

Pacific Vis 2012

Part 1 – General Methods

Tutorial: Time-Dependent Flow Visualization

Armin Pobitzer¹, Alexander Kuhn²

- 1) University of Bergen, Norway
- 2) University of Magdeburg, Germany

Acknowledgements

Based on the following references:

A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic and H. Hauser
 The State of the Art in Topology-Based Visualization of Unsteady Flow

Computer Graphics Forum, 2011

- Scientific Visualization
- Flow and Tensor Visualization
- **Flow Visualization**

Tino Weinkauf, MPI Saarbrücken, 2012 Holger Theisel, University of Magdeburg, 2011 Helwig Hauser, University of Bergen, 2011

The project **SemSeg** acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042.

Overview

- 1. Line integral convolution (LIC)
- 2. Vortex detectors
- 3. The parallel vectors operator
- 4. Stream- vs pathlines
- 5. Limits of Vector Field Topology

Line Integral Convolution – A FlowVis Classic

- Introduced by Cabral and Leedom in 1993
- Space-filling visualization of instantaneous flow field
- Local processing, global information
- Automatic critical point detection and classification

Line Integral Convolution – A FlowVis Classic

Pacific Vis 2012

- Basic idea: convolute (white noise) texture with stream line
- (Weighted) averaging of noise along part of stream line
 - High correlation along stream line
 - Low correlation orthogonal to stream line
- Formal computation of intensity for every space point

$$I(\mathbf{x}_{0}) = \int_{s_{0}-1}^{s_{0}+1} K(s_{0}-s)n(\mathbf{x}(s))ds$$

I... int ensity K... convolution ker nel, bandwith 21 n... noise texture **x**(s)... streamline (arc length param.)

Line Integral Convolution – A FlowVis Classic

Pacific Vis 2012

1. Contains no information on velocity magnitude

- 1. Add colour
- 2. Stream lines = steady velocity field
 - 1. Animation (2D)
 - 2. Convolute with path lines [Shen and Kao, 1998]

3. Extension to 3D

- 1. Algorithm: not limited to specific dimension
- 2. Rendering: ???

Line Integral Convolution – A FlowVis Classic

- 1. Contains no information on velocity magnitude
 - 1. Add colour
- 2. Stream lines = steady velocity field
 - 1. Animation (2D)
 - 2. Convolute with path lines [Shen and Kao, 1998]
- 3. Extension to 3D
 - 1. Algorithm: not limited to specific dimension
 - 2. Rendering: ???

Line Integral Convolution – A FlowVis Classic

Pacific Vis 2012

1. Contains no information on velocity magnitude

- 1. Add colour
- 2. Stream lines = steady velocity field
 - 1. Animation (2D)
 - 2. Convolute with path lines [Shen and Kao, 1998]

- 1. Algorithm: not limited to specific dimension
- 2. Rendering: ???

[Rezk-Salama et al., 1999]

Vortices – Easy to Imagine, Hard to Define

Vortices are...

- One of the most prominent flow features
- One of the least understood flow features
- No (or several) mathematical definitions available
 - Common intuition: "something swirling"
 - **Vortex detectors**
 - Vortex as area/volume
 - Vortex as core

[Frantz-Dale, 2007]

Vortex Regions – Similar, but Different

Pacific Vis 2012

By thresholding

- Vorticity $\boldsymbol{\omega} = \nabla \times \mathbf{v}$
- Lambda 2 λ_2 [Jeong and Hussain, 1995]
- Delta criterion Δ [Chong et al., 1990]
- Hunt's Q criterion [Hunt et al., 1988]

Some properties /relations between the criteria

- Strong shear: no vorticity thresholding!
- Hunt's Q more restrictive than Delta
- Near wall: Lambda 2 better then Hunt's Q
- For compressible flow: problems with Lambda 2
- Delta corresponds with VFT
- In to deep discussion of different definitions [Chakraborty et al. 2005]

Pacific Vis 2012

Vortex regions – Similar, but different

Advantages

- Mostly applicable to steady AND unsteady flow, without modifications
- Easy visualization by direct volume rendering/isosurfacing

Drawbacks

- A good threshold?
 - Vortices are "fuzzy"

[Helgeland et al., 2007]

Vortex Core Lines – The Central Part of Vortical Motion

Common agreement on vortex as swirling motion around common axis

- Clearer visualization
- (Ideally) parameter-free
- Again, no mathematical definition

Popular vortex core criteria

- Helicity method [Levy et al., 1990]
- Sujudi and Haimes [Sujudi and Haimes, 1995]
- "Unsteady Sujudi and Haimes" [Fuchs et al., 2008]
- Cores of swirling motion [Weinkauf et al., 2007]
- Acceleration minima [Fuchs et al, 2010; Kasten et al., 2011]

Vortex Core Lines – The Central Part of Vortical Motion

Advantages

- Less visual clutter
- Crisp feature

Drawbacks

- Region of influence of vortex unclear
- More sensitive to stable/unstable
- Assume tube-like vortices

[Fuchs et al., 2008]

modified vortex

Sujudi & Haimes

vortex core line

core line

Pacific Vis 2012

isosurface of pressure

Pacific Vis 2012

Parallel vectors – Multiple Core Lines for the Price of One

- The parallel vectors operator [Peikert and Roth, 1999]: Unified formulation for line and surface extraction in vector fields. Detection of
 - Zero curvature lines of velocity field
 - Extremal lines in magnitude for general vector fields
 - Local parallelism of two arbitrary vector fields
- One application: vortex core line
 - All previous presented approaches can be formulated as
 "find space points where vector field a is parallel to vector field b"
 - Choice of a and b
 - In [Peikert and Roth, 1999]: normalised helicity, Sujudi and Haimes, acceleration minumum
 - In [Fuchs et al., 2007]: "unsteady Sujudi and Haimes"
 - In [Weinkauf et al., 2007]: cores of swirling motion

Parallel vectors – Example: Sujudi and Haimes

The original algorithm, as described by Sujudi and Haimes:

The algorithm proceeds one tetrahedral cell at a time, and can be summarized as follows (it is assumed that a velocity vector is available at each node):

- 1. Linearly interpolate the velocity within the cell.
- 2. Compute the rate-of-deformation tensor A. Since a linear interpolation of the velocity within the cell can be written as

$$u_{i} = C_{i} + \frac{\partial u_{i}}{\partial x} \Delta x + \frac{\partial u_{i}}{\partial y} \Delta y + \frac{\partial u_{i}}{\partial z} \Delta z \qquad (1)$$

then A can be constructed from the coefficients of the linear interpolation function of the velocity vector.

- Find the eigenvalues of A. Processing continues only if A has one real (λ_R) and a pair of complexconjugate eigenvalues (λ_C).
- 4. At each node of the tetrahedron, subtract the velocity component in the direction of the eigenvector corresponding to λ_R . This is equivalent to projecting the velocity onto the plane normal to the eigenvector belonging to λ_R , and can be expressed as

$$\vec{w} = \vec{u} - \left(\vec{u} \cdot \vec{n}\right)\vec{n} \tag{2}$$

where \vec{n} is the normalized eigenvector corresponding to λ_{R} , and w is the reduced velocity. 5. Linearly interpolate each component of the reduced velocity to obtain

$$w_i = a_i + b_i x + c_i y + d_i z \tag{3}$$
$$i = 1, 2, 3$$

6. To find the center, we set w_i in equation (3) to zero. Since the reduced velocity lies in a plane, it has only 2 degrees of freedom. Thus, only 2 of the 3 equations in equation (3) are independent. Any 2 can be chosen as long as their coefficients are not all zero. Now we have

$$0 = a_i + b_i x + c_i y + d_i z$$

$$i = 1, 2$$
(4)

which are the equations of 2 planes, whose solution (the intersection of 2 planes) is a line.

7. If this line intersects the cell at more than 1 point, then the cell contains a center of a local swirling flow. The center is defined by the line segment formed by the 2 intersection points.

[Sujudi and Haimes., 1995]

Pacific Vis 2012

... in the parallel vector formulation, as described by Peikert and Roth:

Parallel vectors – Example: Sujudi and Haimes

Pacific Vis 2012

... in the parallel vector formulation, as described by Peikert and Roth:

 $\mathbf{v} \| (\nabla \mathbf{v}) \mathbf{v} = \left\{ \mathbf{x} \| (\mathbf{v}(\mathbf{x})) \times (\nabla \mathbf{v}(\mathbf{x}) \mathbf{v}(\mathbf{x})) = 0 \right\}$

Find set by intersection of isosurfaces (e.g., marching lines), Newton iteration on cell faces, analytic solution (for triangular faces),...

Parallel vectors – Example: Sujudi and Haimes

Pacific Vis 2012

... in the parallel vector formulation, as described by Peikert and Roth:

 $\mathbf{v} \| (\nabla \mathbf{v}) \mathbf{v} = \left\{ \mathbf{x} \| (\mathbf{v}(\mathbf{x})) \times (\nabla \mathbf{v}(\mathbf{x}) \mathbf{v}(\mathbf{x})) = 0 \right\}$

Find set by intersection of isosurfaces (e.g., marching lines), Newton iteration on cell faces, analytic solution (for triangular faces),...

Vortices – A Few General Remarks

Steady vs. unsteady flow

- Correction by consideration of spatial AND temporal velocity fluctuations (Material derivative)
- (Usually) small effects, vortices are mostly instantaneous features
- In unsteady flows vortices can be created, merge, split, braid, be dissipated,...

Region vs. core line

- Region: fails to detect rotation axis
- Core line: no information on region of influence

Overview

- **1.** Line integral convolution (LIC)
- 2. Vortex detectors
- 3. The parallel vectors operator
- 4. Streamlines vs. Pathlines
- 5. Limits of Vector Field Topology

Streamlines vs. Pathlines

Pacific Vis 2012

Characteristic Curves

tangent curves:

$$\mathbf{s}(t) \longrightarrow \dot{\mathbf{s}}(t) = \mathbf{v}(\mathbf{s}(t))$$

- solve initial value problem
 - describes path of a mass less particle

[Tino Weinkauf, MPI]

Pacific Vis 2012

Streamlines vs. Pathlines

Characteristic Curves

- tangent curves:
 - tangent curves do not intersect
 - unique for any point in v
 - \rightarrow exception: *critical points*
 - description of tangent curves:
 - \rightarrow parametric description (only linear fields)
 - \rightarrow numerical integration

[Tino Weinkauf, MPI]

Pacific Vis 2012

Streamlines vs. Pathlines

Space-time domain approach

concept to handle time-dependent data

- lift problem to higher dimension
- time as additional spatial dimension
- unsteady case ⇒ steady case
- space and time can be handled in one set
- extendable to arbitrary dimensions

TUTORIAL

Streamlines vs. Pathlines

Space-time domain approach

• vector field:
$$\mathbf{v}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$$

 $\mathbf{s}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \\ 0 \end{pmatrix} \implies \text{streamlines}$

unsteady case: 11

$$\mathbf{p}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \\ 1 \end{pmatrix}$$

 \Rightarrow pathlines

Streamlines vs. Pathlines

Pacific Vis 2012

Simple Example:

Streamlines vs. Pathlines

Pacific Vis 2012

Example Pathlines:

A wind tunnel model of a Cessna 182 Tested in the RPI (Rensselaer Polytechnic Institute) Subsonic Wind Tunnel. By Ben FrantzDale (2007).

Streamlines vs. Pathlines

Characteristic Curves Overview:

Curve types:

- **streamlines:** parallel to **v**(**p**,t) in each point **p** for a fixed time
- pathlines: motion of a particles over the time in an *unsteady* field v(p,t)
 - **streaklines:** location of all particles set out at a *fixed point* over time
- timelines:

Overview

- 1. Line integral convolution (LIC)
- 2. Vortex detectors
- 3. The parallel vectors operator
- 4. Streamlines vs. Pathlines
- 5. Limits of Vector Field Topology

Pacific Vis 2012

Limits of Vector Field Topology

Example 1: The Beads Problem [Wiebel et al., TopoInVis 2009]

- Vector field:
 - modeling aggregating cell behavior
 - simple rotating attractor

$$\mathbf{v}(x, y, t) = \begin{pmatrix} -(y - \frac{1}{3}\sin(t)) - (x - \frac{1}{3}\cos(t)) \\ (x - \frac{1}{3}\cos(t)) - (y - \frac{1}{3}\sin(t)) \end{pmatrix}$$

(green)

- applied methods:
 - critical points
 - swirling pathline cores (blue)

Pacific Vis 2012

Limits of Vector Field Topology

Example 2: Double Gyre [Shadden06]

- static case:
 - isolated critical features
 → two sliding orbits
 - separating structure

- unsteady case:
 - asymetric material structure
 - complex ridge evolvement
 - scalar field description

Example:

Limits of Vector Field Topology

Example 2: Double Gyre [Shadden06]

- comparison:
 - a) pathlines
 - b) vector length
 - c) Lagrangian feature
 - d) combined

Pacific Vis 2012

Thank you for your attention!

Tutorial: Time-Dependent Flow Visualization

Armin Pobitzer¹, Alexander Kuhn²

University of Bergen, Norway
 University of Magdeburg, Germany

The project **SemSeg** acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042.

Literature

[Laram2007]	R. Laramee, H. Hauser, L. Zhao, and F. Post, Topology-based flow visualization, the state of the art Topology-based Methods in Visualization, 2007, p. 1-19.
[Haller2001]	G. Haller, Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence <i>Physics of Fluids</i> , vol. 13, 2001.
[Haller2010]	G. Haller, A variational theory of hyperbolic Lagrangian Coherent Structures <i>Physica D: Nonlinear Phenomena</i> , vol. 240, Dec. 2010, pp. 574–598.
[Kasten2009]	J. Kasten, C. Petz, I. Hotz, B.R. Noack, and Hchristian Hege, Localized finite-time Lyapunov exponent for unsteady flow analysis Vision Modeling and Visualization (VMV), vol. 1, 2009.
[Leung2011]	S. Leung, An Eulerian Approach for Computing the Finite Time Lyapunov Exponent Journal of Computational Physics, Feb. 2011.
[Hlawa2010]	M. Hlawatsch, F. Sadlo, and D. Weiskopf, Hierarchical Line Integration Transactions on Visualization and Computer Graphics, EEE, 2010.
[Sadlo2007]	F. Sadlo and R. Peikert, Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction IEEE transactions on visualization and computer graphics, vol. 13, 2007, pp. 1456-63.
[Sadlo2009]	F. Sadlo, A. Rigazzi, and R. Peikert, Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection Topological Data Analysis and Visualization: Theory, Algorithms and Applications, Springer, 2009.
[Nese1989]	J.M. Nese Quantifying local predictability in phase space Physica D: Nonlinear Phenomena, vol. 35, 1989, p. 237–250.

[Pobitz2009]	A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovic, and H. Hauser, On the way towards topology-based visualization of unsteady flow-the state of the art <i>IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2009)</i> , vol. 15, 2009, p. 1243-1250.
[TW02]	H. Theisel and T. Weinkauf. Vector field metrics based on distance measures of first order critical points Journal of WSCG, 10(3):121-128, 2002.
[TSH01]	X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields In Proc. of IEEE Visualization 2001, pages 159-166, 2001.
[TRS03]	H. Theisel, Ch. Rössl, and HP. Seidel. Compression of 2D vector fields under guaranteed topology preservation Computer Graphics Forum (Eurographics 2003), 22(3):333-342, 2003.
[ZZ08]	Zhonglin Zhang Identification of Lagrangian coherent structures around swimming jellyfish from experimental time-series data California Inst. of Technology, 2008
[WH10]	W. Tang and P. W. Chan and G. Haller Accurate extraction of LCS over finite domains with application to flight data analysis over Hong Kong Int. Airport Chaos (Woodbury, N.Y.), 2010
[WTHS04]	T.Weinkauf, H. Theisel, HC. Hege, and HP. Seidel. Topological construction and visualization of higher order 3D vector fields Computer Graphics Forum (Eurographics 2004), 23(3):469-478, 2004.
[Shadden06]	Shawn C. Shadden, John O. Dabiri, and Jerrold E. Marsden. Lagrangian analysis of fluid transport in empirical vortex ring flows Physics of Fluids, 18(4):047105, 2006.
[Eberly96]	D. Eberly. Ridges in Image and Data Analysis Kluwer Acadamic Publishers, Dordrecht, 1996.

[Leong95]	Jeong, J., Hussain, F. On the identification of a vortex Journal of Fluid Mechanics, Vol 285, pp 69 – 94, 1995
[Haller05]	G. Haller, 2005 An objective definition of a vortex J. Fluid Mech., Vol. 525, pp 1–26, 2005
[Lucius10]	A. Lucius, G.Brenner, Unsteady CFD simulations of a pump in part load conditions using Scale-Adaptive Simulation International Journal of Heat and Fluid Flow, Vol. 31 2010, pp 1113-1118
[Lucius10]	A. Lucius, G. Brenner, Numerical simulation and evaluation of velocity fluctuations during rotating stall of a centrifugal pump Journal of Fluids Engineering Vol. 133 2011, pp 081102
[GaVIS2007]	Garth, C., Gerhardt, F., Tricoche, X., and Hagen, H. Efficient computation and visualization of coherent structures in fluid flow applications <i>IEEE transactions on visualization and computer graphics</i> , vol. 13, 2007
[Garth2007]	Garth C. et al. Visualization of Coherent Structures in 2D transient flows Topology-based Methods in Visualization, 2007, p. 1-19.
[Haller2005]	G. Haller. An objective definition of a vortex Journal of Fluid Mechanics, 525:1-26, Feb. 2005.
[Jeong1995]	J. Jeong. On the identification of a vortex Journal of Fluid Mechanics,285:69-94, 1995.
[Wein2007]	T. Weinkauf, J. Sahner, H. Theisel, HC. Hege, and S. HP. Cores of swirling particle motion in unsteady flows IEEE Transactions onVisualization and Computer Graphics, 13(6):1759-1766, 2007.

Pacific Vis 2012

[Germer2011]	T. Germer, M. Otto, R. Peikert and H. Theisel Lagrangian Coherent Structures with Guaranteed Material Separation Computer Graphics Forum (Proc. EuroVis), 2011
[Salz2008]	Tobias Salzbrunn, Christoph Garth, Gerik Scheuermann und Joerg Meyer Pathline predicates and unsteady flow structures THE VISUAL COMPUTER, Volume 24, Number 12, 1039–1051
[Fuchs2010]	R. Fuchs, J. Kemmler, B. Schindler, F. Sadlo, H. Hauser, R. Peikert, Toward a Lagrangian Vector Field Topology

Toward a Lagrangian Vector Field Topology, Computer Graphics Forum, 29(3), pp. 1163-1172, 2010.

Literure	
INGLALG	Pacific Vis 2012
[Jeong and Hussain, 1995]	Jeong, J., Hussain, F. On the identification of a vortex , Journal of Fluid Mechanics, Vol 285, pp 69 – 94, 1995
[Cabral and Leedom, 1993]	Cabral, B., Leedom, L. C., Imaging Vector Fields Using Line Integral Convolution , In: Proceedings of ACM SIGGRAPH '93, pp 263 – 270, 1993
[Rezk-Salama et al., 1999]	Rezk-Salama, C., Hastreiter, P., Teitzel, C., Ertl, T., Interactive Exploration of Volume Line Integral Convolution Based on 3D-texture Mapping , In: Proceedings of the Conference on Visualization '99 (Vis '99), pp 233 – 240, 1999
[Shen and Kao, 1998]	Shen, H.–W., Kao, D. L., A New Line Integral Convolution Algorithm for Visualizing Time–Varying Flow Fields , In: Proceedings of the Conference on Visualization '98 (Vis '98), pp 317 – 322, 1998
[Chong et al., 1990]	Chong, M. S., Perry, A. E., Cantwell, B. J., A General Classification of Three-dimensional Flow Fields , Physics of Fluids A Vol. 2, pp 765 - 777, 1990
[Hunt et al., 1988]	Hunt, J. C. R., Wray, A. A., Moin, P., Eddies, Stream, and Convergence Zones in Turbulent Flows , Stanford N.A.S.A. Centre for Turbulence Research Report CTR-S88, pp 193 - 208, 1988
[Chakraborty et al, 2005]	Chakraborty, P., Balachandar, S., Adrian, R. J., On the Relationships Between Local Vortex Identification Schemes , Journal of Fluid Mechanics Vol. 535, pp 189 – 214, 2005
[Levy et al., 1990]	Levy, Y., Degani, D., Seginer, A., Graphical Visualization of Vortical Flows by Means of Helicity , AIAA Journal Vol. 28, pp 1347 - 1352, 1990

[[Sujudi and Haimes, 1995]	Sujudi, D., Haimes, R., Identification of Swirling Flow in 3D Vector Fields , Tech. Report, Dep. Of Aeronautics and Astronautics, MIT, 1995
[Fuchs et al., 2008]	Fuchs, R., Peikert, R., Hauser, H., Sadlo, F., Muigg, P., Parallel Vectors Criteria for Unsteady Flow Vortices , IEEE Transactions on Visualization and Computer Graphics Vol. 14, pp 615 – 626, 2008
[Weinkauf et al., 2007]	Weinkauf, T., Sahner, J., Theisel, H., Hege, HC., Cores of Swirling Particle Motion in Unsteady Flows , IEEE Transactions on Visualization and Computer Graphics Vol. 13, pp 1759 - 1766, 2007
[Fuchs et al., 2010]	Fuchs, R., Kemmler, J., Schindler, B., Waser, j., Sadlo, F., Hauser, H., Peikert, R., Computer Graphics Forum Vol. 29, pp 1163 – 1172, 2012
[Kasten et al., 2011]	Kasten, J., Reininghaus, J., Hotz, I., Hege, HC., Two-dimensional Time-dependent Vortex Regions Based on the Acceleration Magnitude, IEEE Transactions on Visualization and Computer Graphics Vol. 17, pp 2080 – 2087, 2011
[Peikert and Roth, 1999]	Peikert, R., Roth, M., The "Parallel Vectors" Operator – A Vector Field Visualization Primitive, In: Proceedings of the Conference on Visualization '99 (Vis '99), pp 263 – 270, 1999