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Abstract— The popularity of Web-based transactions and the
need for more sophisticated content distribution methods has
helped to fuel the rapid growth of Web Service adoption,
specifically, HTTP-bound Web Services. Secure and efficient
content delivery has long been a requirement of traditional
Web-based distribution schemes, and existing the Web infras-
tructure provides numerous options for securing and optimizing
HTTP. Two exemplary technologies are SSL/TLS and HTTP
compression. While efforts to solidify the more granular WS-
Security standards are ongoing, and methods for XML mes-
sage compression schemes continue to be investigated, HTTP
provides an interim solution, supporting transactional security
and message compression. The SSL/TLS and HTTP compression
technologies have become commoditized and pervasive. And with
the trend in content delivery toward hardware offload for these
functions, modern data centers have begun to raise the bar for
performance. In this paper, we examine three different paradigms
for implementing SSL/TLS and HTTP compression: software-
based functionality, server-resident hardware accelerators, and
centralized network-resident hardware accelerators. We discuss
the trade-offs between the two different offload techniques (i.e.,
PCI accelerator vs. network proxy) and explore their relationship
to the current performance activities, in the field of Web Services.
In analyzing the results for SSL/TLS offload, and the effects of
compression, in conjunction with SSL/TLS, we draw parallels
with the efforts of WS-Security and XML message compression.
Although optimizations for software-based cryptography will
continue to advance, the potential for hardware-based accelera-
tion should not be overlooked. We discuss our results and address
deployment scenarios for optimizing Web-based transactions, and
the future optimization of Web Service transactions.

I. INTRODUCTION

Web Services are quickly gaining in popularity and accep-
tance as the method of choice for implementing Web-based
transactions. As Web Services increase penetration into the
data center and as content distribution networks become more
reliant on Web Service technologies, the Web Service infras-
tructure must continue to evolve and achieve higher throughput
and greater capacity. To that end, numerous research activities
involving XML parser enhancements (e.g., DOM vs. SAX
vs. XPP [1]) and implementation differences [2], [3]), data
size reduction (e.g., HTTP compression [4], binary XML [5],
differential encoding [6], [7], etc.), and transport protocol
enhancements [9] are ongoing. All three techniques have been
shown to provide significant performance benefits.

Similar strategies have been applied to WS-Security per-
formance research efforts [8], where individual cryptographic
operations are typically regarded with a “black box” approach.
And while cryptographic research is beyond the scope of Web

Services themselves, privacy and trust are essential compo-
nents of the Web Service paradigm. Thus, cryptography is a
critical component of Web Service infrastructure. The impact
of software-based cryptography should not be overlooked
when evaluating core security performance enhancements.
High performing and secure transactions are integral to the
success of Web Services. Likewise, activities related to reduc-
ing the size of XML data representations should not overlook
the effects of software-based compression implementations.

The popular HTTP SOAP transport binding intrinsically
supports options for both data size reduction (i.e., HTTP
Compression) and transaction authentication and privacy (i.e.,
SSL/TLS). While efforts to enhance infrastructure protocols
are ongoing, the existing HTTP infrastructure protocol offers
proven enhancement options for existing Web Service deploy-
ments. The support and expertise in these areas is already well
developed, and significant resources have been invested into
the advancement of these features.

One concern with any post-processing technique, is the sig-
nificant CPU performance penalties associated with multi-pass
data parsing. To address such concerns, two offload paradigms
are generally employed: server-resident and network-resident
hardware accelerators.

The former is typically implemented in a standard PCI form-
factor (either as standalone devices, or integrated into NIC
cards, etc.) or integrated into the system chipset. The latter
comprises a multitude of switches, routers, load balancers, and
custom network appliances. In general, both paradigms are
effective in reducing the burden on the main CPU, but each
has its own strengths weaknesses. The following discussion
examines the trade-offs between the two offload paradigms,
compared with the purely software implementation.

This paper explores the performance characteristics of these
different infrastructure offload techniques using commercial
off-the-shelf (COTS) solutions. Comparing both the macro-
scopic and microscopic properties of these two approaches, we
extrapolate some of the generic tendencies in hardware accel-
eration, as we look to apply them to Web Service optimization
research. Having a better understanding of the lessons learned
with HTTP, we can begin to define new baselines for Web
Service quality and performance, and proceed with confidence.

II. METHODOLOGY

The test strategy was to look at three aspects of the offload
techniques: client experienced latency, server throughput, and



server CPU usage.
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Fig. 1. Network Test Configuration.

Our test network was comprised of client machines con-
nected through a Cisco R© CSS 11501 Content Services Switch
[16] to a single server. The Cisco CSS 11501 is a server load
balancing Ethernet switch with routing and offload capabilities
for SSL/TLS and HTTP compression. Fig. 1 depicts the test
setup. The clients were directly connected to the Cisco CSS
11501, via built-in 100BASE-T Ethernet links. The server
was direct connected to the Cisco CSS 11501, via a built-in
1000BASE-T Ethernet link.

A. Server Configuration

The server used in our experiments is a dual core Xeon
3.00 GHz machine. Each core has 1 MB of L2 cache and the
system has 1 GB of total RAM. The operating system installed
is Fedora Core 2, kernel version 2.6.5-1.358smp. Apache 2.2
[10] and OpenSSL-0.9.8a [11] were installed for the purposes
of these tests. Apache was built with the included mod ssl
and mod deflate modules. The mod ssl SSLRandom-
Seed directive was configured to restrict the usage to only
/dev/urandom, to avoid blocking delays that can be caused
by lack of entropy, when using /dev/random [12], and the
SSLCipherSuite directive was set to RC4+RSA+MD5, to
match the Cisco CSS 11501 configuration.

The server was also equipped with a Broadcom BCM5821
Crypto Accelerator, rev 02 [13] and a Comtech AHA
AHA362-PCIX Compression Accelerator [14]. The BCM5821
Co-Processor is installed on a standard PCI bus. The AHA362
shared the PCI-X bus with the build-in Gigabit Ethernet NIC
card. Broadcom provided a driver with the Broadcom 582x
Linux SDK Version: 2.51. Support for the BCM582x has been
included in OpenSSL since version 0.9.6c, through the stan-
dard ENGINE framework, using the ubsec engine type. The
Apache HTTP Server supports for OpenSSL ENGINEs, via
the SSLCryptoDevice directive. Comtech AHA provided
both a driver and an Apache module mod deflate aha.
The Apache HTTP Server supports the SetOutputFilter
directive for enabling the included DEFLATE type and the
Comtech AHA DEFLATE AHA type.

TABLE I

TEST FILE SIZES.

File Name File Size Compression
(bytes) Method Size (bytes) Ratio

index.html 44 N/A N/A N/A
cisco.html 66613 AHA 28650 2.33:1

CSS 16118 4.13:1
software 11951 5.57:1

xml.html 232081 AHA 115768 2.00:1
CSS 76071 3.05:1

software 53626 4.33:1

Table I provides details on the three test files used in our
experiments. It shows the original files sizes, as well as the
compressed file sizes when compressed via the AHA362,
the Cisco CSS 115011, and the mod deflate software
implementation. No compressed sizes are reported for the
file index.html, as the small size makes compression
impractical. All of the files should be fully cachable, by the
server. Problems with cache thrashing and disk access latency
should not influence test results.

1) SSL/Compression Accelerators: There are numerous sil-
icon vendors offering cryptographic offload solutions (e.g.,
Broadcom and Cavium Networks), compression offload so-
lutions (e.g., Comtech AHA and Indra Networks), as well
as combination solutions (e.g., Cavium Networks), with and
without NIC support. For cryptographic offload we chose the
Broadcom BCM5821 for its Apache and OpenSSL support,
and ease of installation. The BCM5821 also happens to be
the same device used by the Cisco CSS 11501 SSL module.
We chose the Comtech AHA AHA362 also for its Apache
support and ease of availability. The Cisco CSS 11501 uses a
proprietary compression solution not available for server-side
testing, however, the AHA362 is used in competitive network
appliances, making it a suitable candidate.

2) Network Appliance: For our network-resident accelera-
tion appliance, we chose the Cisco CSS 11501 Content Service
Switch, from Cisco Systems R©. Numerous load balancer ven-
dors offer solutions with SSL/TLS and compression offload
(e.g., Cisco Systems, F5 Networks, Citrix Netscaler, Juniper
Networks, etc.). The Cisco CSS 11501 was made available to
us for testing, by Cisco Systems.

B. Client Configuration

Four client machines were used in our test configuration.
The clients are dual core Pentium 4 3.00 GHz machines. Each
core has 1 MB of L2 cache and each system has 256 MB of
system RAM. The operating system installed is Red Hat 8,
kernel version 2.4.20-28.7.

1) Latency Testing: Latency tests were performed by issu-
ing individual requests, from a single client, to the server, using

1The compressed size of files compressed by the Cisco CSS 11501 SSL
and compression module may vary, from run to run. The Cisco CSS 11501
uses a streaming approach to reduce the buffering requirement and memory
resource impact involved in the compression process. Compression occurs as
data becomes available. Slight variances in the output of the server TCP stack
can cause variances in the Cisco CSS 11501 compression performance.



cURL [15], version 7.15.1. Scripts were used to repeat cURL
requests 1000 times. Data was then collected at the client
via tcpdump, version 3.6.3. Traces were filtered, dumped
to file, and then subsequently post-parsed, to determine the
transaction time for each request.

2) Throughput Testing: Throughput tests were performed
using the Tarantula test tool. Tarantula was developed by
Arrowpoint Communications (acquired by Cisco Systems,
Inc., in 2000) for generating simultaneous HTTP(S) connec-
tions using multiple client threads, from individual physical
machine. Tarantula was licensed for evaluation, but was never
made publicly available. Today many vendors (e.g., Ixia
and Spirent Communications) offer network test tools, for
generating large numbers of requests from large numbers of
simulated clients. We are evaluating numerous freely available
software packages (e.g. Apache benchmark, Hammerhead 2,
SSL Client, http load, etc.). For convenience, however, we
chose to use Tarantula, for the purposes of these tests.

All four clients were used in all cases, with the number
of threads tuned to reduce errors. In over-subscribed cases,
TCP timeouts and resets will occur, skewing test results. The
number of total requests was then appropriately size to create
an approximate test duration of 20 minutes. The Tarantula test
tool provides connection per second data for each machine.

3) CPU Usage Monitoring: CPU usage was approxi-
mated, by observing the output of the top command,
on the server, and the show system-resources cpu-
summary command, on the Cisco CSS 11501.

C. Cisco CSS 11501 Configuration

The Cisco CSS 11501 (CSS11501-C-K9) is equipped with
a built-in SSL/TLS/Compression acceleration module. The
Cisco CSS 11501 was configured with separate virtual servers
for: no SSL/TLS, front-end SSL/TLS, and front-end SSL/TLS
with compression.

III. RESULTS

The following sections summarize the results of our testing.
They are divided into three sections: latency, throughput,
and CPU usage. Each table and graph is broken down
by the file name and SSL/TLS and/or compression of-
fload method employed. Graphs use the notation: “encryption
method/compression method” to distinguish between sample
sets. Note: compression tests using index.html, and tests
combining Cisco CSS 11501 compression with server-side
encryption were omitted, because of the impracticality of
compressing small and/or encrypted data, respectively.

A. Latency Results

Table II shows the average latency measurements for each of
the files and offload methods. Fig. 2 and Fig. 3 offer graphical
representations of the average latency data from Table II
grouped by compression offload method, and cryptographic
offload method, respectively.

Most notably, Fig. 2 clearly displays large latency impact
of cryptographic operations. It also depicts the relatively small

TABLE II

AVERAGE SINGLE TRANSACTION LATENCY.

File Name Crypto Compress Latency (s)
index.html none none 0.003297

CSS none 0.023177
BCM none 0.022008

software none 0.023161
cisco.html none none 0.007767

none CSS 0.006949
none AHA 0.004482
none software 0.008294
CSS none 0.029119
CSS CSS 0.026685
CSS AHA 0.017385
CSS software 0.029576
BCM none 0.028097
BCM AHA 0.016154
BCM software 0.029143

software none 0.029302
software AHA 0.017272
software software 0.030314

xml.html none none 0.021826
none CSS 0.015512
none AHA 0.011738
none software 0.032399
CSS none 0.043557
CSS CSS 0.035454
CSS AHA 0.024968
CSS software 0.054249
BCM none 0.042194
BCM AHA 0.023609
BCM software 0.052634

software none 0.043598
software AHA 0.025266
software software 0.054726

difference in latency, between the cryptographic offload op-
tions, when using the same compression offload method. The
hardware acceleration appears to have no significant effect on
reducing individual transaction latency. However, as Table III
will show, the hardware acceleration greatly improves bulk
throughput. This is likely due to the parallelization allowed
for by hardware offload, freeing up the CPU for other tasks.
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Fig. 2. Average Latency per Transaction (grouped by compression method).

Fig. 3 shows the effect compression has on reducing latency,
with each cryptographic offload method. The hardware accel-
erated cases show marked improvement in latency reduction.
For the software compression cases, however, latency increases



as the additional CPU processing apparently outweighs savings
from encrypting and sending less data. The AHA362 shows a
clear speed advantage over the Cisco CSS 11501, however,
it comes at a cost. The trade of is a significantly lower
compression ratio, as was shown in Table I.
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Fig. 3. Average Latency per Transaction (grouped by encryption method).

Figs. 4 through 10 show the 1000 sample run data for each
of the cases shown in Table II. Though in many cases there
is an overlap in the samples due to the comparable latencies
across groups of test cases, these graphs show the experimental
consistency under which our averages were derived.
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In Figs. 4, 5, and 8, the overhead of SSL/TLS over cleartext
transactions can be seen, while Fig. 9 depicts the value of
compression offload, and the cost of software compression, in
large files. Fig. 4 distinctly shows the inherent latency imposed
by the SSL/TLS handshake. The time to software encrypt
such a small file should be negligible, therefore, the latency
differential may be attributed to the setup and teardown.

Fig. 11 shows the packet flow of a typical HTTP transaction.
It includes a TCP handshake and teardown, and application
data frames containing HTTP messages. While variations in
TCP transmission and ACK processing may occur, the basic
structure is constant.

Fig. 12 shows the packet flow for a typical HTTPS trans-
action. Because variations in SSL/TLS handshake processing
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is possible, this packet flow was verified using tcpdump
and ethereal, tracing cURL transactions between client
and server. The extra SSL/TLS handshake messages introduce
latency, both from the serialized message exchange, as well as
the cryptographic operations require for signing and encrypt-
ing those messages [17].

In looking at the network proxy paradigm, the packet
flow changes yet again, as depicted in Fig. 13. For net-
work SSL/TLS offload, the client connection must be TCP
terminated, SSL terminated, and HTTP terminated at the
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network device. A separate connection must be initiated, by
the network device, to the back-end server, resulting in double
the amount of data processing, by the Cisco CSS 11501 TCP
stack. Another consideration is that the Cisco CSS 11501 SSL
module does not have comparable processing capabilities, to
the dual core Xeon server. It has been shown that the SSL/TLS
handshake processing can be very processor intensive, even
without the cryptographic operations [18].
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B. Throughput Results

Table III shows a summary of the bulk throughput results.
The connections per second number is directly reported by



the Tarantula test tool. These results are specific to this
particular network configuration. Single server scenarios are
seldom optimal or practical, and are certainly not ideal for
load balancer testing. The single server scenarios serialize
requests through one server, eliminating the ability of load
balancers to batch process parallel connections. Variations
in network topology, client or server hardware or software,
cryptographic cipher suite, or compression parameters may
have significant impact on the observed results. However, for
the purposes of this comparison, using a single server allows
us to more easily saturate the server and isolate the key
usage statistics. From a relative perspective, this controlled
environment allows us to focus on the differences between
the offload methods. The megabit per second statistics were
computed manually, based on the size of the files. The “link”
bandwidth represents the actual physical network load (i.e.,
conn/sec x compressed size); the “data” bandwidth shows the
effective logical link bandwidth, from the client perspective
(i.e., conn/sec x uncompressed size). This gross approximation
of total bandwidth, that does not take into account proto-
col overhead, is provided for its relative comparison value.
Figs. 14 and 15 show graphical representations of the data
provided in Table III. Note: Because of unresolved problems
with the AHA362, at the time of this writing, we are unable
to provide bulk throughput data, for the xml.html file cases.

TABLE III

BULK TRANSACTION THROUGHPUT.

File Name Crypto Compress Throughput Bandwidth
(conn/sec) (Mbps)

Link Data
index.html none none 5283.50 1.77 1.77

CSS none 752.94 0.25 0.25
BCM none 1185.62 0.40 0.40

software none 291.90 0.10 0.10
cisco.html none none 709.53 360.60 360.60

none CSS 693.25 85.25 352.32
none AHA 1657.67 362.34 842.45
none software 250.95 22.88 127.54
CSS none 245.78 124.91 124.91
CSS CSS 332.27 40.86 168.86
CSS AHA 463.13 101.23 235.37
CSS software 245.50 22.38 124.77
BCM none 623.51 316.88 316.88
BCM AHA 744.08 162.64 378.15
BCM software 207.92 18.96 105.67

software none 242.05 123.01 123.01
software AHA 254.60 55.65 129.39
software software 144.58 13.18 73.48

xml.html none none 205.01 363.00 363.00
none CSS 208.84 121.20 369.77
none software 52.00 21.27 92.07
CSS none 88.49 156.68 156.68
CSS CSS 140.68 81.65 249.09
CSS software 51.49 21.07 91.17
BCM none 203.81 360.87 360.87
BCM software 48.94 20.02 86.66

software none 167.81 297.14 297.14
software software 45.73 18.71 80.97

Fig. 14 shows the transaction capacity of the server, for the
different offload methods. Immediately apparent is the order
of magnitude difference, between the simple, small file, HTTP

GET, and all the other cases. The end-to-end system is highly
optimized for the benchmark condition, of index page requests.
Even dwarfed below the index.html HTTP request, the
performance benefits of server and network-resident offload
over software, can be seen.
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Fig. 15, shows the relationship of raw data bandwidth,
as seen by the physical network links. This view allows
us to see the relative compression performance. Note: the
uncompressed index.html data is plotted, but is too small
to see, the AHA compressed xml.html data is not available,
and the bandwidth is a function of both the compression
performance as well as the transaction throughput, e.g. the
software compression cases affected by its higher compression
ration, but it is also limited by its low transaction throughput.
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It can be seen that the server-based BCM5821 performance
exceeds that of the Cisco CSS 11501. Given identical cryp-
tographic accelerators, the performance difference between
the server and the Cisco CSS 11501 is explained by the
difference in the hardware that feeds the BCM5821. The
processing cycles and cache available to the server is an order
of magnitude larger than that of the Cisco CSS 11501 SSL
module, with the Cisco CSS 11501 also managing twice as
many connections.



C. CPU Usage

In the previous sections, we have seen how the different
offload techniques affect the end user experience, through how
fast they receive the response, and how the different offload
techniques affect the ability off the servers to do more work.
In this section we look at the server resource cost of these
approaches. Table IV and Fig. 16 show the approximated CPU
usage observed, during the bulk throughput testing.

TABLE IV

BULK TRANSACTION CPU USAGE.

File Name Crypto Compress CPU Usage
Server CSS

SCM SSL
index.html none none 98 57 0

CSS none 13 12 100
BCM none 100 12 0

software none 100 0 0
cisco.html none none 29 4 0

none CSS 27 11 99
none AHA 83 16 0
none software 100 0 0
CSS none 9 1 78
CSS CSS 13 4 99
CSS AHA 22 7 90
CSS software 100 1 56
BCM none 100 4 0
BCM AHA 100 6 0
BCM software 100 0 0

software none 100 0 0
software AHA 100 0 0
software software 100 0 0

xml.html none none 19 0 0
none CSS 17 0 99
none software 100 0 0
CSS none 7 0 68
CSS CSS 12 0 93
CSS software 100 0 10
BCM none 63 0 0
BCM software 100 0 0

software none 100 0 0
software software 100 0 0

As with the bandwidth numbers in Table III, the CPU usage
is provided for comparative analysis, relative to the other test
cases. Three CPU usage values are represented: one for the
aggregate server use (accounting for both cores of the dual
core Xeon), and one for each of the Cisco CSS 11501 internal
processors, i.e., the System Control Module (SCM) CPU and
the SSL Acceleration Module (SSL) CPU. Fig. 16 depicts a
graphical representation of the data shown in Table IV.

From a macroscopic view, it can be seen that the high
throughput of the server requires all of the servers resources to
maintain. The relative CPU use between the Cisco CSS 11501
and the BCM5821 cases is not proportional to the effective
bandwidth differential between the two cases.

Table V shows shows the CPU usage advantage of the Cisco
CSS 11501, and the bulk throughput advantage of the server.
Although the server-based offload shows a total throughput
advantage, it is at a much higher proportional server resource
cost. If only basic Web content delivery is required, then
server-based acceleration may be optimal. However, server-
based offload may prevent network-based content inspection.
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Fig. 16. Server CPU Usage.

TABLE V

SERVER VS. NETWORK OFFLOAD.

Comparison File Name CPU Throughput
CSS/none index.html 7.69x 1.57x

vs. cisco.html 11.11x 2.54x
BCM/none xml.html 9x 2.30x
CSS/CSS

vs. cisco.html 7.69x 2.24x
BCM/AHA

If dynamic or computationally intensive content is being
delivered, then network-based offload may be more favorable.

IV. FUTURE WORK

The data provided herein concentrates on the compari-
son between single purpose cryptographic and compression
accelerators, embedded in the server, with a network-based
SSL and compression offload solution. Other offload hard-
ware techniques include server-resident SSL/compression NIC
cards, and TCP offload engines. Advancements have also been
made in cryptographic offload hardware, to help accelerate
the handshake process, as well as the bulk cryptographic
operations, and in compression offload hardware to enhance
dynamic huffman encoding. Investigation of these different
paradigms and enhancements, to discover the capabilities of
recent advancements in hardware acceleration will help to de-
fine a more practical baseline, for Web Service benchmarking.

Multiserver scenarios also need to be evaluated to obtain
a better understanding of the system and network dynamics
of real world server farms. For more realistic modeling, data
center scenarios accounting for the effects of load balancer
features and optimizations, should be evaluated. To better
quantify these trade-offs, it is also important to implement Web
Services with measurable metrics and flexible configurations
for assessing the effects of local and remote storage access
and complex computations, on the true impact of server-side
accelerators. And while the monetary cost of a network appli-
ance will be higher than the monetary cost of an individual
PCI card, the total cost of ownership is hard to quantify with
single server scenarios, because the network appliance will
be able to service multiple servers, where as PCI card costs



must be multiplied by the number of servers. Network-based
offload tends to mitigate scalability issues, however distributed
protocol interdependencies must be investigated.

Additionally, the true value of compression is in network
architecture having slow links. Modeling a system in which
clients connect through 56-kbps, rather than 100-Mbps, links
may provide better insight into the benefits of compression.

Finally, looking specifically at Web Service based offload,
there are numerous vendors offering XML and WS-Security
acceleration devices, both server-resident offload modules
(e.g., from Tirari and Xambala), and network-resident ap-
pliances (e.g., from IBM Datapower, Intel Sarvega, Cisco
Application Oriented Networking (AON), etc.). While further
work still exists in the current area of HTTP acceleration, the
future lies in the acceleration of Web Services through Web
Service specific protocols. Evaluation of the characteristics of
this new class of acceleration devices will provide the best
possible baseline, for Web Service benchmarking.

V. CONCLUSIONS

This paper presents the results of our testing with hardware
cryptographic and compression offload techniques, and the
performance of HTTP(S) transactions in server-resident and
network-resident SSL/TLS/compression offload scenarios. It
is well-known that cryptographic operations are costly when
implemented in software. Our results certainly confirm this,
and hardware acceleration of such operations has been around
for many years. However, multiple deployment options exist
for such offload. Our results show distinct trade-offs between
the higher throughput and lower CPU usage, for server-side
offload. Our testing also showed limited advantage to HTTP
compression, as it relates to overall server use and perfor-
mance. These results pose interesting implications toward the
current line of software-centric Web Service optimization re-
search. Existing activities, in the area of Web Service security
performance, and XML data compression may be directly
analogous to these corresponding HTTP infrastructure results.

The WS-Security standards employ similar algorithms and
techniques as SSL/TLS for digital signatures and encryp-
tion. While the scope and granularity and flexibility of the
WS-Security standards certainly exceed the capabilities of
SSL/TLS, many of the same pitfalls and acceleration tech-
niques may still apply. When the WS-Security reaches the
wide-spread commoditization that SSL/TLS has achieved, we
can expect to see the proliferation of WS-Security specific
offload devices. In the interim, the SSL/TLS provides a more
easily accessible platform for performance research.

Likewise, XML message compression techniques may also
be able to draw from the experiences of HTTP compression
deployments. Traditional multi-pass, file compression tech-
niques are computationally intensive and burden server CPUs.
However, they are also well encapsulated, easily offloaded,
and clearly demarcated, in the data processing flow. Although
binary representations and deserialization optimizations allow
for a more tightly integrated compression scheme, with pos-
sibly lower CPU impact, such coupling affects the ability to

offload and accelerate Web Service infrastructure. Consider-
ation should be given to the ultimate option for hardware
acceleration of all aspects of Web Service deployment.

We feel that there is significant value to understanding the
optimization techniques employed in current Web Service de-
ployments, including traditional HTTP acceleration methods.
Beyond the prevailing practical paradigms, the future of high
performance Web Services is in the migration to hardware and
possibly network offload of Web Service infrastructure. As
with most advancements in technology, it is the application
of well known and well tested ideas, to new problems and
priorities, that leads to innovation.
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