CS 619 Introduction to OO Design
and Development

Design by Contract

Fall 2013
D

Example contract issue

e A potential problem situation: queue class with
remove or dequeue method
- client may try to remove from an empty queue

e \What are some options for how to handle this?

= declare it as an error (an exception)

= tolerate the error (return null)

= print an error message inside the method
bad because it should leave this up to the caller

= repair the error in some way (retry, etc.)
bad because it should leave this up to the caller

The decision we make here becomes part of the contract of the queue
class!

Design by contract

What is meant by "design by contract" or
"programming by contract"?

contract: An agreement between classes/objects and
their clients about how they will be used.

= used to assure that objects always have valid state

= non-software contracts: bank terms, product
warning labels

To ensure every object is valid, show that:
= constructors create only valid objects
= all mutators preserve validity of the object

How to enforce a contract?

Design by Contract

e Proposed by Bertrand Meyer for Eiffel

e Organize communication between software elements
by organizing mutual obligations and benefits

e Use a metaphor of
- clients: receive services from suppliers
- suppliers: supply services

Obligation Satisfy supplier Guarantee service
requirement

Benefit Get service Impose
requirements

Example Design by Contract == Don’ t accept
’
anybody else s garbage!
Obligation Provide package of Deliver package to 1:request p’;czzz:tgl’("’
no more than 5kg, recipient in 24 hours —p Provider _ q
each dimension less or less Client —state __.- -
than 2 meters. Pay 2:response +service-. |
postage T postcondition:
Benefit Get package No need to deal service guaranteed!
delivered in 24 with deliveries that
hours or less are too big, too
heavy or unpaid 1:bad request precondition:
—p Provider request ok
Client —state _-r"
. : +serviceZ _
Obligation Precondition Post-condition 2:exception | ———=== —
Benefit Post-condition Precondition s e’r,\Zzs:;c;; ;Z;zgé dl
S Post-conditions
Pre-condition

e \What happens when a precondition is not

met?

precondition: Something that must be true before object

promises to do its work.

= Example: A hash map class has a put(key, value) and a get(key)

method.

= A precondition of the get method is that the key was not modified

since the time you put it into the hash map.

e \Whose fault is it when a postcondition is not
met, and what should be done?

postcondition: Something that must be true upon
completion of the object's work.
= Example: At end of sort(int[]), the array is in sorted order.
= Check them with statements at end of methods, if needed.
= A postcondition being violated is object's (your) own fault.
= Assert the postcondition, so it crashes if not met.

= If precondition is violated, object may choose any action it likes = Don't throw an exception -- it's not the client's fault!

= If key was modified, the hash map may state that the key/value is not
found, even though it is in the map.

= Document preconditions in Javadoc with tag @pre.condition

= Document postconditions in Javadoc with tag @post.condition

Class invariants]
Programming Language Support
e How is it enforced?
e Eiffel : Design as such, but limited usage
class invariant: A logical condition that always holds o C++:
for any object of a class. :
= Example: Our account's balance should never be negative. - assert() does not throw an exception

= Similar to loop invariants, which are statements that must - Documentation extraction difficult
be true on every iteration of a loop. e Java

= Can be tested at start or end of every method. . .
)) : y - ASSERT is standard since Java 1.4
= Assert your invariants, so it crashes if they are not met)
- JavaDoc annotation

don't throw an exception -- it's not the client's fault!

= Document class invariants in the Javadoc comment header
at the top of the class. (no special javaDoc tag)

Effiel Example: Stack
Effiel Example: Map insert()

class stack .
> - .) Implementors of stack promise
tnvariant: (1SEmpt¥ (this)) or / that invariant will be true after all
(! isEmpty (this)) methods return (incl.
constructors)
] put (x: ELEMENT,; key: STRING) is
P“blizqz}i‘iz 'P‘,’Pi;E’mpty (this) ¥~ clients of stack promise -- Insert x so that it will be retrievable through key.
ensure: true precondition will be true before require .
calling pop() count <= capacity
not key.empty
; : do
public void push (char) X i i
require: true ¢ Implementors of stack promise ... Some insertion algorithm ...
ensure: (! isEmpty (this)) postcondition will be true after ensure
and (top (this) = char) push() returns has (X)

item (key) = x

Stack " count = old count + 1
pop (): char -------------- <<Precond|t|or_1>> end
--{push (char) (! isEmpty (this))

isEmpty(): booléan--|_

top(): char "1 <<postcondition
(! isEmpty (this)) and
(top (this) = char)

<<invariant>>
(isEmpty (this)) or
(! isEmpty (this))

Assertion Violations

The assertions can be monitored dynamically at run-time
to debug the software

- A precondition violation would indicate a bug at the
caller

- A postcondition violation would indicate a bug at the
callee

Our goal is to prevent assertion violations from happening

- The pre and postconditions are not supposed to fail if

the software is correct (so they differ from exceptions
and exception handling)

Debug and ship builds

Most companies have at least two versions of their code:
e debug build : has special code only for the developer
- debug print statements or graphical output
- assertions for pre/postconditions, invariants

e ship build : meant to be used by customers
- Users expect reasonable performance and reliability.

- The app should not spend a lot of time checking for
pre/post or invariants (in ship build).

e The same code is used to make debug and ship build.

- special flags (e.g. DEBUG_MODE) turn on and off
debug code

- in Java, VM can be run with flags to turn on/off debug
also

Assertions in Java

e Java assert statements
- assert <condition> ;
- assert <condition> : <message>;

e will raise an AssertionError if
<condition> is false.

e enabling assertions

- when compiling: javac -source 1.5
ClassName.java

- whenrunning: java -ea ClassName

e In C/C++, assert is a compile-time thing. In Java, can
selectively en/disable assertions at runtime.

Checking Pre-conditions

Assert pre-conditions to inform clients when they
violate the contract.

public Object top() {

assert(!this.isEmpty()); // pre-condition
return top.item;

}

Always check pre-conditions, raising exceptions if they
fail.

Checking Class Invariants

Every class has its own invariant:

protected boolean invariant() {
return (size >= 0) &&
((size == 0 && this.top == null)
|| (size > 0 && this.top != null));

Example

Consider int array binary search code:

/** Returns index of value n in array a.

* (@pre.condition The array a is in sorted order.

*/

public static void binarySearch(int[] a, int n)
assert isSorted(a) : "Array must be sorted";

private static boolean isSorted(int[] a) {
for (int i = 0; 1 < a.length - 1; i++)
if (a[i] > ali+1])
return false;
return true;

Checking Post-conditions

Assert post-conditions and invariants to inform yourself

when you violate the contract.

public void push(Object item) {
top = new Cell(item, top);
size++;
assert !this.isEmpty();

assert invariant();

// post-condition
assert this.top() == item; // post-condition

Check them whenever the implementation is non-trivial.

Running Javadoc with tags

® javadoc -source 1.5
-d output folder name
-tag pre.condition:cm:"Precondition:"
-tag post.condition:cm:"Postcondition:"
file name.java
a5 anner
. sort
e Javadoc output will i i i s

h t d H t' Sorts the given array a into ascending order.
show pre, postconditions | >

3ava. lang.Nullrointerszception - if a is mull
Postcondition:

The array a will be sorted in ascending order.

binarySearch

public static int binarySearch(int[] a,
int n)

Returns the index of n in array a, or -1 if not found.

Throws:
java.lang.NullPointergxception - if a is null.
Precondition:

Az E e

The array must be sorted in ascending order. If not, the results are undefined.

Inheritance: Pre-conditions Inheritance: Post-conditions

e If the precondition of thg client closen e If the postcondition of th.e client closen
ClassB.someMethod IS ClassB.someMethod IS
Stronger than the someMethod () weaker than the someMethod ()
precondition of the postcondition of the
ClassA.someMethod, then ClassA.someMethod, then
this is not fair to the Client this is not fair to the cClient

ClassB ClassB

The code for ClassB may someMethod () Since Client may not have someMethod ()

have been written after
Client was written, so
Client has no way of
knowing its contractual
requirements for ClassB

known about ClassB, it
could have relied on the
stronger guarantees
provided by the
ClassA.someMethod

Inheritance

In ClassB which is derived from ClassA:
invariant

newClassInvariant
someMethod () is

In ClassA:

invariant
classInvariant

someMethod () is

e Liskov Substitution Principle

— Wherever an instance of a class is expected, an T dition T econdition
instance of one of its subclasses can be substituted. do do
Procedure body Procedure body
e Therefore, ensure ensure
- A subclass may keep or weaken the preconditions of B Postcondition g newPosteondition

an overridden method
- A subclass may keep or strengthen the postconditions
of an overridden method

- A subclass may keep or strengthen the invariants of a ZF
subclass ClassB

G cone | cissa
The precondition of ClassB.aMethod is defined as:

someMethod () newPrecondition or Precondition

The postcondition of ClassB.aMethod is defined as:
newPostcondition and Postcondition

someMethod ()] The invariant of ClassB is
classInvariant and newClassInvariant

