Regular Languages and Regular Sets

CS712
Dept. of Computer Science
Univ. of New Hampshire
A language is a set of strings.

Individual elements that make up a string are chosen from a finite set called the alphabet.

e.g. alphabet \(A = \{a, b\} \)

\[L_1 = \{a, b\} \]

\[L_2 = \{a^n b^n, \ n \geq 0\} \]
If A is an alphabet, then A^* is the set of all strings over A.

Any language over A is a subset of A^*.

Notes:

- the empty string is a string, denoted as λ
- $\emptyset \subset A^*$ is a language
- the empty set is a language, denoted as \emptyset
Concatenation of strings:

\[(aabb)(bb) = (aabb) \]

Product of languages \(L \) and \(M \):

\[(L)(M) = \{ s(t) \mid s \in L \text{ and } t \in M \} \]

\(L^0 = \emptyset \)

\(L^n = \{ s_1s_2...s_n \mid s_k \in L \text{ for } 1 \leq k \leq n \} \)

\(L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^n \cup \ldots \)

\(L \rightarrow \) the closure of \(L \)
note: $\mathcal{E}\mathcal{L}\mathcal{E}^* = \mathcal{E}\mathcal{L}\mathcal{E}$

$\phi^* = \phi \cup \phi \cup \phi \cup \ldots$

$\mathcal{E}\mathcal{L}\mathcal{E} \cup \phi \cup \phi \cup \phi \cup \ldots$

$\mathcal{E}\mathcal{L}\mathcal{E}$

$(\mathcal{E}\mathcal{L}\mathcal{E})(\mathcal{L}) = \mathcal{L}$ $(\mathcal{L})(\mathcal{E}\mathcal{L}\mathcal{E}) = \mathcal{L}$

$(\phi)(\mathcal{L}) = \phi$ $(\mathcal{L})(\phi) = \phi$

$\phi \cup \mathcal{L} = \mathcal{L}$
The recognition problem: is string s in language L?
example

\[A = 39.63 \]

\[(\langle 9 \rangle 1 (\langle 9 \rangle \rangle^*) = \langle 1, 9, 6, 9, 69, 69, 69, 69, 69, 69, 69, ... \rangle \]
A is the alphabet.

Regular Language:
- \(\emptyset \), \(\{ \epsilon \} \), \(\{ \alpha \} \quad \forall \alpha \in A \)

Regular Set:
- \(\emptyset, \lambda, \alpha \quad \forall \alpha \in A \)

Base Case:
- If \(L \) and \(M \) are regular languages then the following are regular languages:
 - i) \(L \cup M \)
 - ii) \((L)(M) \)
 - iii) \(L^* \)

Recursion:
- If \(R \) and \(S \) are regular sets then the following are regular sets:
 - i) \((R) \)
 - ii) \(R \cdot S \)
 - iii) \(RS \)
 - iv) \(R^* \)

i.e.: a regular set is notation for describing a regular language.