Feature Flow Fields Tutorial

Speaker: Maik Schulze University of Magdeburg, Germany

Visual Computing Research Group: http://vc.cs.ovgu.de/

> Based on slides from: Holger Theisel Tino Weinkauf

IEEE PacificVis 2012

Motivation

Motivation

- Capture topological information over time
 - Critical points
 - Periodic orbits
 - Vortex axes
- Data set can be scalar, vector or tensor field
- Represent dynamic behavior of features as integration in steady vector field
 - Stream lines, stream surfaces
 - Numerical stream line/surface integration is well-understood

Simple Example: Tracking the ball

1. Extract features at different time steps

- 1. Extract features at different time steps
- 2. Find corresponding features

- 1. Extract features at different time steps
- 2. Find corresponding features
- 3. Event detection
 - birth, death
 - entry, exit
 - split, merge

- 1. Extract features at different time steps
- 2. Find corresponding features
- 3. Event detection
 - birth, death
 - entry, exit
 - split, merge
- 4. Visualization

Feature Tracking with FFF

- Consider a point **x** known to be part of a feature
 - FFF **f** is a well-defined vector field at **x**
 - f points into direction where the feature moves to
 - Streamline integration in **f** at **x** yields curve with all points on the feature

$$\mathbf{v}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \end{pmatrix}$$

f(x,y,t) = $\begin{pmatrix} f(x,y,t) \\ g(x,y,t) \\ h(x,y,t) \end{pmatrix}$
Feature Flow Field (FFF)

Application: Critical Point Tracking

Main Idea

$$\mathbf{v}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \end{pmatrix}$$

$$\mathbf{f}(x,y,t) = \begin{pmatrix} f(x,y,t) \\ g(x,y,t) \\ h(x,y,t) \end{pmatrix}$$

$$\mathbf{f}(x,y,t) = \begin{pmatrix} f(x,y,t) \\ g(x,y,t) \\ h(x,y,t) \end{pmatrix}$$

$$\mathbf{f}(x,y,t) = \int_{0}^{t} \int_{0}^{t$$

$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$

unsteady 2D vector field
feature flow field
$$\mathbf{f}(x, y, t) = \begin{pmatrix} f(x, y, t) \\ g(x, y, t) \\ h(x, y, t) \end{pmatrix}$$

$$\mathbf{f}(x, y, t) = (\nabla u)^T \times (\nabla v)^T = \begin{pmatrix} \det(\mathbf{v}_y, \mathbf{v}_t) \\ \det(\mathbf{v}_t, \mathbf{v}_x) \\ \det(\mathbf{v}_x, \mathbf{v}_y) \end{pmatrix}$$

• Given: unsteady 2D field $\mathbf{v}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \end{pmatrix}$

• Goal: Find trajectories of all critical points

- 1. Find all seed points
 - Domain boundaries
- $\mathbf{v}(x, y, t_{min}) = (0, 0)^T$ and $\mathbf{v}(x, y, t_{max}) = (0, 0)^T$ $\mathbf{v}(x, y_{min}, t) = (0, 0)^T$ and $\mathbf{v}(x, y_{max}, t) = (0, 0)^T$ $\mathbf{v}(x_{min}, y, t) = (0, 0)^T$ and $\mathbf{v}(x_{max}, y, t) = (0, 0)^T$
- Fold bifurcations [$\mathbf{v}(\mathbf{x}) = (0, 0)^T$, $\det(\mathbf{J}_{\mathbf{v}}(\mathbf{x})) = 0$]

On domain boundaries

All seed points

$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$
$$\mathbf{f}(x, y, t) = \begin{pmatrix} \det(\mathbf{v}_y, \mathbf{v}_t) \\ \det(\mathbf{v}_t, \mathbf{v}_x) \\ \det(\mathbf{v}_x, \mathbf{v}_y) \end{pmatrix}$$

Optimization

•One sweep through the data

•Only two time slices at once in memory

$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$
$$\mathbf{f}(x, y, t) = \begin{pmatrix} \det(\mathbf{v}_y, \mathbf{v}_t) \\ \det(\mathbf{v}_t, \mathbf{v}_x) \\ \det(\mathbf{v}_x, \mathbf{v}_y) \end{pmatrix}$$

Optimization

•One sweep through the data

•Only two time slices at once in memory

- Streamlines in **f** have possibly diverging behavior
- In long integration times, streamline diverges from actual feature line

Feature Flow Fields Tutorial, Maik Schulze, PacificVis 2012

- Streamlines in **f** have possibly diverging behavior
- In long integration times, streamline diverges from actual feature line

Feature Flow Fields Tutorial, Maik Schulze, PacificVis 2012

Stable FFF

Simple Example: Tracking the ball

Stable Feature Flow Fields

- Mathematically correct
- Numerically stable
 - Converging flow behavior near the feature line
 - Automatic correction of small errors
- Feature tracking still stream line integration
- Seeding must not be as precisely computed as in FFF

$$\mathbf{f}(x, y, t) = (\nabla u)^T \times (\nabla v)^T = \begin{pmatrix} \det(\mathbf{v}_y, \mathbf{v}_t) \\ \det(\mathbf{v}_t, \mathbf{v}_x) \\ \det(\mathbf{v}_x, \mathbf{v}_y) \end{pmatrix}$$

acts as sink around $\mathbf{v} = \mathbf{0}$

 $v = 0 \Rightarrow g = 0$

Stable Feature Flow Field

Original FFF

216 integration steps

2 integration steps

Feature Flow Fields

Stable Feature Flow Fields

Feature Flow Fields Tutorial, Maik Schulze, PacificVis 2012

216 integration steps

2 integration steps

Feature Flow Fields

Stable Feature Flow Fields

Stable Feature Flow Fields for Parallel Vector Lines

Parallel Vectors with Stable FFF

• Parallel Vectors (PV) operator

- Generic approach to feature extraction
- Swirling motion cores, ridges, ...

 $\mathbf{w}_1 \parallel \mathbf{w}_2$

• Every PV problem can be reformulated using FFF

$$\mathbf{f} = \begin{pmatrix} \det(\mathbf{q}_y, \mathbf{q}_z, \mathbf{a}) \\ \det(\mathbf{q}_z, \mathbf{q}_x, \mathbf{a}) \\ \det(\mathbf{q}_x, \mathbf{q}_y, \mathbf{a}) \end{pmatrix} \text{ with } \mathbf{q} = \mathbf{w}_1 \times \mathbf{w}_2$$

Parallel Vectors with Stable FFF

Correction Field $\mathbf{g} = \frac{\mathbf{f}}{\|\mathbf{f}\|} \times \begin{pmatrix} \det(\mathbf{q}, \mathbf{q}_x, \mathbf{a}) \\ \det(\mathbf{q}, \mathbf{q}_y, \mathbf{a}) \\ \det(\mathbf{q}, \mathbf{q}_z, \mathbf{a}) \end{pmatrix}$

Parallel Vectors with Stable FFF

Vortex core lines (Sujudi/Haimes) extracted using Stable FFF

Summary

- Dynamic behavior of certain features can be described by streamline integration in Feature Flow Fields
 - Critical points
 - Periodic orbits
 - Vortex axes

• Numerical stability can be improved by Stable Feature Flow Fields

Feature Flow Fields Tutorial

Speaker: Maik Schulze University of Magdeburg, Germany

Visual Computing Research Group: http://vc.cs.ovgu.de/

> Based on slides from: Holger Theisel Tino Weinkauf

IEEE PacificVis 2012

- Mathematically correct
- Possibly numerically unstable
 - Possibly divergent behavior near feature line
 - Numerical errors may move integration off the feature

Improvement of FFF

- Predictor-Corrector approach
 - Do integration step
 - Move particle to feature by root finding

A. Van Gelder, A. Pang

Using PVsolve to Analyze and Locate Positions of Parallel Vectors, IEEE TVCG 15(4):682-695, 2009.

- Disadvantage
 - Root finding computationally expensive
 - Feature tracking not stream line integration anymore

Comparison between FFF and Stable FFF

Original FFF

Stable FFF

Comparison between FFF and Stable FFF

Feature Flow Fields Tutorial, Maik Schulze, PacificVis 2012

Acknowledgements

Based on the following references:

- Scientific Visualization
 Tino Weinkauf, MPI Saarbrücken, 2012
- Flow and Tensor Visualization
- Flow Visualization

Tino Weinkauf, MPI Saarbrücken, 2012 Holger Theisel, University of Magdeburg, 2011 Helwig Hauser, University of Bergen, 2011

The project **SemSeg** acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042.

Selected Work From Feature Flow Fields

- H. Theisel and H.-P. Seidel Feature Flow Fields, VisSym 2003
- H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel Stream Line and Path Line Oriented Topology for 2D Time-Dependent Vector Fields, IEEE Vis 2004
- T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel Feature Flow Fields in Out-Of-Core Settings, TopoInVis 2005
- X. Zheng and A. Pang Topological Lines in 3D Tensor Fields and Discriminant Hessian Factorization, TVCG 2005
- H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel Extraction of Parallel Vector Surfaces in 3D Time-Dependent Fields and Application to Vortex Core Line Tracking, IEEE Vis 2005
- S. Depardon, J. J. Lasserre, L. E. Brizzi, and J. Borée Automated topology classification method for instantaneous velocity fields, Experiments in Fluids 2007
- T. Weinkauf and H. Theisel and A. Van Gelder and A. Pang Stable Feature Flow Fields, TVCG 2010
- J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz Efficient Computation of Combinatorial Feature Flow Fields, TVCG 2011