
CS 619 Introduction to OO Design
and Development

Design by Contract

Fall 2013

Design by contract
What is meant by "design by contract" or
"programming by contract"?

contract: An agreement between classes/objects and
their clients about how they will be used.

!  used to assure that objects always have valid state
!  non-software contracts: bank terms, product

warning labels

!  To ensure every object is valid, show that:
!  constructors create only valid objects
!  all mutators preserve validity of the object

!  How to enforce a contract?

�

Example contract issue

"  A potential problem situation: queue class with
remove or dequeue method
–  client may try to remove from an empty queue

"  What are some options for how to handle this?

!  declare it as an error (an exception)
!  tolerate the error (return null)
!  print an error message inside the method

!  bad because it should leave this up to the caller
!  repair the error in some way (retry, etc.)

!  bad because it should leave this up to the caller

The decision we make here becomes part of the contract of the queue

class!
�

"  Proposed by Bertrand Meyer for Eiffel
"  Organize communication between software elements
 by organizing mutual obligations and benefits
"  Use a metaphor of

–  clients: receive services from suppliers
–  suppliers: supply services

Client Supplier

Obligation Satisfy supplier
requirement

Guarantee service

Benefit Get service Impose
requirements

Design by Contract!

�

Example:

Client UPS
Obligation Provide package of

no more than 5kg,
each dimension less
than 2 meters. Pay
postage

Deliver package to
recipient in 24 hours
or less

Benefit Get package
delivered in 24
hours or less

No need to deal
with deliveries that
are too big, too
heavy or unpaid

Client Supplier
Obligation Precondition Post-condition
Benefit Post-condition Precondition

�

Design by Contract == Don�t accept
anybody else�s garbage!

�

Pre-condition
"  What happens when a precondition is not

met?

precondition: Something that must be true before object
promises to do its work.

!  Example: A hash map class has a put(key, value) and a get(key)
method.
!  A precondition of the get method is that the key was not modified

since the time you put it into the hash map.
!  If precondition is violated, object may choose any action it likes

!  If key was modified, the hash map may state that the key/value is not
found, even though it is in the map.

!  Document preconditions in Javadoc with tag @pre.condition

�

Post-conditions
"  Whose fault is it when a postcondition is not

met, and what should be done?

!  postcondition: Something that must be true upon
completion of the object's work.

!  Example: At end of sort(int[]), the array is in sorted order.
!  Check them with statements at end of methods, if needed.
!  A postcondition being violated is object's (your) own fault.
!  Assert the postcondition, so it crashes if not met.

!  Don't throw an exception -- it's not the client's fault!

!  Document postconditions in Javadoc with tag @post.condition!

	

Class invariants
"  How is it enforced?

class invariant: A logical condition that always holds
for any object of a class.

!  Example: Our account's balance should never be negative.
!  Similar to loop invariants, which are statements that must

be true on every iteration of a loop.
!  Can be tested at start or end of every method.
!  Assert your invariants, so it crashes if they are not met
 don't throw an exception -- it's not the client's fault!

!  Document class invariants in the Javadoc comment header
at the top of the class. (no special javaDoc tag)

Programming Language Support

"  Eiffel : Design as such, but limited usage
"  C++:

–  assert() does not throw an exception
–  Documentation extraction difficult

"  Java
–  ASSERT is standard since Java 1.4
–  JavaDoc annotation

��

6. Design by Contract

So what: isn’t this pure documentation?
Who will

(a) Register these contracts for later reference (the book of laws)?
(b) Verify that the parties satisfy their contracts (the police)?

Answer
(a) The source code
(b) The running system
Quiz: What happens when a pre-condition is NOT satisfied ?

Design by Contract in UML

9

pop (): char

push (char)

isEmpty(): boolean

top(): char

Stack

<<invariant>>

(isEmpty (this)) or

(! isEmpty (this))

<<precondition>>

(! isEmpty (this))

<<postcondition>>

(! isEmpty (this)) and

(top (this) = char)��
6. Design by Contract

Example: Stack Specification

8

Implementors of stack promise
that invariant will be true after all
methods return (incl.
constructors)

Clients of stack promise
precondition will be true before
calling pop()

Implementors of stack promise
postcondition will be true after
push() returns

Left as an exercise

class stack
 invariant: (isEmpty (this)) or
 (! isEmpty (this))

 public char pop ()
 require: ! isEmpty (this)
 ensure: true

 public void push (char)
 require: true
 ensure: (! isEmpty (this))
 and (top (this) = char)

 public void top (char) : char
 require: ...
 ensure: ...
 public void isEmpty () : boolean
 require: ...
 ensure: ...

6. Design by Contract

So what: isn’t this pure documentation?
Who will

(a) Register these contracts for later reference (the book of laws)?
(b) Verify that the parties satisfy their contracts (the police)?

Answer
(a) The source code
(b) The running system
Quiz: What happens when a pre-condition is NOT satisfied ?

Design by Contract in UML

9

pop (): char

push (char)

isEmpty(): boolean

top(): char

Stack

<<invariant>>

(isEmpty (this)) or

(! isEmpty (this))

<<precondition>>

(! isEmpty (this))

<<postcondition>>

(! isEmpty (this)) and

(top (this) = char)

6. Design by Contract

Programming Language Support

15

Eiffel
• Eiffel is designed as such ... but only used in limited cases

C++
• assert() in C++ assert.h does not throw an exception
• It’s possible to mimic assertions (incl. compilation option) in C++

+ (see “Another Mediocre Assertion Mechanism for C++”
by Pedro Guerreiro in TOOLS2008)

• Documentation extraction is more difficult but feasible

Java
• ASSERT is standard since Java 1.4

... however limited “design by contract” only; acknowledge by Java designers
+ see http://java.sun.com/j2se/1.4/docs/guide/lang/assert.html

• Documentation extraction using JavaDoc annotations

Smalltalk (and other languages)
• Possible to mimic; compilation option requires language idioms
• Documentation extraction is possible (style Javadoc)

��

6. Design by Contract

Assertions

11

• assertion = any boolean expression we expect to be true at some point.

Assertions..
• Help in writing correct software

➡ formalizing invariants, and pre- and post-conditions
• Aid in maintenance of documentation

➡ specifying contracts IN THE SOURCE CODE
➡ tools to extract interfaces and contracts from source code

• Serve as test coverage criterion
➡ Generate test cases that falsify assertions at run-time

• Should be configured at compile-time
➡ to avoid performance penalties with trusted parties
➡ What happens if the contract is not satisfied?

Quiz: What happens when a pre-condition is NOT satisfied ?
• = What should an object do if an assertion does not hold?

➡ Throw an exception.

��

6. Design by Contract

public char pop() throws AssertionException {
 my_assert(!this.isEmpty());
 return _store[_size--];
 my_assert(invariant());
 my_assert(true); //empty postcondition
}

private boolean invariant() {
 return (_size >= 0) && (_size <= _capacity);}

private void my_assert(boolean assertion)
 throws AssertionException {
 if (!assertion) {
 throw new AssertionException
 ("Assertion failed");}
}

Assertions in Source Code

12

Should be turned on/off via
compilation option

��

Effiel Example: Stack!

��

put (x: ELEMENT; key: STRING) is
 -- Insert x so that it will be retrievable through key.
 require
 count <= capacity
 not key.empty
 do
 ... Some insertion algorithm ...
 ensure
 has (x)
 item (key) = x
 count = old count + 1
 end

Effiel Example: Map insert()!

Assertion Violations

The assertions can be monitored dynamically at run-time
to debug the software
–  A precondition violation would indicate a bug at the

caller
–  A postcondition violation would indicate a bug at the

callee

 Our goal is to prevent assertion violations from happening
–  The pre and postconditions are not supposed to fail if

the software is correct (so they differ from exceptions
and exception handling)

��

Assertions in Java
"  Java assert statements

–  assert <condition> ;
–  assert <condition> : <message>;

"  will raise an AssertionError if "
 <condition> is false.
"  enabling assertions

–  when compiling: javac -source 1.5
ClassName.java

–  when running: java -ea ClassName

"  In C/C++, assert is a compile-time thing. In Java, can
selectively en/disable assertions at runtime.

 ��

Debug and ship builds
Most companies have at least two versions of their code:
"  debug build : has special code only for the developer

–  debug print statements or graphical output
–  assertions for pre/postconditions, invariants

"  ship build : meant to be used by customers
–  Users expect reasonable performance and reliability.
–  The app should not spend a lot of time checking for

pre/post or invariants (in ship build).
"  The same code is used to make debug and ship build.

–  special flags (e.g. DEBUG_MODE) turn on and off
debug code

–  in Java, VM can be run with flags to turn on/off debug
also

��

Checking Pre-conditions!

Assert pre-conditions to inform clients when they
violate the contract. "

"
"
"
"
!
Always check pre-conditions, raising exceptions if they
fail.!

public Object top() {!
!assert(!this.isEmpty()); !// pre-condition!
!return top.item;!

}!

��

Checking Class Invariants!
Every class has its own invariant:!

protected boolean invariant() {!
!return (size >= 0) &&!
! !((size == 0 && this.top == null)!
! !|| (size > 0 && this.top != null));!

}!

��

Checking Post-conditions!
Assert post-conditions and invariants to inform yourself

when you violate the contract."
"
"

"
Check them whenever the implementation is non-trivial."

!public void push(Object item) {!
! !top = new Cell(item, top);!
! !size++;!
! !assert !this.isEmpty(); ! ! !!// post-condition!
! !assert this.top() == item; ! !!// post-condition!
! !assert invariant();! ! ! !!!
!}!

�	

Example

Consider int array binary search code:

/** Returns index of value n in array a.
 * @pre.condition The array a is in sorted order.
 */
public static void binarySearch(int[] a, int n) {
 assert isSorted(a) : "Array must be sorted";
 ...
}

private static boolean isSorted(int[] a) {
 for (int i = 0; i < a.length - 1; i++)
 if (a[i] > a[i+1])
 return false;
 return true;
}

�

Running Javadoc with tags
"  javadoc -source 1.5

 -d output_folder_name
 -tag pre.condition:cm:"Precondition:"
 -tag post.condition:cm:"Postcondition:"
 file_name.java

"  Javadoc output will
show pre, postconditions

��

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Pre-conditions

"  If the precondition of the
ClassB.someMethod is
stronger than the
precondition of the
ClassA.someMethod, then
this is not fair to the Client

"  The code for ClassB may
have been written after
Client was written, so
Client has no way of
knowing its contractual
requirements for ClassB

��

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Post-conditions
"  If the postcondition of the
ClassB.someMethod is
weaker than the
postcondition of the
ClassA.someMethod, then
this is not fair to the Client

"  Since Client may not have
known about ClassB, it
could have relied on the
stronger guarantees
provided by the
ClassA.someMethod

��

Inheritance

"  Liskov Substitution Principle
–  Wherever an instance of a class is expected, an

instance of one of its subclasses can be substituted.
"  Therefore,

–  A subclass may keep or weaken the preconditions of
an overridden method

–  A subclass may keep or strengthen the postconditions
of an overridden method

–  A subclass may keep or strengthen the invariants of a
subclass

��

ClassA

ClassB

Client

someMethod()

someMethod()

In ClassA:
invariant
 classInvariant
someMethod() is
require
 Precondition
do
 Procedure body
ensure
 Postcondition
end

In ClassB which is derived from ClassA:
invariant
 newClassInvariant
someMethod() is
require
 newPrecondition
do
 Procedure body
ensure
 newPostcondition
end

The precondition of ClassB.aMethod is defined as:
 newPrecondition or Precondition

The postcondition of ClassB.aMethod is defined as:
 newPostcondition and Postcondition

The invariant of ClassB is
 classInvariant and newClassInvariant ��

