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Abstract

There are many algorithms that are capable of solving the shortest path prob-
lem. Given a specific shortest path problem, it is not clear which of the myriad
algorithms should be used. Based upon an empirical evaluation of six benchmark
domains, we create a decision tree that considers domain features and approximate
time/memory budget constraints to decide which algorithm should be used given
a domain with known attributes and given time/memory budget. The decision tree
also helps identify open questions regarding what information is needed topredict
how well a given algorithm will perform.

1 Introduction

This paper builds upon the work in Wilt et al. [2010] and constructs a decision tree that
can be used to decide which algorithm should be used in a givensituation. Wilt et al.
[2010] consider the traveling salesman problem [Pearl and Kim, 1982], dynamic robot
path finding [Likhachev et al., 2003], the sliding tile puzzle [Korf, 1985], a derivative
of the pancake puzzle [Holte et al., 2005], and a vacuum-robot domain [Russell and
Norvig, 2010].

Wilt et al. [2010] consider weighted A* [Pohl, 1970],A∗

ǫ
[Pearl and Kim, 1982],

Window A* [Aine et al., 2007], multi-state commitment k weighted A* [Furcy and
Koenig, 2005b], greedy best-first search [Doran and Michie,1966], enforced hill climb-
ing [Hoffmann and Nebel, 2001], LSS-LRTA* [Koenig and Sun, 2008], beam search
[Rich and Knight, 1991, Bisiani, 1992], beam-stack search [Zhou and Hansen, 2005],
and BULB [Furcy and Koenig, 2005a]. They show that the performance varies across
the different benchmark domains, but they also point out that a number of domain fea-
tures are behind the observed variation. Among the relevantfeatures are dead ends, cost
function, and whether or not searches with an unbounded openlist can find solutions
without running out of memory.
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These features are important predictors of which algorithmwill be the strongest
performer, but they are not the only features that matter. The decision tree created
does is not perfect even for the test data, and explaining exactly why remains an open
question.

1.1 Selecting the Best Algorithm By Domain

Wilt et al. [2010] show that across all of the domains under consideration, the most suc-
cessful algorithms in aggregate are weighted A*,A∗

ǫ
, beam search, and LSS-LRTA*.

For this reason, we shall only consider those algorithms when evaluating algorithms
across the various domains.

The subsequent plots all use the same measurements on both the x and y axis. On
the x axis is the log of cpu time. On the y axis is an aggregate ofsolution quality
and success rate. Finding the best solution earns a score of 1. Finding a solution that
is lower quality earns a score proportional to the solution quality with higher quality
solutions scoring closer to 1. Failing to find any solution earns a score of 0. All
algorithms were terminated after five minutes. An algorithmcould fail to find a solution
because of inherent incompleteness or a result of timing out. All algorithms were run
on Dell Optiplex 960 Core2 duo E8500 3.16 GHz machines with 8 Gb of RAM. The
machines were running 64 bit Linux. On all domains, five minutes was not enough
time to run out of memory, with the exception of 48 puzzle, where algorithms were
able to exhaust memory in approximately 1 minute. If an algorithm ran out of memory,
it was considered to have failed to find a solution.

The lines are constructed by varying the underlying parameter of an algorithm.
For beam search, the parameter in question is the beam width.For LSS-LRTA*, the
parameter is the look-ahead expansion budget. LSS-LRTA* and beam search were
run with 50000, 10000, 5000, 1000, 500, 100, 50, 10, 5, and 3 for parameters. For
weighted A* andA∗

ǫ
, the parameter is the weight. A* andA∗

ǫ
were run with parameters

of 100000, 100, 50, 20, 15, 10, 7, 5, 4, 3, 2.5, 2, 1.75, 1.5, 1.3, 1.2, 1.15, 1.1, 1.05,
1.01, 1.001, 1.0005 and 1.

For example, in Figure 1, the green line representing weighted A* shows that
weighted A* initially finds a low quality solution when usinga high weight, and as
the weight decreases, the solution quality increases. As the weight continues to shrink,
weighted A* starts to fail to find solutions, so the aggregatesolution quality decreases
substantially.

1.2 Traveling Salesman Problem

The results of running the four algorithms in question on thetraveling salesman prob-
lem can be seen in Figure 1. For finding solutions quickly, thealgorithm of choice
is A∗

ǫ
, but if the highest quality solutions are desired, beam search is the algorithm of

choice.

2



Traveling Salesman Problem (100 cities)
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Figure 1: Algorithm performance on the traveling salesman problem
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Figure 2: Example of grid path planning problems

1.3 Grid Path Planning

For the grid path planning domain, we considered two varieties of grid path planning
problems. The first was basic grid path planning with unit cost, where each move costs
the same amount. We also considered a derivative of grid pathplanning where the cost
of a move is proportional to the cell’s Y coordinate. In this situation, the shortest path
and the best path are often not the same. Examples of each kindof problem can be
seen in Figure 2.

The results of running the four algorithms in question on thegrid path planning
problem can be seen in Figure 3 and 4. In unit costs, weighted A* is better than all of
the alternative algorithms, although beam searches converge on high quality solutions
slightly faster.

In grid path planning with life costs,A∗

ǫ
is slightly faster, although it has terrible

scaling behavior as compared to weighted A*. In addition to that, the solution returned
is of poor quality relative to that of weighted A*. Despite these drawbacks,A∗

ǫ
does

provide the fastest solutions. The reasonA∗

ǫ
is so fast stems from the factA∗

ǫ
expands

nodes according tod when the weight is extraordinarily high.

1.4 Vacuum Robot Path Planning

The vacuum robot path planning domain was inspired by Russell and Norvig [2010].
In this domain, there is a robot that inhabits a grid world where there are three kinds
of cells: dirty cells, clean cells, and blocked cells. When ata dirty cell, the robot may
clean the dirty cell, turning it into a clean cell. The goal isto clean all dirty cells. The
domain contains aspects of grid path planning, since the robot has to navigate from
one place to another, as well as elements of the traveling salesman problem, since the
dirty cells can be viewed as cities that must be visited in thebest order possible so as
to minimize travel distance.
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Grid Path Planning Unit Costs
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Figure 3: Algorithm performance on grid path planning with unit cost
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Grid Path Planning Life Costs
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Figure 4: Algorithm performance on grid path planning with unit cost
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Vacuum Robot Path Planning
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Figure 5: Algorithm performance on the vacuum robot path planning domain

The results of running the four algorithms in question on thevacuum robot path
planning problem can be seen in Figure 5. For finding solutions quickly, the algorithm
of choice is weighted A*, but if the highest quality solutions are desired, beam search
is the algorithm of choice.

1.5 Dynamic Robot Path Planning

In the dynamic robot path planning domain, the goal is to drive a robot from an initial
heading/location/speed to a goal heading/location/speedby manipulating the robot’s
heading and speed. In addition to driving the robot to the correct configuration, there
are obstacles that must be avoided.

In this domain, weighted A* provides the highest quality solutions, whileA∗

ǫ
finds

solutions faster.
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Dynamic Robot Path Planning
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Figure 6: Algorithm performance on dynamic robot path planning
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10 Heavy Pancake Puzzle
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Figure 7: Algorithm performance on the heavy pancake puzzle

1.6 Heavy Pancake Puzzle

In the heavy pancake puzzle, there is a stack of pancakes thatmust be put in the correct
order. The only operation is to take the top k pancakes and flipthem. In the standard
pancake puzzle, each flip costs 1. In the heavy pancake puzzle, each pancake is as-
signed an index, the cost of each flip is proportional to the sum of the indexes pancakes
that are being flipped.

As can be seen in Figure 7, weighted A* is capable of finding solutions before any
other algorithm, and finds higher quality solutions at the same time.
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15 puzzle
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Figure 8: Algorithm performance on the 15 puzzle

1.7 Sliding Tile Puzzle

On the sliding tile puzzle, beam search finds both the fastestand the highest quality
solutions. This is even more pronounced on the 48 puzzle, where the other algorithms
either fail almost all the time as is the case with weighted A*andA∗

ǫ
, or find very low

quality solutions, as is the case with LSS-LRTA*.
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48 Puzzle

S
o

lu
ti

o
n

 Q
u

al
it

y

0.8

0.6

0.4

0.2

0.0

log10(raw cpu time)

210

WA*
A*eps

LSS-LRTA*
Beam Search

Figure 9: Algorithm performance on the 48 puzzle
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2 Selecting an Algorithm - What Matters?

2.1 Time versus Quality

One fact that was apparent from the previous section is that which algorithm is best is
a somewhat subjective question. For example, if we are trying to decide how to route
paper through a printer, we need to have a solution quickly, and it is practical to trade
solution quality for a shorter planning time. Conversely, if we are trying to figure out
how route ships or trains around the planet, we can afford additional computational
time in order to find a higher quality solution.

Since the definition of “best” fundamentally varies, we consider the two extreme
ends of the time-solution quality trade-off. In one situation, we value time over quality,
and place the most importance on finding solutions quickly. In the other situation, we
value solution quality over time, only considering time when two or more algorithms
ultimately find solutions of the same quality.

2.2 Dead Ends

Wilt et al. [2010] show that dead ends cause problems for beamsearch due to the
nature of inadmissible pruning. Since there is no way a priori to tell whether pruning
a given node will cause the search to be unable to find solutions, beam searches often
fail when run with small beam width on problems with dead ends, as is the case with
the vacuum robot navigation, grid path planning, and dynamic robot path planning
domains. Although dead ends cause problems for beam searches with small beam
width, beam searches can eventually find solutions if the beam width is made large
enough, as can be seen in dynamic robot path planning (Figure6), grid path planning
(Figures 4 and 3), and vacuum robot planning (Figure 5), where the beam searches with
wide beams do manage to find solutions.

In domains with dead ends, beam searches take longer to find solutions due to the
fact that the small beams fail to find a solution. In general, beam searches rely upon
small beams to find solutions quickly, and large beams to find high quality solutions.
If the small beams are failing, then beam searches are going to find solutions later.

2.3 Unit versus Non-Unit Cost

Beam searches perform significantly better in domains with unit cost as compared to
domains with non-unit cost. For example, changing the cost function on grid path
planning from unit to life causes a substantial decrease in the performance of beam
searches. In addition to that, changing the cost function inthe sliding tile puzzle from
unit to the square root of the tile moved also causes a major reduction in the effective-
ness of beam search, as shown in Figure 10. Just as beam searches are able to overcome
problems with dead ends by using a sufficiently large beam, beam searches are able to
overcome non-unit cost if the beam width is set sufficiently high, as is the case in the
square root 15 puzzle and the heavy pancake puzzle (Figure 7).
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Square Root 15 Tile Puzzle
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Figure 10: Beam search and weighted A* on the square root tilepuzzle
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2.4 Is d the Same as h?

d(n) is a heuristic that estimates how many nodes are between the noden and the
nearest (or possibly cheapest) goal.

The first and most important thing to consider here is whetherthere is any funda-
mental difference betweend andh. If the domain is a unit cost domain, estimating how
many nodes there are on the path to the nearest solution and estimating the cost of the
path to the nearest solution produce the same result, sod provides no additional infor-
mation, with one possible exception. Thed heuristic does not have to be admissible,
so in some domains we can use a more accurate, but not admissible, d heuristic.

A∗

ǫ
relies upon the heuristic estimated to ascertain how many nodes there are along

the optimal path to the goal from that node. As one might naturally expect, domains
in which thed heuristic provides additional information are much bettersuited toA∗

ǫ
,

andA∗

ǫ
performs much better in domains with highly accurated heuristics.

In some domains, it is trivial to find out how far away a goal is.For example, in
the traveling salesman problem, this number can be calculated with perfect accuracy
by counting the number of cities that have not yet been visited. In other domains, thed
function makes the same abstraction assumptions ash, sod is no more informed thanh
is. In grid path planning, bothh andd make the free space assumption, optimistically
assuming all of the cells are empty. Despite this similarity, the d heuristic is much
more accurate in unit cost grids as opposed to in life cost grids. We can observe this
empirically if we calculate the average percent error in thetwo heuristics.h has an
average percent error of 27, whiled has an average percent error of 18. In the pancake
puzzle, bothh andd come from pattern databases, which abstract away some of the
pancakes. In this domain,d has an average percent error of eight, whileh has an
average percent error of 38.

Since the vacuum robot path planning domain is a unit cost domain,d andh func-
tions we used always return the same value. The sliding tile puzzle is unit cost, soh
andd return the same number in this domain as well.

Domains where there is a substantial difference betweenh andd are the traveling
salesman problem, dynamic robot path planning, and grid path planning with life costs,
as well as the heavy pancake problem. In the traveling salesman problem,h comes
from a minimum spanning tree of the remaining cities, whereas d can be calculated
with perfect accuracy by counting the unvisited cities in the state. In dynamic robot
path planning,h assumes that the robot can accelerate and decelerate instantly, as well
as drive in a circle with an infinitely small radius, so it is often impossible to follow
the path suggested byh. d points to a legal (albeit suboptimal) path in dynamic robot
path planning, and is therefore more accurate. In grid life and heavy pancake, we used
empirical analysis to show that there was a quantitative difference betweenh andd.

2.5 Does Weighted A* Fail?

In some of our benchmark domains, weighted A* fails if it is run with a weight that is
too small. For example, if we use a weight that is too small A* can’t solve traveling
salesman problems or vacuum robot navigation problems. Thesame phenomenon can
also be observed on the dynamic robot navigation problems ifthe weight is sufficiently
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small, although there does not appear to be any reason to run weighed A* with a weight
that small, since the medium weights find the best solutions that can be found by any
algorithm under consideration.

Unfortunately, predicting whether or not weighted A* is likely to fail remains an
open question.

2.6 Domain Summary

Table 1 shows the different domains under consideration. This table also shows what
value each domain takes for the attributes under consideration.

Domain Dead
Ends

Unit
Cost

Unique
States

WA*
fail?

h more
accurate?

TSP No No 6× 1033 Yes Yes
Grid Unit Yes Yes 2× 106 No No
Vacuum Yes Yes 6× 1011 Yes No
Grid Life Yes No 2× 106 No Yes
Pancake No No 3× 106 No Yes
Robot Yes No 2× 1011 No Yes
15 Puzzle No Yes 6× 1011 Yes No
48 Puzzle No Yes 3× 1062 Yes No

Table 1: Domain Attributes by Domain

3 Selecting an Algorithm

3.1 Decision Tree

Figure 11 shows a decision tree for selecting an algorithm. The first branch point is
selecting to prefer quality tie breaking on time, or to select time tie breaking on quality.
As was evident from the plots, it was possible to trade time for quality, and depending
which is preferred, the algorithm of choice varied.

The next branch points are domain features. The first is the cost function, since
beam searches perform much better on domains with unit cost compared to domains
with non-unit cost. The next branch point is whether or not the domain has dead ends.
Domains with dead ends also cause problems for beam searches. If the domains has
no dead ends and unit cost, beam search is the algorithm of choice for both finding
solutions quickly and finding high quality solutions.

If we value solution quality over solving time and have either non-unit costs or a
domain with dead ends, the last branch point to consider is whether or not weighted
A* with a low weight will fail. If weighted A* is a reasonable option, then we should
use weighted A*. If weighted A* fails, then we would be betteroff using beam search,
since beam searches offer better scaling behavior.

If we value time over solution quality and have a domain with dead ends or non-
unit cost, we have to decide whether we should use weighted A*or A∗

ǫ
. To that end,
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we consider whether or not thed function provides a more accurate estimate thanh. If
d is more accurate thanh, as is the case in some domains, then we should selectA∗

ǫ
,

otherwise we would be better off using weighted A*. Of the domains considered, this
rule correctly predicts what to do with grid world with life costs the dynamic robot path
planning, but incorrectly selectsA∗

ǫ
over weighted A* for the heavy pancake puzzle.

Determining exactly when to usedA∗

ǫ
over weighted A* remains an open question.

Under no circumstances was LSS-LRTA* the algorithm of choice. This is hardly
surprising, since the algorithm was not designed to solve the shortest path problem with
the real-time constraint on actions removed.

4 Conclusion

We analyzed the performance of four effective greedy searchalgorithms, weighted A*,
A∗

ǫ
, beam search, and LSS-LRTA*. Our results showed that which algorithm could

be considered “best” depended on user preferences based upon value placed on time
and solution quality, as well as domain features. We also observed that which algorithm
worked the best depended on what kind of hardware was available, since more powerful
machines can use weighted A* which may not be a reasonable option on a less powerful
machine due to either time or memory.

We compile these results into a decision tree, and use that tree to help us decide
which algorithm should be run in a given situation.
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