More About Regular Languages

CS 712
Dept. of Computer Science
Univ. of New Hampshire
Pumping Lemma for Regular Languages

Let L be a regular language accepted by a DFA M with K states. Let z be any string in L with $|z| \leq K$. Then z can be rewritten uvw with $|uv| \leq K$, $|v| \geq 1$, and $uv^iw \in L$ for all $i \geq 0$.

Proof

Since $|z| \leq K$, some state in M must be visited twice while accepting z. So there must be a "cycle" in M. This cycle could be traversed an arbitrary number of times.

\[\Rightarrow u \to o \to w \to o \]

i.e. regular expression labels extraneous nodes eliminated
Using the pumping lemma:

\[L = \{ a^n b^n \mid n \geq 0 \} \]

Is \(L \) regular?

Assume it is and that it is recognized by a DFA with \(k \) states.

Consider \(s = a^k b^k \) which is in \(L \).

By pumping lemma: \(s = a^k b^k = uvw \), where \(|uv| \leq k \), \(|v| > 0 \). Therefore \(v \) must consist of only \(a \)'s. Call \(lv \) \(v \). Reproduce \(s \) once to produce \(s' = a^{k+\ell} b^k \). But \(s' \) is not in \(L \). Contradiction. So \(L \) must not be regular.

Key: you don't get to choose \(u, v, w \). Your proof must work for all possible \(u, v, w \).
Properties of regular languages:

If \(L_1 \) and \(L_2 \) are regular languages:

1. \(L_1 \cup L_2 \) is regular
2. \(L_1 \cdot L_2 \) is regular
3. \(L_1^* \) is regular

\(L_1^* \) is regular

Take the DFA that recognizes \(L_1 \) and construct a new DFA from it by making all its final states to be non-final and all its non-final states to be final.
5. $L_1 \cap L_2$ is regular

Use DeMorgan's Law:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$
Using intersection:

L is the language over $\{a, b\}$ consisting of all strings with an equal number of a's and b's.

Is L regular?

Consider M, the language described by the regular expression $a^* b^*$

$L \cap M = \{a^n b^n \mid n \geq 0\}$ which we know is not regular. Therefore L cannot be regular.