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Abstract 

At present there is very little attention paid to vision science by most visualization researchers or developers. 
To remedy this a theoretical approach to flow visualization is proposed based on the applied theory of 
perception.  The approach has the following components: First, mappings must be defined between data and a 
visual representation.  Second, analytic tasks must be identified that can be executed by means of a visual 
search for patterns.  Third, the theory of perception is applied to the analytic tasks to make predictions 
regarding which mappings will be most effective. An extended example is provided, concerning the 
representation of advection pathways in steady flow.  It is argued that such a disciplined approach can be 
beneficial to both visualization research and research into human perception.   
  

Introduction 

What constitutes good visualization research is a 
basic question that defines the discipline.  Are 
researchers aiming at better algorithms, better 
theory, or design guidelines for producing better 
visualizations?   
 
One possible approach is to model visualization 
research on natural and physical sciences and 
develop a body of theory. A good theory should be 
able to make testable predictions about which 
mappings from data to display will be most 
effective, allowing researchers to gain insights about 
their data (exploration) or help others understand 
what the data shows (explanation). More effective 
visualizations should result from applications of this 
theory. In this paper, I argue that the theory of 
human perception, pragmatically applied, should 
provide a substantial part of a testable theory of 
visualization. 
 
The best way of making this case is to provide a 
convincing example and most of what follows is 
intended to show that perceptual theory has much to 
tell us about effective flow visualization.  Since 
visualization is a practical tool, a meaningful theory 
must be constructive, not just descriptive, leading to 
more effective representations of data. I shall argue 
that such a useful body of theory does exist and even 
though it is incomplete it still can be useful.  The 
major gaps in the theory provide promising avenues 
for future research in a multidisciplinary program 
that can benefit both the field of human perception 
and the applied science of data visualization. 
 
The proposition that the main purpose of 
visualization is to allow us to perceive patterns in 
data (and hence discover meaing) seems 
uncontroversial and this leads to a body of science 
that bears directly on the problem but is rarely taken 
into account.  Modern neuropsychology has much to 
say about visual pattern perception. This discipline 

has made great strides over the past several decades, 
driven by advances in psychophysics, single cell 
recording in the visual parts of the brain of animals, 
and lately functional magnetic resonance imaging 
which reveals the parts of the brain using the most 
oxygen and hence presumed to be the most active at 
a given time. 
 
The patterns we are interested in when we look at 
flow vary depending on what aspects of the data we 
wish to analyze – the cognitive task. For 
visualization to be a useful tool aspects of this 
cognitive task must be transformed into visual 
pattern queries.

1
 In flow visualization there are many 

different types of visual pattern queries such as 
finding locations of critical points, areas of high 
turbulence, or advection pathways.  

 

 
To illustrate how perceptual theory can be fruitfully 
applied to a common visualization problem this 
paper will focus mainly on a single task − judging 
advection pathways in steady flow.   To perceive an 

1.  A grid of arrows is still the 
most common way of 
visualizing a flow field. The 
tail of each arrow is 
tangential to the flow.  Most 
other flow visualizations also 
produce graphical contours 
that are tangential to the 
flow. 
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advection pathway we must perceptually trace a 
path from a starting point in the flow. This suggests 
that the best representation of an advection pathway 
will be a visual contour because the brain has 
mechanisms to rapidly find contours marking the 
boundaries of objects or linear features in the 
environment.

2
 Whatever allows us to perceive 

pathways as contours anywhere in a flow field is 
likely to be the most effective graphic design to 
support judgments about advection pathways. We 
shall call this proposition our mapping hypothesis.  
It is worth noting that there are alternatives.  For 
example the orientation of flow has been represented 
by a cycle of colors or by the actual advection of 
scattered random points seeded through the flow 
field.  Nevertheless using contour orientation to 
reveal flow direction is the most common technique. 
 

 
2. The  primary visual cortex contains neurons that respond to 
oriented patterns in particular parts of the visual field. Each 
part of visual space is processed for orientation and size 
information. The grey image in the upper right shows a set of 
receptive fields of individual neurons, each responding best to 
a particular feature size and orientation. 

 
Almost all static flow visualization methods 
generate contours that are tangential to the directions 
of flow (Figure 1).  The most common method is to 
use a grid of little arrows with the starting point of 
each arrow tangential to the flow.  Some methods 
use curved arrows, and still other methods use 
continuous contours.

3,4
 Line integral convolution 

typically produces rather 
blurred contours.

5
  

 
There is a well 
developed body of 
perceptual theory 
relating to contour 
perception.  Since the 
pioneering work of 
Hubel and Wiesel

6
 in the 

1960‘s, it has been 
known that the primary 
visual cortex (called V1) 
at the back of the brain 
contains large numbers 
of neurons each 

responding to a small patch of visual space and each 
selectively tuned in terms of the orientation of the 
pattern to which they respond most strongly. One 
mathematical model of filtering operation is the 
Gabor function (see Figure 2) — the product of a 
sine wave grating and a Gaussian.  These neurons 
respond strongly when either an edge or a line is 
oriented with the receptive field of the neuron and 
weakly, or not at all, when the edge or line is not so 
aligned. These orientation filtering neurons are 
arranged in a specific architecture called hyper-
columns.  As we progress into the cortex down a 
hyper-column the receptive fields get larger. As we 
progress laterally across the cortex, the different 
orientations are found, for that same part of visual 
space. As a whole, the primary V1 operates as a set 
of parallel filters, with hundreds of millions of 
neurons operating in parallel so that every part of the 
visual field is simultaneously processed for every 
orientation and size of elementary feature. 
 
These simple orientation detecting neurons have 
been found in every higher animal and are the basis 
for all theories of contour detection. The signals 
from individual neurons, however, are not sufficient 
to account for the perception of long continuous 
contours that might make up an advection pathway.  
They can only signal the local orientation of a 
section of contour. 
 
The neural mechanisms that bind multiple individual 
neurons firing in response to different sections of an 
extended contour are more speculative, but most 
theorists agree on something like the following:  
Individual neurons within V1 are reciprocally 
connected with other neurons also within V1.  
Neurons in spatial proximity and aligned with one 
another as shown in Figure 3 have mutually 
excitatory connections.

2
 Neurons that are in 

proximity and not so aligned inhibit one another.  
The result of such a network is that neurons that are 
stimulated by the image of a continuous line or edge 
will fire more strongly than neurons that are 
stimulated by little fragments of edges such as might 
occur in a rough texture.  Some theorists have also 
proposed that the neurons responding to an edge 

 
 

 

3. (a) Neurons that have spatially aligned receptive fields mutually reinforce each 
other.  They also inhibit other nearby neurons. (b) When a smooth continuous 
contour or edge is imaged in the eye, those neurons along its path become excited 
while nearby neurons not on the edge become inhibited. 
 



 3 7/30/2010 

rapidly come to fire in synchrony with one another.
7
 

 
This basic theory of contour perception is already 
sufficient to make a number of straightforward 
predictions about which visualization methods will 
result in better advection perception.  
 
Figure 4 illustrates, in simplified form, a set of 
methods that have been used to illustrate flow 
patterns. The theory predicts that the rank order of 
effectiveness of these methods will be a,b,c,d for 
the following reasons.  Method ‗b‘ should be better 
than method ‗a‘ because a short line segment will 
give a stronger signal to orientation sensitive V1 
neurons than will the pairs of dots shown in 
method ‗a‘.  Method ‗c‘ should be better than 
method ‗b‘ because having the line segments 
aligned will produce mutual excitation as 
described.  Method ‗d‘ should be better than 
method ‗c‘ because a continuous contour will 
produce stronger mutual excitation than broken but 
aligned contours.   
 
 

 
 
4. TOP: a set of methods which have been used 
for flow visualization.  Note that there are no 
arrowheads here and so the direction of flow is 
ambiguous. BOTTOM: the predicted effect of the 
patterns generated by each method on orientation 
selective neurons. 
 
Although they were not testing this theory, Laidlaw 
et al.

8
 carried out a study that relates to cases ‗b‘ and 

‗c‘ in Figure 4.  They compared jittered arrows with 
head to tail aligned arrows (as well as other 
methods) and found that the head to tail aligned 
method produced reduced error for advection 
perception.  However, the two cases also used 
different styles of arrows which may have been a 
factor. Also relevant is a study that measured the 
responses of neurons in the visual cortex of a 
Macaque monkey to patterns similar to Figure 4a.

9
 

Although the neurons responded to these patterns, 
they responded more strongly to gratings of 
continuous contours similar to the pattern shown in 
4d. 

Vector sign 

The theory presented thus far is incomplete in a 
critical respect.  The advection pathway for the 
patterns shown in Figure 4 are ambiguous.  It is 
normal to decompose a vector into a direction and a 

magnitude (speed).  For the purposes of 
understanding flow visualization, it is convenient to 
further decompose the direction component into an 
orientation and a vector sign, as shown in Figure 5.   
Many flow visualization methods such as line 
integral convolution (Figure 1c) clearly show the 
orientation, but fail to show the vector sign.  
 

 
What does the theory of perception tell us about how 
to represent the vector sign?  In order to represent 
this single bit of information it is necessary that 
there be directional asymmetry along the direction 
of the contour.  The most common device is to use 
an arrow head. However there are a number of other 
possibilities some of which are illustrated in Figure 
6. One possible neural mechanism for detecting this 
kind of asymmetry is through complex and hyper-
complex cells found in visual areas 1 and 2.

6
 These 

are sometimes called end-stopped cells because they 
respond most strongly to oriented features that 
terminate in the receptive field and respond weakly 
or not at all to features that are extended through it 
(Figure 7). Heider et al.

10
 reported that 50 percent of 

such end stopped cells responded asymmetrically, 
responding more strongly if the feature terminates in 
a particular direction. No studies have been done to 
test the responses of end stopped cells to patterns 
like those in Figure 6. However, it seems plausible 
that some will yield stronger asymmetric responses 
than the conventional arrow head.  In particular the 
grey ramp pattern marked with an asterisk in Figure 
6 has very strong asymmetry. One end completely 
lacks a distinct termination and so this may be a 
good choice for indicating the vector sign, at least 
with static patterns. Fowler and Ware

11
  introduced 

patterns like this for flow visualization and showed 
that they were unambiguously read with respect to 
the vector sign of simple flow patterns.   
 

 
 
6. A number of ways of creating along-contour asymmetry 
for showing the vector sign  
 

 

5.  A vector can be broken down into three components.  
Many representation methods only show a subset of these. 
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Unfortunately, we do not have a model of a typical 
asymmetrical end-stopped neuron.  If we did it 
would be possible to make predictions about which 
pattern is better. Thus we can identify an open 
question in the perceptual theory of flow 
visualization, namely, how can we best represent 
vector sign information while at the same time 
preserving the perception of flow pathways? 
Although the gray ramp pattern may be a strong 
representation of the vector sign it fails to represent 
the advection pathway with a clear contour.  These 
patterns when arranged head to tail may also not be 
as effective in stimulating the mutual reinforcement 
between simple (symmetric) cell responses that 
seems desirable for contour perception (See Fig. 7, e 
& f). This provides an interesting research 
challenge. How to optimally represent the 
streamlines and the vector sign in a dense pattern 
that can show as much detail as possible? 
 

 
 
7.  Asymmetric end stopped neurons that respond 
to a left-hand terminus are show in green.  Those 
responding to a right hand terminus are shown in 
red.  The level of responding is illustrated by the 
little bars. (a) End stopped neurons do not 
respond to contours passing through their 
receptive field.  (b) They do respond to contours 
that terminate in the receptive field and some do 
so asymmetrically, not responding to a termination 
from the other direction. (c) An arrow symbol 
provides stronger stimulation at the arrow head 
end than the tail end. (d) An along-contour grey 
ramp provides greater asymmetry.  When 
arranged head-to-tail arrows provide better 
contour continuity (e) than grey ramps (f) because 
of reinforcement between simple neurons.  
 

Multiple Flow Layers 

Another challenge is to represent two layers of flow 
simultaneously. Ocean currents, for example, are 

often stratified flowing in one direction near the 
surface and another direction at greater depth. 
Perceptual theory again points to some possible 
solutions.  Recall that simple cells in the cortex have 
a columnar organization.  Neurons deeper in the 
cortex respond to larger oriented features whereas 
those near the surface respond to fine detail. 
Psychophysical studies have shown that the 
responses of different cortical layers are somewhat 
independent. Indeed, the visual system is sometimes 
said to have spatial frequency ―channels‖ separating 
out different sizes of features.

12
  We might therefore 

use different channels to apply to different layers of 
a flow. An example from Urness et al.

13 
illustrates 

this nicely (although the authors were not inspired 
by the theory) and this is reproduced as Figure 8 
here.  

 

8. Illustrations 
from Urness 
et al. showing 
methods for 
displaying 
overlapping 
layers. 
(permission 
needed) 

Discussion 

Although we have discussed only a few problems in 
flow visualization, the approach outlined here can be 
applied to any visualization design problem where 
support of pattern finding in data is a goal. Allowing 
data-revealing patterns to be clearly seen is a 
fundamental purpose of visualization which suggests 
that the application of a perception-based approach 
can be quite broad.   
 
The proposed approach has the following major 
elements. 
 

1. Define an analytic task to be carried out using 
visualization. This task must be cognitively 
executable by means of a visual patterns search. The 
example given here has been advection pathway 
perception. 

2. Propose a mapping (or a set of mappings) 
between the data and its visual representation.  This 



 5 7/30/2010 

can consist of an arbitrarily complex algorithm. 
However, it is generally desirable that the mapping 
be transparent in the sense that it is easy for the 
analyst to understand the relationship between the 
data and its representation. 

3. Construct a perceptual theory regarding the ease 

with which the task relevant patterns can be found as 
a result of visual search.  This theory will normally 
be an adaptation of existing perceptual theory 
applied to particular patterns produced by the 
mappings under consideration. Use this theory to 
construct testable hypotheses regarding either the 
perceptual efficiency of one mapping versus 
another, or the optimal values of parameter settings 
associated with a mapping.     

4. Test the theory. Design display algorithms that 
optimally create the mappings under consideration 
according to the theory.  Conduct experiments to 
compare how easily visual reasoning tasks about the 
data can be carried out under various mappings and 
parametric variation. For example, Laidlaw et al. 
created a test to evaluate advection pathway 
perception that involved having subjects mark the 
point where an advected particle, starting in the 
center of a circle, would cross the boundary of the 
circle.   

5. Use perceptual theory as inspiration to generate 
new mappings.  A good theoretical understanding of 
which patterns are likely to be easy to perceive can 
often lead to insights into new mappings worth 
investigating. 

6. Develop new theory where needed.  There are 
many areas where perceptual theory is inadequate to 
provide a clear hypothesis regarding which 
mappings are likely to be the most effective.  The 
patterns that are of interest in representing data may 
not occur naturally in the real world.  Also 
perceptual theory has often not been fully developed 
in a way that relates clearly to the particular patterns 
used in data visualization.   In this case the 
relationship between visualization science and 
perceptual science becomes reciprocally beneficial.  
Problems of visually representing data may 
stimulate new basic research in perceptual science 
and the result can benefit the applied science of 
visualization. 
 
Where does perception-based theory stand with 
respect to other approaches to visualization theory?  
Clearly it cannot stand alone. Algorithms are 
required to generate the necessary mappings 
between data and its visual representation and to do 
so efficiently. This brings in the fields of computer 
graphics, numerical algorithms and databases. The 
discipline of design is also essential. Most 
visualizations involve the representation of many 
variables and not all can be made to be maximally 
distinct. The choice of a set of colors for one class of 
data objects constrains the colors that can be used to 
represent others.  A good design is usually a 
complex optimization problem; the choice of which 

variables should be mapped to color, which to 
texture and which to motion is generally one that is a 
matter of judgment rather than science.  
 
Much of what has been said here is implicit in the 
work of a number of researchers who have applied 
perceptual theory to visualization.  The purpose of 
this paper has been to make the argument explicit. 
At present there is very little attention paid to vision 
science by most researchers in visualization. The 
exception is when the effective use of color is the 
subject.  Very little research in flow visualization 
includes a discussion of the related perceptual 
theory.  Nor does it include an evaluation of 
effectiveness of the display techniques that are 
generated.  This is despite Laidlaw et al‘s landmark 
paper showing that such an evaluation is relatively 
straightforward. Of course it is not always necessary 
to relate visualization research to perceptual theory.  
If the purpose of the research is to increase the 
efficiency of an algorithm then the proper test is one 
of efficiency not of perceptual validity.  But when a 
new representation of data is the subject of research, 
addressing how perceptually effective it is, either by 
means of a straightforward empirical comparison 
with existing methods, or by analytically relating the 
new mapping to perceptual theory should be a 
matter of course.  A strong interdisciplinary 
approach including the disciplines of perception, 
design and computer science will produce better 
science and better design in that empirically and 
theoretically validated visual display techniques will 
be the outcome. 
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