Preview

- Overview
- Traditional animation
- Keyframe animation
- Procedural animation
- Motion paths
- Articulated animation
- Collision detection
- Dynamics
- Animation languages
- Animation systems
Traditional Animation Overview

- **Traditional animation process**
 - Animator creates a *storyboard* that outlines the story
 - Just enough sketches to be able to summarize the story
 - Animator draws a series of “key” frames
 - Identify all important poses among characters and objects in every scene
 - Junior artists draw all the *in between* key frames
 - Called “inbetweening” or “tweening”
 - Pre-viewing done with flip charts and incomplete images
 - Each *frame* generated and photographed separately
 - First done with pencil drawings
 - When all is ready, final color drawings done

Two ½ D

- Scene background doesn’t change much (or at all) from frame to frame; why re-draw it?
 - Draw background separately
 - Draw foreground on transparent *celluloid* sheet
 - Mount foreground over the background and photograph
 - Called *cel animation* (began in 1915)
- **Multiplane cameras** evolved from *cel animation*
 - Disney built 7-plane camera in 1937
 - Planes at varying distances apart, can slide in plane for panning
 - Scenes painted in oils on the glass
 - Used in *Snow White* and later classics
 - 2 neighboring planes moving in opposite directions can give impression of rotation
Principles of Traditional Animation*

- **Squash and stretch**: shape distortion
- **Timing**: can affect sense of object and personality
- **Anticipation**: sets up expectation of coming action
- **Staging**: presenting an idea so it is unmistakably clear
- **Follow through and overlapping action**: make end of an action very clear as well as its relation to next action.
- **Straight-ahead action and pose-to-pose action**: choices
- **Slow in and out**: varying inbetween spacing changes effect
- **Arcs**: visual path for action needs to be natural
- **Exaggeration**: helps to clarify action, make it more “real”
- **Secondary action**: one action leads to another
- **Appeal**: hardest part

Lasseter, J., Principles of traditional animation applied to 3D computer animation, Siggraph ‘87.
Squash and Stretch

- Rigid shape during motion isn’t very “realistic”
- Better to exaggerate near discontinuities

Squash and Stretch 2

- Squash and stretch can also make fast action more realistic and less jerky or strobing
 - Top image: slow movement; overlap makes animation smooth
 - Middle image: very fast motion; can get strobing or jerky motion
 - Bottom image: stretching object so frame positions overlap yields same speed, but smoother
Timing Matters a Lot

- Speed of action can make huge difference in perceived meaning of the action
 - Audience should
 - anticipate an action
 - understand the action and what it means
 - see and understand the reaction to the action
 - Too much time for any or all of these, audience loses attention
 - Too little time, audience misses the action or its effects
- Timing defines the weight of an object
 - heavy objects accelerate and decelerate more slowly

Timing and Emotion

- Emotional state of a character can be inferred from timing as much as anything.
- Consider two key frames of a head: one looking over left shoulder, the other over the right
 - 0 inbetweens: head hit by tremendous force
 - 1 inbetween: head hit by brick or rolling pin
 - 2 inbetweens: character has a nervous tic or muscle spasm
 - 3 inbetweens: character is dodging a brick
 - 4 inbetweens: character is giving a brisk order: “Move it!”
 - 5 inbetweens: character is more friendly: “Come on over”
 - 6 inbetweens: character sees a beautiful woman or a hunk
 - 7 inbetweens: character tries to get a better look at something
 - 8 inbetweens: character is searching for something
 - 9 inbetweens: character is deep in thought
Actions

• Every action should have 3 parts: anticipation, staging, reaction
• Anticipation
 – include something to be sure audience is looking at the right character for the action that is to occur
• Staging
 – present the action so its goal is completely clear
 – only one idea at a time
• Follow through and overlapping action
 – the action should complete with any appropriate follow through and lead to the next action with reasonable overlap

Slow In and Out

• Uniform spacing isn’t realistic
 – vary inbetween timing and
 – use squash and stretch

FIGURE 9. Timing chart for ball bounce.
Traditional Computer Animation

- Computer animation software
 - provides tools for interactive specification and previewing of 2D, 2½D and 3D animation
 - 3D tools are now very powerful
- Originally were 3 major approaches
 - Image-based key frame animation
 - Parametric key frame animation
 - Procedural animation

Image-based Keyframe Animation

- Identify corresponding points in adjacent key frames
- Linearly interpolate the intervening positions.
- Easy to do, once you have correspondences
- Linear interpolation is not very realistic; cubic splines often used
- Can get more shape changes by introducing new points
Parametric Keyframe Animation

• Can also interpolate parameters of the model rather than just location information
• Parameters could represent almost anything:
 – position: x(t), y(t), z(t)
 – size: radius(t)
 – visualization parameters: color, texture mapping, etc.
• Each key frame needs to identify the parametric value(s) associated with it, so can interpolate between them
• Generally, some form of spline interpolation is preferred, often cubic

Procedural Animation

• The motion/shape/characteristics of an object can be controlled by a procedure (or procedures).
• A motion procedure is invoked once per frame and it determines the new parameters for the object for that frame:
 – can use physically correct equations of motion that take weight, gravity, mass, speed, etc. into account
 – can use physically impossible shape transformations (morphing)
 – can use anything you can program!
Motion Paths

• An object may need to follow a specified path in space
 – perhaps, pre-defined
 – perhaps, generated dynamically based on conditions
• Speed
 – could be constant
 – determined procedurally based on the path (is it going uphill or downhill? is it rough terrain or smooth terrain?)
 – based on other factors such as visibility, other objects, etc.
• Is the path on a surface or in space?
• Does the path imply the object’s orientation?

Motion Path Example

• Consider a simple motion path defined by a sequence of positions in space:
 \[P_i = (x_i, y_i, z_i) \]
• Draw a (spline?) curve through the points
• Move an object’s position along the curve at some speed which translates to distance per frame
• Can use tangent to the curve to rotate the object so it is heading along the curve
• Relatively easy to create a parametric quadratic or cubic spline through these points
 – and have the object follow the curve
Camera Animation

- Often desirable to move a camera through a scene
 - Specify a motion path for the eye point
 - Specify how other parameters (such as those in `gluLookAt`) should change with respect to the eye
 - could have the eye to lookAt vector be tangent to the curve
 - could have the lookAt point be fixed location

Articulated animation

- Consider a hierarchically defined complex object whose parts can move separately (humanoid)
 - Entire body can be moving
 - Parts can be moving as well
 - some parts may be determining the body motion (legs)
 - some parts may move independent of the body motion, but are still constrained characteristics of the model
- How is it done at the low level?
 - Based on a scene graph hierarchy
 - Some nodes in hierarchy are joints with degrees of freedom represented by joint angles
 - Joint transformations cannot violate constraints on joint angles
Collision detection

- Collision detection is a big deal in real-time
 - brute force is n^2 problem
 - need to use hierarchical bounding box and spatial subdivision techniques
 - special care needs to be taken for small fast objects
 - They could pass over another object in one frame
 - Need a test to make sure that the path of an object does not intersect another object in the frame

Kinematic Motion Specification

- Kinematics, or forward kinematics
 - calculate new position of each (part of) an object based on its current position, motion specification and constraints
- Inverse kinematics
 - given current position of articulated body, and desired “final” position (like a key frame) and the constraints, calculate intermediate positions
 - example: animator interactively positions the hand at desired next position, software calculates the required joint angles for the hand, the forearm, the upper arm, the shoulder, etc.
 - requires nonlinear programming
Dynamics

- Kinematics and inverse kinematics do not take physics into account (accept via joint constraints)
 - mass, gravity, inertia, friction, etc.
- More realistic animation is achieved by creating software to simulate these physical laws

Advanced Topics

- Animation languages and systems
- Motion capture animation
- Autonomous behavior
 - avoidance/attraction heuristics
 - swarming
 - other group behavior
- Event-driven procedural animation
- Real-time animation
 - virtual worlds
- Facial animation
- Morphing