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

41

Applications: Time-Dependent Meshes

• meshes with time-
dependent geometry
and topology

• mesh is both
unstructured and
adaptive resolution

• one halve of a valve-
cycle visualized

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

42

Summary of 2.5D Flow Visualization

– a lot of progress has been made w.r.t. the dense
representation of unsteady flow on surfaces

– we can now visualize flow on large surfaces,
independent of surface’s complexity and resolution

– current methods support user-interaction
– current methods fast
– ISA and IBFVS can visualize flow on dynamic meshes
– surface parameterization is not a requirement

Now onto the 3D portion of the tutorial!

2.5D Flow Visualization

G-8

Robert S. LarameeInteractive Texture-Based Flow Visualization:
2.5D Flow Visualization

43

Acknowledgements
Thanks to:

– Jürgen Schneider
– Jarke van Wijk
– Austrian national research program, Kplus

(www.kplus.at)
– AVL (www.avl.com)

3D Texture-Based Flow Visualization

H-1

IEEE Visualization 2004 Tutorial:
Interactive Texture-Based Flow Visualization

Daniel Weiskopf

Institute of Visualization and Interactive Systems
University of Stuttgart

3D Texture-Based Flow Visualization

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

2

Overview
• 3D LIC
• 3D texture advection
• Injection mechanisms

(dye, noise)
• Perception issues

Data set courtesy
of R. Crawfis

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

3

Ingredients

Advection

Properties

(Transport mechanism)

(What is transported?
Mapping to gfx primitives)

VIS

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

4

3D Flow Visualization
• Goals

– Show 3D flow structures, not just 2D slices
– Interactivity
– Steady and unsteady flow fields

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

5

3D LIC
• Line integral convolution

• Independent of dimension: x ∈ R2 or x ∈ R3

ĺ straightforward extension to 3D
– 3D noise field N(x)
– 3D property field T(x)
– Computation of streamlines in 3D

³
+

−

−=
ls

ls

dttNstkT))(()()(xx

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

6

3D LIC
• Issues

– Computation time
– Unsteady flow
– Perception:

Occlusion etc.

Image courtesy of
[Rezk-Salama et al. 99]

3D Texture-Based Flow Visualization

H-2

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

7

Texture Advection
• Basic idea:

– Advection of particle field
– Blending of particle injection texture

(at each time step)
– Based on Image-Based Flow Visualization (IBFV)

[Van Wijk 02]

advected
texture

injection
texture

advection step

blending

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

8

2D Texture Advection

• Particle tracing

• Euler integration
• Uniform grid ĺ texture
• Semi-Lagrangian approach:

),(t
dt
d rvr =

y

xTime: t - ǻt Time: t

Bilinear interpolation

y

x

),(tt rvrr ⋅∆−=

Property
texture

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

9

3D Texture Advection
• Extension of 2D dye advection / IBFV

[Weiskopf & Ertl 04]

• Advection process is similar
• Straightforward changes:

– From two-component to three-component vector field
– From 2-vector to 3-vector for (texture) coordinates
– From 2D domain to 3D domain:

from 2D texture to 3D texture
• Structural differences:

– Update 3D property texture slice by slice
– Volume rendering for property field

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

10

3D Texture Advection
• Slice-by-slice update

– Orientation along z axis

• Update of a single slice
– Standard: glCopyTexSubImage3D

– ARB_superbuffer extension

z

Time: t - ǻt
Time: t

),(tt rvrr ⋅∆−=

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

11

Fragment Program for 3D Advection

!!ARBfp1.0

PARAM stepSize = program.local[0];
ATTRIB iTexCoord = fragment.texcoord[0];
OUTPUT oColor = result.color;

TEMP velocity;
TEMP oldPos;

Fetch flow field
TXP velocity, iTexCoord, texture[0], 3D;

Compute previous position (Euler integration)
MAD oldPos, velocity, stepSize, iTexCoord;

Dependent texture lookup:
Property value from previous time step
TEX oColor, oldPos, texture[1], 3D;

END

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

12

Performance
• 3D advection speed in FPS:

• Measured on an ATI Radeon 9800 Pro (256 MB)
• Same sizes of property and flow fields

1.79.850.3Unsteady Flow

10.240.9106.3Steady Flow

25631283643Domain

3D Texture-Based Flow Visualization

H-3

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

13

3D IBFV
• 3D Image-Based Flow Visualization

[Telea & Van Wijk 03]

• Difference to 3D texture advection
– Stack of 2D textures along z axis
– Standard OpenGL texturing and blending
– Gathering data from two neighboring slices

Time: t

1 slice

Time: t - ǻt

Lookup
vector Possible

Missing
data

z
ax

is

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

14

Comparison
• 3D IBFV

+ Standard OpenGL
+ Fast due to bilinear interpolation
- No large z velocity component
- Problems with volume rendering for arbitrary viewing

directions
• 3D texture advection

+ Velocity is not restricted
+ Constructs 3D texture for correct volume rendering
- Needs fragment shaders
- Slower: trilinear interpolation, update of 3D texture

slices

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

15

Material Injection

advected
texture

injection
texture

advection step

compositing

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

16

Material Injection

tttttt IvTwT $$ += ∆−

advected
texture

injection
texture

advection step

compositing

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

17

advected
texture

injection
texture

advection step

compositing

Material Injection

tttttt IvTwT $$ += ∆−

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

18

advected
texture

injection
texture

advection step

compositing

Material Injection

tttttt IvTwT $$ += ∆−

3D Texture-Based Flow Visualization

H-4

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

19

Material Injection

tttttt IvTwT $$ += ∆−

• Space-variant
weights

• Component-wise
multiplication

• Different materials

advected
texture

injection
texture

advection step

compositing

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

20

Dye and Noise Injection

Data set courtesy
of R. Crawfis

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

21

Volume Rendering
• Final display of property fields

Image plane

Data set

Eye

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

22

Texture-Based Volume Rendering
• Slices through 3D texture

– Proxy geometry

Texturing
(trilinear interpolation)

Compositing
(alpha blending)

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

23

Complete Visualization Process

Load vector field

Fo
r e

ac
h

sl
ic

e Texture lookup

Dye / noise injection

Update slice

Volume
rendering

Fo
llo

w
in

g
tim

e
st

ep

Mapping

Rendering

Input data

Vis data

Renderable
representation

Display

Filtering

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

24

Dense 3D Representations: Issues
• Perceptual issues

– Clutter
– Occlusion
– Depth perception

3D Texture-Based Flow Visualization

H-5

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

25

Clipping and Semi-Transparency

Images courtesy of
[Rezk-Salama et al. 99]

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

26

Clipping and Semi-Transparency
• Semi-transparency

– Choose transfer function carefully
• Clipping

– Clip planes (directly supported by OpenGL)
– Object-space approach for complex clip geometries
– Alternative image-space approach

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

27

Clipping with Clip Plane

Original

With clip plane

Data set courtesy
of R. Crawfis

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

28

Image-Space Clipping

Image plane
Ray

Depth
structure

z value

Pixel

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

29

Image-Space Clipping
• 3D texture slicing
• Fragment shader: [Weiskopf et al. 03]

Compares current depth
with depth structure of the
clip geometry

• Depth structure in n textures

Pixel

Fragment

Store depth values in 2D textures

Comparison

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

30

Object-Space Clipping
• Additional clipping texture [Weiskopf et al. 03]

– Voxelized representation of clip geometry
– Binary or distance volume

• Fragment shader removes invisible fragments

Data set

Clipping
texture

Combined

rendering

3D Texture-Based Flow Visualization

H-6

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

31

Smooth Selection of Flow Regions
• Extension of clipping
• Smooth transition between opaque and invisible
• Based on “feature” or regions of interest

Original Velocity magnitude

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

32

Smooth Selection of Flow Regions
• Implemented via enriched transfer functions
• Additional feature field
• Examples

– Velocity magnitude
– Vortex criteria (e.g. lambda2)
– User-defined features

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

33

Change Density of Representation
• Modify noise injection texture

Dense Sparse

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

34

Improved Rendering
• Improve spatial perception [Interrante & Grosch 97]

– Illumination
– Halos
– Depth cues

Image by
Victoria Interrante

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

35

Improved Rendering
• Illumination

– Specular
highlights

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

36

Improved Rendering
• In combination

with region of
interest
– Focus and

context

3D Texture-Based Flow Visualization

H-7

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

37

Chameleon: Advanced Rendering
• Chameleon system [Li et al. 03]

• Idea:
– Precompute 3D streamlines
– Store streamlines in 3D texture
– Change rendering style

(appearance) on-the-fly
Images courtesy

of Li et al.

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

38

Chameleon: Program Structure
• Preprocessing

– Evenly space streamlines with controlled density
– Voxelized streamlines in trace volume
– Scan conversion by sequence of slices with a pair of

moving clip planes
– Each texel: ID for streamline & parameterization

• During rendering:
– Dependent lookup in appearance texture
– Additional lighting and depth cueing

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

39

Chameleon: Example Images

With lighting Color tubes
Images courtesy of Li et al.

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

40

Summary
• GPU needed for on-the-fly computation of dense

3D representations
• Efficiency still a problem
• Perception issues are even more crucial

– Starting point for future work

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

41

References
[Interrante & Grosch 97] V. Interrante, C. Grosch. Strategies for

effectively visualizing 3D flow with volume LIC. In IEEE Visualization
'97, 421-424, 1997.

[Li et al. 03] G.-S. Li, U.D. Bordoloi, H.-W. Shen. Chameleon: An
interactive texture-based rendering framework for visualizing three-
dimensional vector fields. In IEEE Visualization '03, 241-248, 2003.

[Rezk-Salama et al. 99] C. Rezk-Salama, P. Hastreiter, C. Teitzel, T.
Ertl, T. Interactive exploration of volume line integral convolution
based on 3D-texture mapping. In IEEE Visualization '99, 233-240,
1999.

[Telea & Van Wijk 03] A. Telea, J. van Wijk. 3D IBFV: Hardware-
accelerated 3D flow visualization. In IEEE Visualization '03, 233-240,
2003.

[Van Wijk 02] J. van Wijk. Image based flow visualization. ACM
Transactions on Graphics 21 (3), 745-754, 2002.

Daniel WeiskopfInteractive Texture-Based Flow Visualization:
3D Flow Visualization

42

References
[Weiskopf et al. 03] D. Weiskopf, K. Engel, T. Ertl. Interactive clipping

techniques for texture-based volume visualization and volume
shading. IEEE Transactions on Visualization and Computer
Graphics 9(3), 298-312, 2003.

[Weiskopf & Ertl 04] D. Weiskopf, T. Ertl. GPU-based 3D texture
advection for the visualization of unsteady flow fields. In Proceedings
of WSCG 2004 Short Papers, 259-266, 2004.

