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Abstract

Weighted A* is the most popular satisficing algorithm for
heuristic search. Although there is no formal guarantee that
increasing the weight on the heuristic cost-to-go estimate will
decrease search time, it is commonly assumed that increas-
ing the weight leads to faster searches, and that greedy search
will provide the fastest search of all. As we show, however, in
some domains, increasing the weight slows down the search.
This has an important consequence on the scaling behavior
of Weighted A*: increasing the weight ad infinitum will only
speed up the search if greedy search is effective. We examine
several plausible hypotheses as to why greedy search would
sometimes expand more nodes than A* and show that each
of the simple explanations has flaws. Our contribution is to
show that greedy search is fast if and only if there is a strong
correlation betweenh(n) andd∗(n), the true distance-to-go,
or if the heuristic is extremely accurate.

Introduction
Many of the most effective algorithms in satisficing search
have a weight parameter that can be used to govern the bal-
ance between solution quality and search effort. The most
famous of these is Weighted A* (Pohl 1970), which expands
nodes inf ′ order, wheref ′(n) = g(n) + w · h(n) : w ∈
(1,∞). Weighted A* is used in a wide variety of applica-
tions. For example, the Fast Downward planner (Helmert
2006) uses Weighted A*, and LAMA (Richter and Westphal
2010) also uses a variant of Weighted A*. Weighted A*
is also used extensively for planning for robots (Likhachev,
Gordon, and Thrun 2003).

In addition to that, Weighted A* is a component of a num-
ber of anytime algorithms. For example, Anytime Restarting
Weighted A* (Richter, Thayer, and Ruml 2009) and Any-
time Repairing A* (Likhachev, Gordon, and Thrun 2003)
both use Weighted A*. Anytime Nonparametric A* (van den
Berg et al. 2011) doesn’t directly use Weighted A* like the
preceding anytime algorithms, but this algorithm requires
greedy search (Doran and Michie 1966) to find a solution
quickly. All of these anytime algorithms have, built in, the
implicit assumption that Weighted A* with a high weight or
greedy search will find a solution faster than A* or Weighted
A* with a small weight.
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In many popular heuristic search benchmark domains
(sliding tile puzzles, grid path planning, Towers of Hanoi,
TopSpin, robot motion planning, traveling salesman prob-
lem, for example) increasing the weight does lead to a faster
search, until the weight becomes so large that Weighted A*
has the same expansion order as greedy search, which re-
sults in the fastest search. As we shall see, however, in some
domains greedy search performs worse than Weighted A*,
and is sometimes even worse than A*.

We examine several reasonable hypotheses as to why this
might occur, and show that each has flaws. The first hy-
pothesis we consider is the idea that when the percentage
error of the heuristic is high, greedy search performs poorly,
and conversely when the percent error in the heuristic is
low, greedy search performs well. Next we consider the
size of the local minima in the domain, hypothesizing that
greedy search is effective in domains with small local min-
ima. We then consider the strength of the correlation be-
tweenh(n) (the estimated cost of getting to a goal from
noden) andh∗(n) (the true cost of getting to a goal from
noden), and attempt to classify domains as either greedy
search friendly or greedy search unfriendly based upon this
correlation. Finally, we consider the strength of the correla-
tion betweend∗(n) (the number of nodes betweenn and the
nearest goal, measured in edge count) andh(n), and show
that this number is the most important for predicting when
greedy search will perform poorly, unless the correlation be-
tweenh(n) andh∗(n) is nearly perfect. This conclusion is
based on empirical analysis in a variety of benchmark do-
mains.

We show that the failure of greedy search is not merely a
mathematical curiosity, only occurring in hand crafted coun-
terexamples, but rather a phenomenon that can occur in real
domains. Our contribution is to identify conditions when
this occurs, knowledge which is important for anyone us-
ing a suboptimal search. This is also an important first step
in a predictive theoretical understanding of the behavior of
suboptimal heuristic search.

Previous Work
Gaschnig (1977) describes how to predict the worst case
number of nodes expanded by A*, and also discusses how
weighting the heuristic can affect the worst case final node
expansion count. His predictions, however, have two limi-



tations. First, the predictions assume the search space is a
tree, and not a graph, as is the case for many applications of
heuristic search. In addition to that, the worst case predic-
tions only depend the amount of error present in the heuris-
tic, where error is measured as deviation fromh∗(n). As we
shall see, looking only at raw error leads to incorrect con-
clusions.

Chenoweth and Davis (1991) show that if the heuristic is
’rapidly growing with logarithmic cluster’, the search can
be done in polynomial time. A heuristic is rapidly growing
with logarithmic cluster if, for every noden, h(n) is within
a logarithmic factor of a monotonic functionf of h∗(n),
andf grows at least as fast as the functiong(x) = x. On
a finite graph, any heuristic is rapidly growing with loga-
rithmic cluster. The claims presented by Chenoweth and
Davis (1991) are significant whenh∗(n) can grow arbitrar-
ily large, which can only occur when the graph is infinite.
For all benchmark domains we consider, this is not the case.

Hoffmann (2005) discusses the performance of the Fast
Forward heuristic (Hoffmann and Nebel 2001). They show
that the Fast Forward heuristic can be proved to be extremely
effective for many planning benchmark domains when used
with a variant of greedy hill-climbing, allowing many of the
planning benchmark domains to be solved quickly, some-
times in linear time.

A number of works consider the question of predicting
search algorithm performance (Korf, Reid, and Edelkamp
2001; Pearl 1984; Helmert and Röger 2007), although the
subject attracting by far the most attention is determining
how many nodes will be expanded by an optimal search al-
gorithm, which does not lend any insight into the question
of whether or not greedy search is likely to perform well or
poorly. Lelis, Zilles, and Holte (2011) did empirical anal-
ysis of suboptimal search algorithms, predicting the num-
ber of nodes that would be expanded by Weighted IDA*,
but it remains an open question determining whether or not
the Weighted IDA* predictions can tell us if increasing the
weight too far can be detrimental for that algorithm.

Korf (1993) provides an early discussion of how increas-
ing the weight may actually be bad, showing that when re-
cursive best first search or iterative deepening A* is used
with a weight that is too large, expansions actually increase.
This paper is also an early example of exploring how the
weight interacts with the expansion count, something cen-
tral to this paper.

When is increasing w bad?
In order to get a better grasp on the question of when in-
creasing the weight is bad, we first need some empirical
data, examples of when increasing the weight is either good,
speeding up search, or bad, slowing down search. We con-
sider six standard benchmark domains: the sliding tile puz-
zle, the Towers of Hanoi puzzle, grid path planning, the
pancake problem, TopSpin, and dynamic robot navigation.
Since we need to know the optimal solution, we are forced
to use somewhat smaller puzzles than it is possible to solve
using state of the art suboptimal searches. Our requirement
for problem size was that the problem be solvable by A*,

Solution Total Branching
Domain Length States Factor
Dynamic Robot 187.45 20,480,000 0-240
Hanoi (14) 86.92 268,435,456 6
Pancake (40) 38.56 8× 1047 40
11 Tiles (unit) 36.03 239,500,800 1-3
Grid 2927.40 1,560,000 0-3
TopSpin (3) 8.52 479,001,600 12
TopSpin (4) 10.04 479,001,600 12
11 Tiles (inverse) 37.95 239,500,800 1-3
City Navigation 3 3 15.62 22,500 3-8
City Navigation 4 4 14.38 22,500 3-10
City Navigation 5 5 13.99 22,500 3-12

Table 1: Domain Attributes for benchmark domains consid-
ered

Weighted A*, and greedy search in main memory (eight gi-
gabytes). We selected these domains because they represent
a wide variety of interesting heuristic search features, such
as branching factor, state space size, and solution length.Ba-
sic statistics about each of these domain variants are summa-
rized in Table 1.

For the 11 puzzle (3x4), we used random instances and
the Manhattan distance heuristic. We used the 11 puzzle,
rather than the 15 puzzle, because we also consider the slid-
ing tile puzzle with non-unit cost functions, which are not
practical to solve optimally for larger puzzles. In addition
to that, A* runs out of memory solving a 15 puzzle for the
more difficult instances. The non-unit version of sliding tile
puzzle we consider has the cost of moving a tilen as1/n.
The Manhattan distance heuristic, when weighted appropri-
ately, is both admissible and consistent. For the Towers of
Hanoi, we considered the 14 disk 4 peg problem, and used
two disjoint pattern databases, one for the bottom 12 disks,
and one for the top two disks (Korf and Felner 2002). For the
pancake problem, we used the gap heuristic (Helmert 2010).
For grid path planning, we used maps that were 2000x1200
cells, with 35% of the cells blocked, using the Manhattan
distance heuristic with four way movement. For the Top-
Spin puzzle, we considered a problem with 12 disks with a
turnstile that would turn either three or four disks, denoted
by TopSpin(3) or TopSpin(4) to differentiate between the
two varieties. For a heuristic, we used a pattern database
with 6 contiguous disks present, and the remaining 6 disks
abstracted. For the dynamic robot navigation problem, we
used a 8000x8000 world, with 32 headings and 16 speeds.
Space was discretized to produce cells that were 40x40, so
the world contained 200x200 cells.

We also introduce a new domain we call City Naviga-
tion, designed to simulate navigation using a system similar
to American interstate highways or air transportation net-
works. In this domain, there are cities scattered randomly
on a 100x100 square, connected by a random tour to en-
sure solvability. Each city is also connected to itsnc nearest
neighbors. All links between cities cost the Euclidean dis-
tance + 2. Each city contains a collection of locations, ran-
domly scattered throughout the city (which is a 1x1 square).



Figure 1: A city navigation problem withnp = nc = 3, with
15 cities and 15 locations in each city.

Locations in a city are also connected in a random tour, with
each place connected to the nearestnp places. Links be-
tween places cost the true distance multiplied by a random
number between 1 and 1.1. Within each city is a special
nexus node that contains all connections in and out of this
city. The goal is to navigate from a randomly selected start
location to a randomly selected end location. For example,
we might want to go from Location 3 in City 4 to Location
23 in City 1. Each city’s nexus node is Location 0, so the
goal for the example problem is to navigate from Location
3 to Location 0 in City 4, then find a path from City 4 to
City 1, then a path from Location 0 in City 1 to Location 23
in City 1. In this domain, solutions vary in length, and it is
straightforward to manipulate the accuracy of the heuristic.

An example instance of this type can be seen in Figure
1. The circles in the top part of the figure are locations,
connected to other locations. The nexus node, Location 0,
is also connected to the nexus nodes of neighboring cities.
The bottom part of the figure shows the entire world, with
cities shrunk down to a circle. City Navigation instances are
classified bync andnp, so we call a particular kind of City
Navigation problem City Navigationnp nc. We consider
problems with varying numbers of connections, but always

having 150 cities and 150 places in each city. Since each
location within a city has a global position, the heuristic is
direct Euclidean distance.

Figure 2 and 3 show the number of expansions required
by A*, greedy search, and Weighted A* with weights of 1.1,
1.2, 2.5, 5, 10, and 20. These plots allow us to compare
greedy search with Weighted A* and A*, and to determine
whether increasing the weight speeds up the search, or slows
down the search.

Looking at the plots in Figure 2, it is easy to see that as
we increase the weight the number of expansions goes down.
In Figure 3, the opposite is true. In each of these domains,
increasing the weight initially speeds up the search, as A*
is relaxed into Weighted A*, but as Weighted A* transforms
into greedy search, the number of nodes required to solve
the problem increases. In two of the domains, TopSpin with
a turnstile of size 4 and City Navigation 3 3, the number of
nodes expanded by greedy search is higher than the number
of nodes expanded by A*.

What makes increasing w bad?
We have established that increasing the weight in Weighted
A* does not always speed up the search. Next, we consider
a number of hypotheses as to why this would occur.

Hypothesis 1 Greedy search performs poorly when the per-
cent error inh(n) is high.

The percent error in the heuristic is defined ash∗(n)−h(n)
h∗(n) .

Since greedy search increases the importance of the heuris-
tic, it is reasonable to conclude that if the heuristic has a
large amount of error, relying upon it heavily, as greedy
search does, is not going to lead to a fast search.

In Table 2, we have the average percent error in the heuris-
tic for each of the domains considered. Surprisingly, the av-
erage percentage error bears little relation to whether or not
greedy search will be a poor choice. Towers of Hanoi, unit
tiles, and TopSpin(3), three domains where greedy search is
effective, have as much or more heuristic error than domains
where greedy search works poorly. This leads us to con-
clude that you cannot measure the average heuristic percent
error and use this to determine whether or not increasing the
weight will speed up or slow down search.

Intuitively, this makes sense, as greedy search only re-
ally requires that the nodes get put inh∗(n) order by the
heuristic. The exact size, and therefore error, of the heuris-
tic is unimportant, but size has a huge effect on the average
percent error. This can be seen if we consider the heuris-
tic h(n) = h∗(n)

N
, N ∈ N, which will always guide greedy

search directly to an optimal goal, while exhibiting arbitrar-
ily high average percent error in the heuristic asN increases.

Hypothesis 2 Greedy search performs poorly when local
minima inh(n) contain many nodes.

The concept of a local minimum inh(n) is not rigorously
defined, so the first step is to precisely define what a local
minimum is. The first, and simplest definition, is to define
a local minimum as a maximal set of connected nodesN
such that for each noden ∈ N , every path fromn to a node
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Figure 2: Domains where increasing the weight speeds up search

Figure 4: Picture of one or two of local minima, depending
on how they are defined

n′ 6∈ N includes at least one nodenmax such thath(n) <
h(nmax).

The “size” of a local minimum under this metric has little
bearing on how effective greedy search is. For example, in
the sliding tile domain with unit cost, an average local mini-
mum contains 2.48 nodes, and in the sliding tile puzzle with
inverse costs, where greedy search performs very poorly, an
average local minimum contains 2.47 nodes. Thus, the size
of a local minimum measured in this way cannot be used
to predict whether or not greedy search is going to perform
poorly. The reason is that local minima can be nested: once
the search escapes the first local minimum, it is possible that
it is inside another local minimum.

The solution, then, is to change the definition of a local
minimum to verify that the path out of the first local mini-
mum actually terminates in a goal node, as opposed to possi-

bly leading into another local minimum. One modified def-
inition of a local minimum is a maximal set of connected
nodesN such that for each noden ∈ N , every path from
n to a goal node includes at least one nodenmax such that
h(n) < h(nmax). The difference between this definition,
and the previous one, is what happens to the small cup inside
the large cup shown in Figure 4. Under the first definition,
the small inner cup is its own local minimum, but under the
second definition, the small inner cup is not a local minimum
on its own.

Although this improved definition solves the problem of
nested local minima, it still does not help us determine
whether or not greedy search will work well. The bottom
picture in Figure 5 shows an example where a large local
minimum can be solved easily by greedy search. In this
graph, there is a single local minimum which can be made
to be arbitrarily large. This region is a local minimum un-
der either definition we have thus far considered. In this
domain, however, greedy search will expand only one extra
node in the worst case. If run on this domain, greedy search
will follow the heuristic until it expands the lefth(n) = 1
node. In the worst case, it will then expand all unexpanded
nodes withh(n) = 2, which can introduce at worst one
unnecessary expansion. At this point, the right node with
h(n) = 1 is guaranteed to have been discovered, and ex-
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Figure 3: Domains where increasing the weight slows down search

Figure 5: Graphs where local minimum size doesn’t matter

panding it leads to the goal. In this domain, despite the large
size of the local minimum, greedy search exhibits linear run
time.

The top graph in 5 shows an example where greedy search
will perform poorly even if individual local minima are
small. In this graph, all edge costs are labeled, and edges
can be traversed in the directions of the arrows. The clouds
represent individual local minima where all the nodes in the
cloud haveh(n) = 1. If run on this graph from a start state
in one of the local minima, greedy search will eventually
expand theh(n) = 3 node, which will generate one node
in each local minima. The node withh(n) = 2 will not be
expanded until every single node in all of the local minima
has been expanded.

In this situation, the size of the individual local minima
has no bearing on how many nodes are expanded by greedy
search, because the number of local minima present in the
domain can be made arbitrarily large independent of the size
of the local minima. A* may expand all of the local mini-
mum containing the initial state, but will not expand any
nodes in the other local minima because those nodes will
have highf(n) values due to having a highg(n) value.

We have shown that if local minima are large, greedy
search may nonetheless perform well, and that even if lo-
cal minima are small, greedy search may perform poorly.



Domain Heuristic h(n)-h∗(n) h(n)-h∗(n) h(n)-d∗(n) h(n)-d∗(n)
% Error Correlation Correlation Correlation Correlation

(Pearson) (Spearman) (Pearson) (Spearman)
Towers of Hanoi 29.47 0.9652 0.9434 0.9652 0.9434
Grid 12.78 0.9790 0.9704 0.9790 0.9704

Greedy Pancake 2.41 0.9621 0.9607 0.9621 0.9607
Works Dynamic Robot 15.66 0.9998 0.9983 0.9989 0.9968

Unit Tiles 33.37 0.7064 0.7090 0.7064 0.7090
TopSpin(3) 20.94 0.5855 0.5211 0.5855 0.5211
TopSpin(4) 20.25 0.2827 0.3924 0.2827 0.3924

Greedy Inverse Tiles 29.49 0.6722 0.6584 0.3670 0.3375
Fails City Nav 3 3 44.51 0.5688 0.6132 0.0246 -0.0255

City Nav 4 4 37.41 0.7077 0.7518 0.0853 0.1641

Table 2: Average % error, correlation betweenh(n) andh∗(n), and correlation betweenh(n) andd∗(n) in different domains

Domain Heuristic h(n)-h∗(n) h(n)-h∗(n) h(n)-d∗(n) h(n)-d∗(n)
% Error Correlation Correlation Correlation Correlation

(Pearson) (Spearman) (Pearson) (Spearman)
City Nav 5 5 31.19 0.9533 0.9466 0.0933 0.0718

Table 3: Average % error, correlation betweenh(n) andh∗(n), and correlation betweenh(n) andd∗(n) in City Nav 5 5

This leads us to conclude that the size of the local minima
cannot be used to predict whether or not greedy search will
be effective.
Hypothesis 3 Greedy search performs poorly when local
minima in theh(n)− h∗(n) function contain many nodes.

Another hypothesis we consider, presented by
Likhachev (2005), is that when the local minima in
the functionh(n) − h∗(n) are small (with size measured in
nodes), search will be fast, but if the local minima are large,
search will be slow. Intuitively,h(n) − h∗(n) measures the
amount of error in the heuristic.

A noden is in a local minimum of theh(n)−h∗(n) func-
tion if h(n) 6= h∗(n). A local minimum is a maximal col-
lection of connected nodes that are in a local minimum. As
an example, consider the top part of Figure 5. In this figure,
the nodes represented by circles all haveh(n) = h∗(n), and
are therefore not part of a local minimum. The nodes in the
clouds all have heuristic error, so these nodes are in a local
minimum. Each cloud is a single local minimum, because
none of the clouds are connected to another cloud via a path
containing only nodes in a local minimum, as any path from
one cloud to another goes through theh(n) = 3 node, which
is not in a local minimum.

The problem with this definition is that it still provides
no guarantees about how greedy search will perform. For
example, the clouds representing local minima in the graph
shown in the top of Figure 5 are also local minima of the
h(n) − h∗(n) function, but as we previously showed, even
if these local minima only contain one node, greedy search
might still have arbitrarily poor performance if there are too
many local minima, something independent of the size of a
local minimum.

The graph in the bottom part of Figure 5 has a single large
local minimum in theh(n) − h∗(n) function. Despite this
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Figure 6: Plot of h vs h*, and h vs d* for City Navigation 4
4

large local minimum, we have shown that greedy search ex-
hibits nearly optimal run time, demonstrating that even in
domains where the local minima in theh(n) − h∗(n) func-
tion contains many nodes, greedy search may nonetheless be
an effective algorithm.

We have shown that greedy search can perform arbitrarily
poorly in domains with small local minima in theh(n) −
h∗(n) function, and also that greedy search can exhibit lin-
ear run time even if the local minima in theh(n) − h∗(n)
contains infinitely many nodes. This leads us to conclude
that the size of the local minima in theh(n) − h∗(n) func-
tion cannot be used to predict whether or not greedy search
will fail.

Hypothesis 4 Greedy search performs poorly when the cor-
relation betweenh(n) andh∗(n) is weak.

While considering Hypothesis 1, we noted that greedy
search has run time linear in the solution length of the opti-
mal solution if the nodes are inh∗(n) order. Looking at the



plot of h(n) vs h∗(n) in the left half of Figure 6, we can
see that for City Navigation 4 4 there is a reasonable rela-
tionship betweenh(n) andh∗(n), in that the nodes with low
h(n) tend to have smallh∗(n) values. One way to quantify
this observation is to measure the correlation between the
two values.

Pearson’s correlation coefficient measures how well the
relationship betweenh(n) andh∗(n) can be modeled us-
ing a linear function. Such a relationship would mean that
weighting the heuristic appropriately can reduce the errorin
the heuristic, which could reasonably be expected to lead
to a faster search. In addition, if the relationship between
h(n) andh∗(n) is a linear function, then order will be pre-
served: putting nodes in order ofh(n) will also put the nodes
in order ofh∗(n), which leads to an effective greedy search.
For each domain, we calculate the Pearson’s correlation co-
efficient betweenh∗(n) andh(n), and the results are in the
second column of Table 2.

Another reasonable way to measure the heuristic correla-
tion is to use Spearman’s rank correlation coefficient. Spear-
man’s rank correlation coefficient measures how well one
variable can be modeled as a perfect monotone function of
the other. In the context of greedy search, if Spearman’s rank
correlation coefficient is high, this means that theh(n) and
h∗(n) put nodes in very close to the same order. Expand-
ing nodes inh∗(n) order leads to greedy search running in
time linear in the solution length, so it is reasonable to con-
clude that a strong Spearman’s rank correlation coefficient
betweenh∗(n) andh(n) would lead to an effective greedy
search. For each domain, we calculate the Spearman’s rank
correlation coefficient betweenh∗(n) andh(n), and the re-
sults are in the third column of Table 2.

Looking to the data, leads us to reject this hypothesis. In
the TopSpin(3) domain, the Spearman’s rank correlation co-
efficient is .52, so this hypothesis leads us to conclude that
greedy search will work well in domains having a Spear-
man’s rank correlation of .52 or higher. In the inverse tiles
domain, City Navigation 3 3, and City Navigation 4 4 the
Spearman’s rank correlation coefficient is higher than .52,
but in these domains, greedy search performs poorly. A sim-
ilar argument holds for the Pearson’s correlation coefficient.

Hypothesis 5 Greedy search performs poorly when the cor-
relation betweenh(n) andd∗(n) is weak.

The objective of greedy search is to discover a goal
quickly by expanding nodes with a smallh(n) value. If
nodes with a smallh(n) are far away from a goal, and there-
fore have a highd∗(n) value (high count of edges to goal), it
is reasonable to believe greedy search would perform poorly.
The right half of Figure 6 shows a plot ofh(n) vsd∗(n). We
can clearly see that in the City Navigation 4 4 domain, there
is almost no relationship betweenh(n) andd∗(n), meaning
that nodes that receive a smallh(n) value can be found any
distance away from a goal, which could explain why greedy
search works so poorly for this domain.

For each domain, we quantify this concept by calculating
both Pearson’s correlation coefficient and Spearman’s rank
correlation coefficient betweend∗(n) andh(n), and the re-
sults are in the fourth and fifth column of Table 2. If we
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Figure 7: Expansions with differing number of neighbors for
cities and places

divide domains based upon either correlation metric con-
sidering the correlation betweenh(n) andd∗(n), we are fi-
nally able to differentiate between the domains where greedy
search is effective and the domains where greedy search per-
forms poorly.

Intuitively, this is reasonable: greedy search expands
nodes with smallh(n) values. If nodes with small
h(n) value are also likely to have a smalld∗(n) value (and
these nodes are therefore close to a goal, in terms of ex-
pansions away) expanding nodes with smallh(n) value will
quickly lead to a goal. The converse is also reasonable. If
the nodes with smallh(n) value have a uniform distribution
of d∗(n) values (and many of these nodes are far away from
a goal in terms of expansions away), expanding these nodes
will not quickly lead to a goal.

Hypothesis 5 neatly predicts when greedy search per-
forms worse than Weighted A* (or A*). It is not, however,
perfect. If we consider the heuristich(n) = h∗(n), any
measure of the correlation betweenh(n) andh∗(n) will be
perfect, but the relationship betweenh(n) andd∗(n) for this
heuristic can be arbitrarily poor. As the heuristic approaches
truth, theh(n)-h∗(n) correlations will approach 1, which al-
lows Weighted A* to scale gracefully, as greedy search will
have linear run time, no matter what the correlation between
h(n) andd∗(n) is. In this situation, looking solely to the
correlation betweenh(n) andd∗(n) to determine whether
or not greedy search will be faster than Weighted A* may
produce an incorrect answer.

This can be seen in the City Navigation 5 5 domain. City
Navigation 5 5 is exactly like the other City Navigation prob-
lems we consider, except that the cities and places are better
connected, allowing more direct routes to be taken. Since
the routes are more direct, and thus shorter, the heuristic is
more accurate.

Table 3 shows the various correlations and percent error in
h(n) for City Navigation 5 5. Figure 7 shows that as we in-
crease the weight, despite the very weak correlation between
h(n) andd∗(n), there is no catastrophe: greedy search ex-
pands roughly the same number of nodes as Weighted A*



with the best weight for speed. This occurs because of
the extreme strength of the heuristic, which correlates to
h∗(n) at .95, an extremely strong correlation.

Discussion
The importance of the correlation betweenh(n) and
d∗(n) shows the importance of node ordering for greedy
search. In optimal search, the search cannot terminate when
a solution is found, but rather when the solution is known
the be optimal because all other paths have been pruned.
The larger the heuristic values, the sooner nodes can be
pruned. This means that in optimal search, heuristic size
is of paramount importance: bigger is better. With greedy
search, the heuristic is used to guide the search to a solu-
tion, so relative magnitude of the heuristic (or the error inthe
heuristic) has no bearing on the performance of the search,
as we saw when we considered Hypothesis 1.

Effective node ordering, which can be measured directly
by calculating Spearman’s rank correlation coefficient, orin-
directly by calculating Pearson’s correlation coefficient, tells
us how effectively the heuristic can be used to order nodes
in a greedy search. The next question is which correlation
matters more:h∗(n) or d∗(n). Clearly, a perfect correla-
tion betweenh∗(n) andh(n) or d∗(n) andh(n) will lead
to a fast greedy search, which leads us to the conclusion
that in order for greedy search to be effective, nodes with
small h(n) that get expanded are required to have at least
one virtue: they should either be close to the goal measured
in terms of search distance (smalld∗(n)) or close to the goal
measured in terms of graph distance (smallh∗(n)). We have
seen empirically that as the two correlations break down, the
d∗(n) correlation allows greedy search to survive longer: in
domains where thed∗(n)-h(n) is above .58, greedy search
does well. In domains where theh∗(n)-h(n) correlation is
as high as .70 (or .75, depending on which correlation met-
ric is being used), we have domains where greedy search
performs poorly.

Conclusion
We first showed that greedy search can sometimes perform
worse than A*, and that although in many domains there is a
general trend where a larger weight in Weighted A* leads to
a faster search, there are also domains where a larger weight
leads to a slower search. It has long been understood that
greedy search has no bounds on performance, but our work
shows that poor behavior can occur in practice.

We then showed that the domains where increasing the
weight degrades performance share a common trait: the true
distance from a node to a goal, defined asd∗(n), correlates
very poorly withh(n). This information is important for
anyone running suboptimal search in the interest of speed,
because it allows them to identify whether or not the as-
sumption that weighting speeds up search is true or not, crit-
ical knowledge for deciding what algorithm to use.

Acknowledgements
We acknowledge support from NSF (grant IIS-0812141) and
the DARPA CSSG program (grant HR0011-09-1-0021).

References
Chenoweth, S. V., and Davis, H. W. 1991. High-performance
A* search using rapidly growing heuristics. InProceedings of the
Twelfth International Joint Conference on Articial Intelligence,
198–203.

Doran, J. E., and Michie, D. 1966. Experiments with the graph
traverser program. InProceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 235–259.

Gaschnig, J. 1977. Exactly how good are heuristics?: Toward a
realistic predictive theory of best-first search. InProceedings of
the Fifth International Joint Conference on Articial Intelligence,
434–441.

Helmert, M., and R̈oger, G. 2007. How good is almost per-
fect? InProceedings of the ICAPS-2007 Workshop on Heuristics
for Domain-independent Planning: Progress, Ideas, Limitations,
Challenges.

Helmert, M. 2006. The fast downward planning system.Journal
of Artificial Intelligence Research26:191–246.

Helmert, M. 2010. Landmark heuristics for the pancake problem.
In Proceedings of the Third Symposium on Combinatorial Search.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search.Journal of Artificial
Intelligence Research14:253–302.

Hoffmann, J. 2005. Where ’ignoring delete lists’ works: Lo-
cal search topology in planning benchmarks.Journal of Artifial
Intelligence Research24:685–758.

Korf, R., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence134:9–22.

Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time complexity
of iterative-deepening-A*.Artificial Intelligence129:199–218.

Korf, R. E. 1993. Linear-space best-first search.Artificial Intelli-
gence62:41–78.

Lelis, L.; Zilles, S.; and Holte, R. C. 2011. Improved prediction
of IDA*’s performance via epsilon-truncation. InSOCS.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: Anytime
A* with provable bounds on sub-optimality. InProceedings of the
Seventeenth Annual Conference on Neural Information Process-
ing Systems.

Likhachev, M. 2005.Search-based Planning for Large Dynamic
Environments. Ph.D. Dissertation, Carnegie Mellon University.

Pearl, J. 1984.Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Pohl, I. 1970. Heuristic search viewed as path finding in a graph.
Artificial Intelligence1:193–204.

Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks.Journal of Artifial
Intelligence Research39:127–177.

Richter, S.; Thayer, J. T.; and Ruml, W. 2009. The joy of forget-
ting: Faster anytime search via restarting. InProceedings of the
Twentieth International Conference on Automated Planning and
Scheduling.

van den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K. Y. 2011.
Anytime nonparametric A*. InProceedings of the Twenty Fifth
National Conference on Articial Intelligence.


