Chromatic Color Terms

• *Hue*: identifies what we think of as “color”
 – Also, called the *dominant wavelength*
• *Saturation*: how far color is from a gray of equal intensity
 – Also, *excitation purity*
• *Intensity* terms
 Lightness: perceived intensity of reflecting objects
 Brightness: perceived intensity of self-luminous objects
 Luminance: physically measured intensity of reflecting and self-luminous objects
Munsell Color System

- Munsell color-ordering system — standard color samples viewed under standard lighting conditions, ordered in order to have equal perceived distances from neighbors in color space.
 - Created in early 1900’s
 - Books still published with 100’s of pages of sample colors

Pantone Color Matching System

- Pantone matching system used in printing and graphic design
 - Standardizes color reproduction
 - 1113 standard colors defined by specified amounts 13 base colors
 - Heavily used in printing industry based primarily on CMYK model: Cyan, Magenta, Yellow, Black
 - Most Pantone colors cannot be generated from CMYK
 - Just recently (2007?) came up with mappings to RGB and LUV for mapping colors to monitors.
Artist-Oriented System

- *tints* — add white to “pure” fully saturated colors
- *shade* — add black to “pure” fully saturated colors
- *tones* — add both black and white

Physics-based Color

- *colorimetry* — physical specification via wavelength.
 - *dominant wavelength* (hue) is still a perceived phenomenon.
 - *excitation purity* is saturation,
 - *luminance* is amount of intensity
- *spectral energy distribution*, (a.k.a. *spectral density*)
 - most light contains a wide range of wavelengths of different power levels
 - total power is area under the curve
Spectral Density for Pure Colors

- “pure” colored light (laser light) only emits a single very narrow range of wavelengths

![Spectral Density Diagram]

Vision-based Color

- How do we perceive a particular spectrum?
- Human eye appears to have 3 different cones that respond based on wavelength. These are called S (short), M (middle), and L (long), based on the relative wavelengths they respond to
 - S is most sensitive to light at 440 nm (nearly blue),
 - M peaks at 545nm (we call it green, but green is 510nm)
 - L peaks at 580nm (which is yellow, but we call it red)
- Leads to *tri-stimulus* model for color perception
Human Color Perception

- Our visual system can’t possibly distinguish all spectra
 - it simplifies by triple integration: one for each kind of cone
 - lots of different spectra trigger identical perception
 - called *metamers*
 - some *metamers* have very different distributions
- The *tristimulus* nature of our visual hardware can be modeled in many different 3-parameter ways
 - many different sets of 3 different colors work
 - can collapse “color” into a single *hue*, or *dominant wavelength* and add 2 other parameters to model other aspects of the color

Online demos at http://www.cs.brown.edu/exploratories

Dominant Wavelength

- A good model for our visual system is based on the idea that we eventually integrate the entire color spectrum down to the perception of a single *dominant wavelength* plus a *purity* measure and a total power (luminance). This is a simple spectrum

Interpretation:
- peak is perceived “hue”
- narrower B implies narrower freq range
- horizontal line is “white” light
- the less white, the *purper* the color (the higher the *saturation*)
- the more total energy (area under curve), the brighter the light (more *luminance*).
Luminance and Saturation

• Hill/Kelley definitions:
 – luminance, L, is total power of the light, or the area under the spectral curve
 – saturation (purity) is % of luminance that is in the dominant component
• Formulas derived from definitions:
 – $L = (700-400)A + (D-A)B$
 – $P = DB/L$

Color Matching

• Perceptually based color systems are all based on color matching experiments
 – Given a sample color generated by a spectral density, $S(\lambda)$, match the color with proportions of 3 “primary” colors with spectral densities: $A(\lambda)$, $B(\lambda)$, $C(\lambda)$
 – That is, find a, b, c, such that (a user says that): $S(\lambda) = T(\lambda)$ where $T(\lambda) = aA(\lambda) + bB(\lambda) + cC(\lambda)$
 – Even though S and T can have very different spectral densities, experiments show that if $S(\lambda) = T(\lambda)$:
 • $S(\lambda) + N(\lambda) = T(\lambda) + N(\lambda)$
 • $aS(\lambda) = aT(\lambda)$ for any scalar $a > 0$
• Hence, we can define a vector algebra for color space
Color Space Algebra

• Any color, C, can be defined as a linear combination of 3 primary colors, such as R, G, B:
 \[C = rR + gG + bB \]

• **Any** 3 colors can be primaries as long as none can be expressed as combination of the other 2.

• How good are R, G, and B?
 – Perceptual experiments tested how people could match “all” pure visible colors with combinations of pure R, G, and B.
 – Let \(r(\lambda), g(\lambda), b(\lambda) \) be the spectral densities of pure red, green and blue and let \(\text{mono}(\lambda) \) be an arbitrary pure color
 – Goal is to find R, G, B such that:
 \[\text{mono}(\lambda) = Rr(\lambda) + Gg(\lambda) + Bb(\lambda) \]

RGB Color Matching

• Results:
 – Some colors need minus red!!! How do we do that?
 – Consider a color C that needs negative red
 \[C = -0.1R + 0.2G + 0.05B \]
 – Can write this as
 \[C + 0.1R = 0.2G + 0.05B \]
 – So, if subject can make this match, we know the right representation for C in RGB
Luminous Efficiency Function

- Relative sensitivity of the eye to different light:
 - keep luminance constant
 - vary the dominant wavelength
- Perception of blue cone is much lower than the others (.02 vs .2).

Color Gamuts

- A color *gamut* defines a set of color ranges that can be perceived by an organism or generated by a particular rendering technology
 - different species can have dramatically different color perception gamuts
 - different individuals in a species can have different gamuts
 - different display devices can have dramatically different gamuts
 - different examples of the same technology can have different gamuts
- How well does display technology match human vision abilities?
Color Gamut Matching

- Given red, green and blue colors, can we mix quantities (additively) to get all visible colors?
 - No. That is shown by the RGB color matching
- There are some visible colors that can only be represented by combinations of red, green, and blue that have **negative** values for red
 - of course, you can’t take away light that isn’t there!

CIE XYZ Color Model

- 1931 Commission Internationale de l’Eclairage (CIE) adopted the XYZ color model.
 - X,Y,Z are chosen so that all visible colors can be expressed as **positive** factors of X,Y, and Z.
 - Color matching functions are identified as x_λ, y_λ, z_λ
 - Y’s color matching function exactly matches the luminous-efficiency function as perceived by a **standard observer** intended to represent the perception of an average human.
 - 1931 CIE, so it extracts non-color luminance.
Color Models

- Since color is a 3d space, many color models can be defined by a coordinate frame transformation (a new set of basis vectors)
- RGB: most common for monitors
- XYZ: traditional foundation
- CMY: Cyan, Magenta, Yellow
- CMYK: in practice a *subtractive* process
- YIQ: television transmission
- HSV: Hue, Saturation, Value
- HLS: Hue, Lightness, Saturation
- CIE Lab and CIE Luv: attempts at a perceptually uniform color model

RGB Color Model

- RGB is an *additive* color model
 - components, r,g,b are added together to get color
- Given a specified “white” point, can create a matrix transform from XYZ to rgb:

\[
[r \ g \ b] = [x \ y \ z] \begin{bmatrix} 2.739 & -1.110 & 0.138 \\ -1.145 & 2.029 & -0.333 \\ -0.424 & 0.033 & 1.105 \end{bmatrix}
\]
CMY Color Model

- CMY is a subtractive color model.
 - Subtract values from white
 - Acts like a filter
 - Cyan filter removes red
 - Magenta filter removes green
 - Yellow filter removes blue
 - \((r,g,b)=(1,1,1) - (c,m,y)\)
- CMYK (CMY + blacK)
 - principal model for high-quality color offset printing
 - inks are filters, light passes through, bounces back off white paper

HSV Color Model

- Hue-Saturation-Value model (Smith, 1978)
 - more perceptually oriented, motivated by artists’ tint/shade/tone model
 - Hue: based on color wheel; measured as circular angle from red (0) to yellow to green (120) to cyan to blue(240) to magenta
 - Saturation: radially from white (0) at center to fully saturated (1) at outer edge.
 - Value (or Brightness): black (0) at point of cone to white (1) at center of circle
HLS Color Model

- Hue, Lightness, Saturation (HLS or HSL)
 - A variation on HSV that uses a double-ended cone
 - Hue, Saturation same as HSV
 - Lightness goes from Black (0) at the bottom point through \(\frac{1}{2} \) at the hue circle center to White (1) at the upper point

YIQ Color Model

- Model develop in 1920’s to recode RGB to reduce for signal transmission efficiency and to remain compatible with B/W TV signals
 - Y is luminance; IQ encode chromaticity
 - I essentially covers orange/blue range, Q purple/green
- 66% of the signal used to encode Y; visual system most sensitive to intensity!
- 24% signal used for I
- 10% used for Q
- Being phased out as a TV signal
Other Perceptually Based Models

• *Ideal* perceptually-based color model
 – Unit change in any axis anywhere results in a “just noticeable difference” (JND)
• CIELAB (CIE L*a*b*)
 – L* is lightness 0 (black) to 100 (diffuse white)
 – a*: magenta/red (-128±) to green (128±)
 – b*: blue/cyan (-128±) to yellow (128±)
• CIELUV (CIE L*u*v*) is a variant of CIELAB

Color usage guidelines (van Dam)

• **Do**
 – Use families of color to code related items
 – Use a progression of values to code an ordered set
 – Color code for accepted use in specific industry: red means often means stop, but in power industry means go (electricity flowing), In finance means money being lost…
• **Don’t**
 – Use red and green for important color coding. Many people (10% men) red-green colorblind.
 – Use similar shades of green and blue for key differentiation. Often confused by viewers
 – Use adjacent small patches of different colors – they will just blend into each other
 – Use rainbow/spectral scale for ordinal coding: we have no sense of whether green is more or less than red…