

Pacific Vis 2012

Part 2 – Lagrangian Methods

Tutorial: Time-Dependent Flow Visualization

Armin Pobitzer¹, Alexander Kuhn²

- 1) University of Bergen, Norway
- 2) University of Magdeburg, Germany

- 1. Flow Map
- 2. Lagrangian features
- 3. Finite Time Lyapunov Exponent (FTLE)
- 4. Ridge Extraction
- 5. Efficient FTLE computations

Lagrangian Methods

Natural Flow Phenomena

- transport of particles
- analysis of spatio-temporal features
- define important structural features

→ Lagrangian Features

Wake vortex, smoke injection

Glacier structures Groenland

[Picture Alliance, YPS]

Lagrangian Methods

Flow Map

• flow map

 ϕ

$$: D \to D \qquad \phi_t^{\tau}(\mathbf{x}) = \phi(\mathbf{x}, t, \tau)$$

• gradient of flow map

$$\nabla \phi_t^{\tau}(\mathbf{x}) = \frac{\partial \phi}{\partial \mathbf{x}}$$

flow map & temporal component

$$\bar{\phi}: D \times T \to D \times T$$
$$\bar{\phi}(\mathbf{x}, t, \tau) = \bar{\phi}_t^{\tau}(\mathbf{x}) = \begin{pmatrix} \phi_t^{\tau}(\mathbf{x}) \\ t + \tau \end{pmatrix}$$

• temporal gradient

$$\nabla \bar{\phi}(\mathbf{x},t,\tau) = \begin{pmatrix} \nabla \phi & \frac{\partial \phi}{\partial t} \\ 0 \dots 0 & 1 \end{pmatrix}$$

Pacific Vis 2012

Lagrangian Methods

Lagrangian Coherent Structures (LCS)

- Properties:
 - take particle perspective
 - observe properties over pathlines
 - characterize flow transport
 - flow barriers
 - \rightarrow material structures
 - coherent flow behavior
 - invariant regions
 - → Analyze Flow Map

Glacier structures Groenland

[Picture Alliance, YPS]

TUTORIAL

Lagrangian Methods

Pacific Vis 2012

p'i

Finite Time Lyapunov Exponent (FTLE) [Haller2001] flow map **Properties:** flow behavior over finite-time intervall rate of separation pathlines ridges relate to LCS [Haller2010] $\Phi_{t_0}^{\tau}(\mathbf{p}_i)$ **Formal definition :** Flow Map gradient: $\nabla \Phi_{t_0}^{\tau}(\mathbf{p}_0) = \frac{\partial \Phi(\mathbf{p}_{0,t_0,\tau})}{\partial \mathbf{p}_0}$ Ði sample grid $FTLE(\mathbf{p}_{0},t_{0},\tau) = \frac{1}{\tau} \cdot ln\sqrt{\lambda_{max}(\nabla^{\mathrm{T}}\nabla)}$ FTLE:

(Cauchy-Green Tensor)

Lagrangian Methods

Pacific Vis 2012

Finite Time Lyapunov Exponent (FTLE)

- Classic FTLE [Haller2001]
 - four sample points in distance h
 - discrete flow map approximation
- FTLE with Reseeding
 - five samples

- different renormalization strategies
- Localized FTLE [Kasten2009]
 - one sample + derivatives
 - local deformation by Jacobians
 - accumulation of local derivative tensors

Lagrangian Methods

Finite Time Lyapunov Exponent (FTLE) [Haller2001]

- **Properties:**
 - single scalar field to describe time interval
 - information about transport behavior & barriers
 - low *flux rates* across sharp ridges
 - defined in forward & backward direction (FTLE+ / FTLE-) [Garth2007]

normalized FTLE

Lagrangian Methods

Pacific Vis 2012

Finite Time Lyapunov Exponent (FTLE) [Haller2001]

Example 2D Cylinder:

Lagrangian Methods

Finite Time Lyapunov Exponent (FTLE) [Haller2001]

Visualization

- direct volume rendering [GaVIS2007]
- slicing / orthogonal planes [GGTH07]
- ridge surface extraction [Sadlo2007]
 - adaptive refinement
 - filtering

Lagrangian Methods

More Lagrangian Definitions

- Minima of spatio-temporal acceleration [КНNН09]
 → filtering based on feature living time
- An objective definition of a vortex [Haller2005]
 → measure time trajectories spend in strain regions
- LCS with guaranteed material separation [Germer2011]
- pathline predicates [Salz2008]
 - → boolean flags to cluster similar behavior
- Lagrangian topoloy concept: unsteadiness [Fuchs2010]
 → construct local frame of reference
- (and many more...)

Pacific Vis 2012

Lagrangian Methods

Application Example: Hydrocyclone

Physical Properties:

- separate particles in suspension
- centripedal force & fluid resistance
- separation on varying density
- Simulation: (Markus Rütten, DLR)
 - geometry (~2GB) + scalar fields (~2.6GB)
 - steady flow field
 - scalar fields:
 - velocity
 - pressure
 - kinetic energy

Lagrangian Methods

Pacific Vis 2012

Application Example: Hydrocyclone

Lagrangian Methods

Pacific Vis 2012

Application Example: Hydrocyclone

Pacific Vis 2012

Lagrangian Methods

Application Example: Hydrocyclone

- Classic FTLE: Top Slice

Pacific Vis 2012

Lagrangian Methods

Application Example: Hydrocyclone

Classic FTLE: Lower Slice

Pacific Vis 2012

Lagrangian Methods

Application Example: Hydrocyclone TAU =1 TAU =5 (Rotated 45°) **TAU =5 TAU =15** 0.139813 0.225962 0.31211 0.24607 0.361153 0.476235 0.24607 0.361153 0.476235 .384147 0.467988 0.551829

Pacific Vis 2012

Lagrangian Methods

Application Example: Centrifugal Pump [Otto2011,Lucius10]

- 3 simulation models (SST, DES, SAS)
- Ensight data format with rotating parts
- 80 time steps
- 6.7 million nodes
- 6.5 million hexahedral cells
- 142 GB per model

Lagrangian Methods

Pacific Vis 2012

Application Example: Centrifugal Pump

t

Lagrangian Methods

Pacific Vis 2012

Application Example: Centrifugal Pump

- **Pathlines**: colored z-direction
 - upwards
 - downwards

TUTORIAL

Lagrangian Methods

Pacific Vis 2012

Application Example: Centrifugal Pump

Simulation model comparison: FTLE

SST

DES

Lagrangian Methods

Pacific Vis 2012

Application Example: Centrifugal Pump

• Simulation model SAS: pathline arc length

Pacific Vis 2012

Lagrangian Methods

Application Example: Centrifugal Pump

Pressure field (t=0)

t

Lagrangian Methods

Application Example: Centrifugal Pump

Simulation model comparison: integral pressure

Lagrangian Methods

Pacific Vis 2012

Application Example: Centrifugal Pump

• Simulation model SAS: texture advection

- 1. Flow Map
- 2. Lagrangian features
- 3. Finite Time Lyapunov Exponent (FTLE)
- 4. Ridge Extraction
- 5. Extensions to FTLE

Pacific Vis 2012

Rigdes – From FTLE to LCS

- FTLE gives a separation rate, but looking for large values is not enough
 - What is a "large" separation can vary within a data set
 - Material property is proven under additional assumptions [Shadden, 2005]
- Visualizing LCS by thresholding, volume rendering, ... of FTLE is not possible from theoretical point of view

Rigdes – From FTLE to LCS

Pacific Vis 2012

■ LCS ≈ ridges of FTLE field [Haller, 2001; Shadden 2005,...]

... but ridges are tricky

Rigdes – From FTLE to LCS

- Ridges are easily detectable by human eye
- Mathematical definition less clear
- Intuition: line (2D) or surface (3D) that is maximal with respect to its transversal direction
- Definition of "transvers" open (usually: height ridges)

Pacific Vis 2012

Rigdes – From FTLE to LCS

 Height ridges: transverse direction given by eigenvector ass. with the smallest eigenvalue of the Hessian

Rigdes – From FTLE to LCS

Pacific Vis 2012

Other definitions of definitions of e are possible!

Watersheds

"C"-ridges

••••

Further comparison in paper by Schindler et al.

[Schindler et al., 2012]

Pacific Vis 2012

Efficient FTLE computation

- High quality FTLE ridges...
 - Require dense seeding of particles
 - accurate integration scheme
- ... are computationally expensive!
 - Number of path lines + integration are main bottle neck in FTLE computation
 - Has to be done in precomputation step
 - Current state of the art: interactive computation not possible

		with setup time			without setup time		
	steps	direct	hier.	ratio	direct	hier.	ratio
	2×4	46.85	46.36	1.01	0.51	0.42	1.21
	2×8	48.94	46.65	1.05	2.41	0.46	5.24
	2×16	53.08	47.19	1.12	6.67	0.56	11.91
	2×32	60.78	48.11	1.26	13.51	1.11	12.17
Timing for 2D FTI F on a	2×64	76.27	48.41	1.58	30.08	1.94	15.51
Timing for 2D FILE on a	2×128	107.20	48.91	2.19	60.69	2.18	27.84
regular grid (E122)	2×256	168.79	48.99	3.45	121.61	2.75	44.22
regular grid (512-)	2×512	291.89	50.31	5.80	245.05	3.61	67.88
[Hlawatsch et al., 2011]	2 × 1024	538.29	50.10	10.74	491.64	3.99	123.22

Timings in perspective...

Pacific Vis 2012

Some examples for simulated flow scenarios [Wasberg et al., 2009]

- 112 x 113 x 112 [Wasberg et al., 2009] Re=180
- 128 x 129 x 128 [Moser et al., 1999] Re=180
- 1536 x 257 x 1536 [del Alamo and Jimenez, 2003] Re=550
- 3072 x 385 x 2304 [del Alamo et al., 2004] Re=950

Typical Reynolds numbers: Blood flow in aorta ca 1000, large ships ca 5 x 10⁹ [Wikipedia]

For realistic scenarios efficient computation essential to be able to apply FTLE-based methods!

		with setup time			without setup time		
	steps	direct	hier.	ratio	direct	hier.	ratio
	2×4	46.85	46.36	1.01	0.51	0.42	1.21
	2×8	48.94	46.65	1.05	2.41	0.46	5.24
	2×16	53.08	47.19	1.12	6.67	0.56	11.91
	2×32	60.78	48.11	1.26	13.51	1.11	12.17
Timing for 2D FTI F and	2×64	76.27	48.41	1.58	30.08	1.94	15.51
Timing for 2D FILE on a	2×128	107.20	48.91	2.19	60.69	2.18	27.84
regular grid (E122)	2×256	168.79	48.99	3.45	121.61	2.75	44.22
regular grid (512-)	2×512	291.89	50.31	5.80	245.05	3.61	67.88
[Hlawatsch et al., 2011]	2 × 1024	538.29	50.10	10.74	491.64	3.99	123.22

Two principle time saving strategies...

- Less integrations
 Adaptive mesh refinement [Sadlo and Peikert, 2007]
- Cheaper integrations
 Hierarchical integration [Brunton and Rowley, 2010; Hlawatsch et al., 2011]
- Combination of both
 Ridge tracking algorithm [Lipinski and Mohseni, 2010]

[Sadlo and Peikert, 2007]

Pacific Vis 2012

Adaptive mesh refinement [Sadlo and Peikert, 2007]

Main loop:

- 1. Coarse seeding, pointwise verification of ridge detection
- 2. Subdivision of detected ridge cells and neighbors
- 3. New pointwise ridge detection

Pro and Cons:

- + Exact ridges
- Relatively low speed-up (factor 4)

Hierarchical Integration [Brunton and Rowley, 2010; Hlawatsch et al., 2011]

Pacific Vis 2012

Main loop:

- 1. Integrate from each time step to next
- 2. Concatenate integration by interpolation

Pro and Cons:

- + Large speed-up (factor 10)
- + Animations easily possible
- Interpolation error

[Hlawatsch et al., 2011]

Ridge tracking algorithm [Lipinski and Mohseni, 2010]

Main loop:

- 1. Compute FTLE ridge
- 2. Advect ridge
- 3. Recompute ridge anew if advection error too large

Pro and Cons:

- + Large speed-up (factor 35)
- + Possibly combinable with ridge refinement
- At current 2D only

Pacific Vis 2012

Thank you for your attention!

Tutorial: Time-Dependent Flow Visualization

Armin Pobitzer¹, Alexander Kuhn²

University of Bergen, Norway
 University of Magdeburg, Germany

The project **SemSeg** acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042.

Acknowledgements

Based on the following references:

A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic and H. Hauser
 The State of the Art in Topology-Based Visualization of Unsteady Flow

Computer Graphics Forum, 2011

- Scientific Visualization
- Flow and Tensor Visualization
- **Flow Visualization**

Tino Weinkauf, MPI Saarbrücken, 2012 Holger Theisel, University of Magdeburg, 2011 Helwig Hauser, University of Bergen, 2011

The project **SemSeg** acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042.

Literature

[Laram2007]	R. Laramee, H. Hauser, L. Zhao, and F. Post, Topology-based flow visualization, the state of the art Topology-based Methods in Visualization, 2007, p. 1-19.
[Haller2001]	G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence <i>Physics of Fluids</i> , vol. 13, 2001.
[Haller2010]	G. Haller, A variational theory of hyperbolic Lagrangian Coherent Structures <i>Physica D: Nonlinear Phenomena</i> , vol. 240, Dec. 2010, pp. 574–598.
[Kasten2009]	J. Kasten, C. Petz, I. Hotz, B.R. Noack, and Hchristian Hege, Localized finite-time Lyapunov exponent for unsteady flow analysis Vision Modeling and Visualization (VMV), vol. 1, 2009.
[Leung2011]	S. Leung, An Eulerian Approach for Computing the Finite Time Lyapunov Exponent Journal of Computational Physics, Feb. 2011.
[Hlawa2010]	M. Hlawatsch, F. Sadlo, and D. Weiskopf, Hierarchical Line Integration Transactions on Visualization and Computer Graphics, EEE, 2010.
[Sadlo2007]	F. Sadlo and R. Peikert, Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction IEEE transactions on visualization and computer graphics, vol. 13, 2007, pp. 1456-63.
[Sadlo2009]	F. Sadlo, A. Rigazzi, and R. Peikert, Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection Topological Data Analysis and Visualization: Theory, Algorithms and Applications, Springer, 2009.
[Nese1989]	J.M. Nese Quantifying local predictability in phase space Physica D: Nonlinear Phenomena, vol. 35, 1989, p. 237–250.

[Pobitz2009]	A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser, On the way towards topology-based visualization of unsteady flow-the state of the art <i>IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2009)</i> , vol. 15, 2009, p. 1243-1250.
[TW02]	H. Theisel and T. Weinkauf. Vector field metrics based on distance measures of first order critical points Journal of WSCG, 10(3):121-128, 2002.
[TSH01]	X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields In Proc. of IEEE Visualization 2001, pages 159-166, 2001.
[TRS03]	H. Theisel, Ch. Rössl, and HP. Seidel. Compression of 2D vector fields under guaranteed topology preservation Computer Graphics Forum (Eurographics 2003), 22(3):333-342, 2003.
[ZZ08]	Zhonglin Zhang Identification of Lagrangian coherent structures around swimming jellyfish from experimental time-series data California Inst. of Technology, 2008
[WH10]	W. Tang and P. W. Chan and G. Haller Accurate extraction of LCS over finite domains with application to flight data analysis over Hong Kong Int. Airport Chaos (Woodbury, N.Y.), 2010
[WTHS04]	T.Weinkauf, H. Theisel, HC. Hege, and HP. Seidel. Topological construction and visualization of higher order 3D vector fields Computer Graphics Forum (Eurographics 2004), 23(3):469-478, 2004.
[Shadden06]	Shawn C. Shadden, John O. Dabiri, and Jerrold E. Marsden. Lagrangian analysis of fluid transport in empirical vortex ring flows Physics of Fluids, 18(4):047105, 2006.
[Eberly96]	D. Eberly. Ridges in Image and Data Analysis Kluwer Acadamic Publishers, Dordrecht, 1996.

[Leong95]	Jeong, J., Hussain, F. On the identification of a vortex Journal of Fluid Mechanics, Vol 285, pp 69 – 94, 1995
[Haller05]	G. Haller, 2005 An objective definition of a vortex J. Fluid Mech., Vol. 525, pp 1–26, 2005
[Lucius10]	A. Lucius, G.Brenner, Unsteady CFD simulations of a pump in part load conditions using Scale-Adaptive Simulation International Journal of Heat and Fluid Flow, Vol. 31 2010, pp 1113-1118
[Lucius10]	A. Lucius, G. Brenner, Numerical simulation and evaluation of velocity fluctuations during rotating stall of a centrifugal pump Journal of Fluids Engineering Vol. 133 2011, pp 081102
[GaVIS2007]	Garth, C., Gerhardt, F., Tricoche, X., and Hagen, H. Efficient computation and visualization of coherent structures in fluid flow applications <i>IEEE transactions on visualization and computer graphics</i> , vol. 13, 2007
[Garth2007]	Garth C. et al. Visualization of Coherent Structures in 2D transient flows <i>Topology-based Methods in Visualization, 2007, p. 1-19.</i>
[Haller2005]	G. Haller. An objective definition of a vortex Journal of Fluid Mechanics, 525:1-26, Feb. 2005.
[Jeong1995]	J. Jeong. On the identification of a vortex Journal of Fluid Mechanics,285:69-94, 1995.
[Wein2007]	T. Weinkauf, J. Sahner, H. Theisel, HC. Hege, and S. HP. Cores of swirling particle motion in unsteady flows IEEE Transactions onVisualization and Computer Graphics, 13(6):1759-1766, 2007.

Pacific Vis 2012

[Germer2011]	T. Germer, M. Otto, R. Peikert and H. Theisel Lagrangian Coherent Structures with Guaranteed Material Separation Computer Graphics Forum (Proc. EuroVis), 2011
[Salz2008]	Tobias Salzbrunn, Christoph Garth, Gerik Scheuermann und Joerg Meyer Pathline predicates and unsteady flow structures THE VISUAL COMPUTER, Volume 24, Number 12, 1039–1051
[Fuchs2010]	R. Fuchs, J. Kemmler, B. Schindler, F. Sadlo, H. Hauser, R. Peikert, Toward a Lagrangian Vector Field Topology, Computer Graphics Forum, 29(3), pp. 1163-1172, 2010.
[Otto2011]	M. Otto, A. Kuhn, W. Engelke and H. Theisel

2011 IEEE Visualization Contest Winner: Visualizing Unsteady Vortical Behavior of a Centrifugal Pump IEEE, Visualization Viewpoints in IEEE CG&A, Computer Graphics and Applications, 2012

Literature

[Haller, 2001]	Haller, G., Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence, Physics of Fluids, vol. 13, 2001
[Hlawatsch et al., 2010]	Hlawatsch, M., Sadlo, F., Weiskopf, D., Hierarchical Line Integration , Transactions on Visualization and Computer Graphics, EEE, 2010.
[Sadlo and Peikert, 2007]	Sadlo, F., Peikert, R., Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction , IEEE transactions on visualization and computer graphics, vol. 13, 2007, pp. 1456–63.
[Shadden et al., 2005]	Shadden, S. C., Lekien, F., Marsden, J. E., Lagrangian analysis of fluid transport in empirical vortex ring flows , Physics of Fluids Vol 18, 047105, 2006.
[Wasberg et a., 2009]	Wasberg, C. E., Gjesdal, T., Reif, B. A. P., Andreassen, Ø., Variational multiscale turbulence modelling in a
	high order spectral element method, J. of Computational Physics Vol. 228, pp 7333-7356, 2009
[Brunton and Rowley, 2010]	Brunton, S. L., Rowley, Fast Computations of finite-time Lyapunov exponent fields for unsteady flow , Chaos Vol. 20, 2010
[Lipinski and Mohseni, 2010] Lipinski, D., Mohseni, K., A ridge tracking algorithm and error estimate for efficient computations of

Lagrangian coherent structures, Chaos Vol. 20, 2010