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1. Line integral convolution (LIC) 

2. Vortex detectors 

3. The parallel vectors operator 

4. Stream- vs pathlines 

5. Limits of Vector Field Topology 

 

 

 

Overview 
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 Introduced by Cabral and Leedom in 1993 

 Space-filling visualization of instantaneous flow field 

 Local processing, global information 

 Automatic critical point detection 
and classification 

 

 

 

 

Line Integral Convolution – A FlowVis Classic  
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 Basic idea: convolute (white noise) texture with stream line  

 (Weighted) averaging of noise along  part of stream line 

 High correlation along stream line 

 Low correlation orthogonal to stream line 

 Formal computation of intensity for every space point 

 

 

 

 

 

Line Integral Convolution – A FlowVis Classic  
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1. Contains no information on velocity magnitude 

1. Add colour 

2. Stream lines =  
steady velocity field 

1. Animation (2D) 

2. Convolute with path lines 
[Shen and Kao, 1998] 

3. Extension to 3D 

1. Algorithm: not limited  
to specific dimension 

2. Rendering: ??? 
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1. Contains no information on velocity magnitude 

1. Add colour 

2. Stream lines =  
steady velocity field 

1. Animation (2D) 

2. Convolute with path lines 
[Shen and Kao, 1998] 

3. Extension to 3D 

1. Algorithm: not limited  
to specific dimension 

2. Rendering: ??? 

 

 

Line Integral Convolution – A FlowVis Classic  

[Rezk-Salama et al., 1999] 



Pacific Vis 2012 

 Vortices are… 

 One of the most prominent flow features 

 One of the least understood flow features 

 No (or several) mathematical definitions available 

 Common intuition: “something swirling” 

 Vortex detectors 

 Vortex as area/volume 

 Vortex as core 

 

Vortices – Easy to Imagine, Hard to Define 

[Descloitres, 2005] 

[Steinicke, 2012] 

[Frantz-Dale, 2007] 
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 By thresholding 

 Vorticity                                  

 Lambda 2           [Jeong and Hussain, 1995] 

 Delta criterion        [Chong et al., 1990] 

 Hunt’s Q criterion  [Hunt et al., 1988] 

 Some properties /relations between the criteria 

 Strong shear: no vorticity thresholding! 

 Hunt’s Q more restrictive than Delta 

 Near wall: Lambda 2 better then Hunt’s Q 

 For compressible flow: problems with Lambda 2 

 Delta corresponds with VFT 

 In to deep discussion of different definitions [Chakraborty et al. 2005] 

 

Vortex Regions – Similar, but Different 

vω 

2


In common for all criteria: 

use of  

 

 

 

 
v
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 Advantages 

 Mostly applicable to steady AND unsteady flow, without modifications 

 Easy visualization by direct volume rendering/isosurfacing  

 

 Drawbacks 

 A good threshold? 

 Vortices are “fuzzy” 

Vortex regions – Similar, but different 

[Helgeland et al., 2007] 
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 Common agreement on vortex as swirling motion around common axis 

 Clearer visualization 

 (Ideally) parameter-free 

 Again, no mathematical definition 

 

 Popular vortex core criteria 

 Helicity method [Levy et al., 1990] 

 Sujudi and Haimes [Sujudi and Haimes,  1995] 

 “Unsteady Sujudi and Haimes” [Fuchs et al., 2008]  

 Cores of swirling motion [Weinkauf et al., 2007] 

 Acceleration minima [Fuchs et al, 2010; Kasten et al., 2011] 

Vortex Core Lines – The Central Part of Vortical Motion 
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 Advantages 

 Less visual clutter 

 Crisp feature 

 

 Drawbacks 

 Region of influence of vortex unclear 

 More sensitive to stable/unstable 

 Assume tube-like vortices 

Vortex Core Lines – The Central Part of Vortical Motion 

[Weinkauf et al., 2007] 

[Fuchs et al., 2008] 



Pacific Vis 2012 

 The parallel vectors operator [Peikert and Roth, 1999]: 

Unified formulation for line and surface extraction in vector fields. 
Detection of 

 Zero curvature lines of velocity field 

 Extremal lines in magnitude for general vector fields 

 Local parallelism of two arbitrary vector fields  

 One application: vortex core line 

 All previous presented approaches can be formulated as 
“find space points where vector field a is parallel to vector field b” 

 Choice of a and b 

 In [Peikert and Roth, 1999]: normalised helicity, Sujudi and Haimes, 
acceleration minumum 

 In [Fuchs et al., 2007]: “unsteady Sujudi and Haimes” 

 In [Weinkauf et al., 2007]: cores of swirling motion 

Parallel vectors – Multiple Core Lines for the Price of One 
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The original algorithm, as described by Sujudi and Haimes: 

Parallel vectors – Example: Sujudi and Haimes 

[Sujudi and Haimes., 1995] 
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… in the parallel vector formulation, as described by Peikert and Roth: 
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… in the parallel vector formulation, as described by Peikert and Roth: 

 

 

 

 

 

 

 

Find set by intersection of isosurfaces (e.g., marching lines), Newton iteration on cell 
faces, analytic solution (for triangular faces),… 

 

 

 

 

 

Parallel vectors – Example: Sujudi and Haimes 
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… in the parallel vector formulation, as described by Peikert and Roth: 
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Vortices – A Few General Remarks 

 Steady vs. unsteady flow 

 Correction by consideration of spatial AND  
temporal velocity fluctuations  
(Material derivative) 

 (Usually) small effects, vortices are mostly  
instantaneous features 

 In unsteady flows vortices can be created,  
merge, split, braid, be dissipated,… 
 

 Region vs. core line 

 Region: fails to detect rotation axis 

 Core line: no information on region of 
influence 
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1. Line integral convolution (LIC) 

2. Vortex detectors 

3. The parallel vectors operator 

4. Streamlines vs. Pathlines 

5. Limits of Vector Field Topology 

 

 

 

Overview 
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 tangent curves: 

 

 
 

 solve initial value problem 

 

 describes path of a mass less particle 

 

Characteristic Curves 

s(t) 

Streamlines vs. Pathlines 

[Tino Weinkauf, MPI] 
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 tangent curves: 

 tangent curves do not intersect  

 unique for any point in v 

 exception: critical points 

 

 description of tangent curves: 

 parametric description (only linear fields) 

 numerical integration 

Characteristic Curves 

Streamlines vs. Pathlines 

[Tino Weinkauf, MPI] 
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 concept to handle time-dependent data 

  lift problem to higher dimension 

 time as additional spatial dimension 

 unsteady case ⇨ steady case  

 space and time can be handled in one set 

 extendable to arbitrary dimensions 

Space-time domain approach 

Streamlines vs. Pathlines 

⇨
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⇨ streamlines 

⇨ pathlines 

 vector field: 

 

 steady case: 

 

 unsteady case: 

Space-time domain approach 

Streamlines vs. Pathlines 



Pacific Vis 2012 

 

 

v(x,t) = (1-t)      + t  
 

Simple Example: 

Streamlines vs. Pathlines 



Pacific Vis 2012 

Steady Case 2D Unsteady Case 2D 

streamlines streamlines pathlines 

[Tino Weinkauf, MPI] 
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Steady Case 3D Unsteady Case 3D 

streamlines streamlines pathlines 

[Tino Weinkauf, MPI] 
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A wind tunnel model of a Cessna 182 Tested in the RPI (Rensselaer Polytechnic Institute) Subsonic Wind Tunnel. 
By Ben FrantzDale (2007). 

Example Pathlines: 

Streamlines vs. Pathlines 
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Characteristic Curves Overview: 

Streamlines vs. Pathlines 

 Curve types: 

 streamlines:   parallel to v(p,t) in each point p for a fixed time 

 pathlines:   motion of a particles over the time in an unsteady field v(p,t)  

 streaklines:  location of all particles set out at a fixed point over time 

 timelines:   evolution of a curve set out at a time t0 

streakline 

timeline 

[Tino Weinkauf, MPI] 
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1. Line integral convolution (LIC) 

2. Vortex detectors 

3. The parallel vectors operator 
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Example 1: The Beads Problem [Wiebel et al., TopoInVis 2009] 

Limits of Vector Field Topology 

 Vector field: 

 

• modeling aggregating cell behavior 

• simple rotating attractor 

 

 

 

 

 applied methods: 

 critical points     (green) 

 swirling pathline cores  (blue) 

 

 

 

pathlines move to attractor 
[Tino Weinkauf, MPI] 



Pacific Vis 2012 

Example 2: Double Gyre [Shadden06] 

Limits of Vector Field Topology 

 static case: 

• isolated critical features 

 two sliding orbits 

• separating structure 

 

 

• unsteady case: 

• asymetric material structure 

• complex ridge evolvement 

• scalar field description 

 

 

Example: 
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Example 2: Double Gyre [Shadden06] 

Limits of Vector Field Topology 

 comparison: 

a) pathlines 

b) vector length 

c) Lagrangian feature 

d) combined 
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Thank you for your attention! 
 

 
 

Tutorial: Time-Dependent Flow Visualization 
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