EXPERIMENTAL EVALUATION OF RF MODEMS USED IN FLEETS OF MULTIPLE COOPERATING AU-TONOMOUS UNDERSEA VEHICLES

<u>Radim Bartoš</u>¹, Venkata S. Gorla¹, Leon N. Cyril¹, Rick J. Komerska², Steven G. Chappell², and Rohit Sharma¹

- ¹ Department of Computer Science University of New Hampshire, Durham, NH
- ² Autonomous Undersea Systems Institute Lee, NH

OUTLINE

- ▶ Motivation and background
- ▶ RF modems used in the experiments
- Experiment methodology
- ► Experiment results
- ► Conclusions and future work

MOTIVATION AND BACKGROUND

- RF modems are used for communication among multiple surfaced cooperating autonomous undersea vehicles (AUVs), gateway buoys, and land or ship based operators.
- RF modems are inherently more complex than their wired counterparts which makes it difficult to estimate the performance.
- ► Goals:
 - to set realistic expectations of RF modem performance
 - to aid in the design of comprehensive communication solutions for AUVs.

RF MODEMS

Free Wave FGR-115RC

MaxStream XTend-PKG-U

NovaRoam EH900

RF MODEM OVERVIEW

	Free Wave	MaxStream	NovaRoam	
Manufacturer	FreeWave Tech.	MaxStream	Nova Eng.	
Model	FGR-115RC	XTend-PKG-U	EH900	
Dimensions (mm)	$165 \times 74 \times 57$	$140 \times 70 \times 29$	$160 \times 132 \times 33$	
Weight (g)	441	200	400	
Band	900 MHz ISM	900 MHz ISM	900 MHz ISM	
Transmit power	$5 \mathrm{mW} - 1 \mathrm{W}$	$1 \mathrm{mW} - 1 \mathrm{W}$	$10 \mathrm{mW} - 1 \mathrm{W}$	
RF data rate	9600/19200 bps	9600/115200 bps	100/400 kbps	
Host interface	serial	USB	Ethernet/ser.	
Multi-hop routing	static	no	dynamic	

UNIVERSITY of NEW HAMPSHIRE

RF MODEM CHARACTERISTICS

- ► Host Interfaces:
 - Serial (RS232), serial over USB, and Ethernet
 - Host interface has no significant impact on the performance.
- ► Multi-hop Communication:
 - *Free Wave*: static multi-hop routing
 - * Routes are set up using modem management.
 - * No automatic re-routing on path failure
 - *NovaRoam*: dynamic multi-hop routing
 - * AODV ad hoc routing protocol
 - * Entire wireless network forms a single IP subnet.

RF MODEM CONFIGURATION AND MANAGEMENT

► Free Wave:

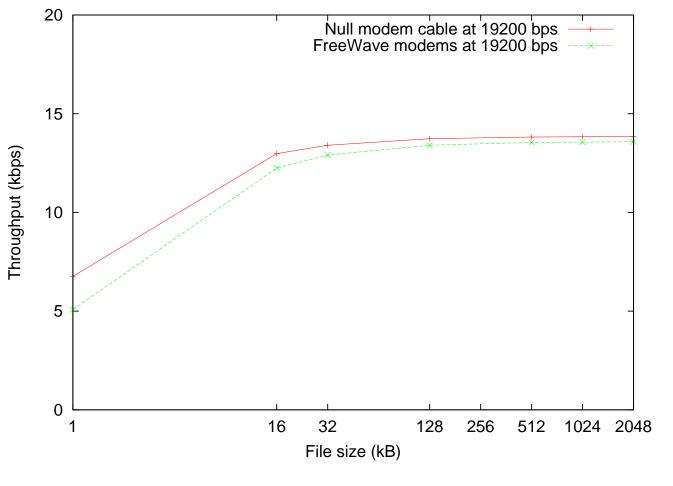
- Simple menu-based configuration mode
- Difficult to switch to the configuration mode

► MaxStream:

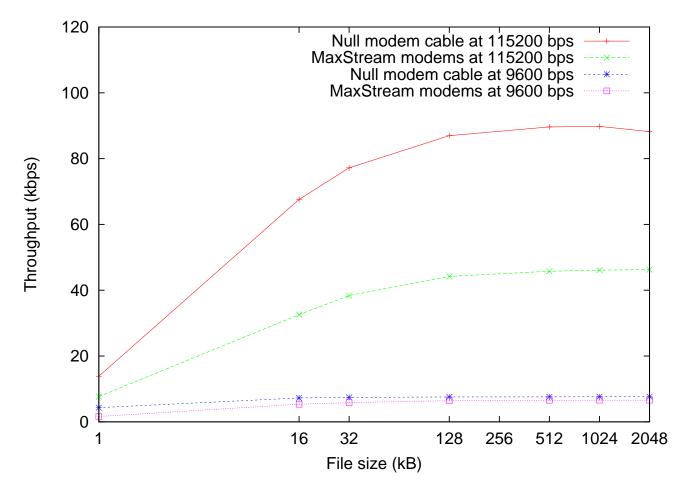
- Rich set of AT commands
- Binary control mode
- A Windows-based management application

► NovaRoam:

- Web-based configuration only
- JavaScript pages that do not work in the current version of Firefox browser.
- No reset button on the modem.

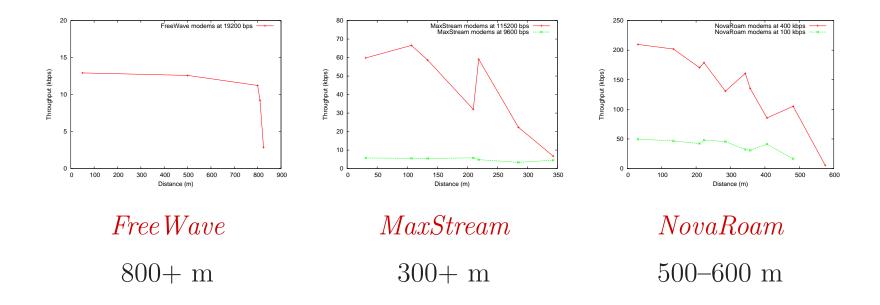

EXPERIMENT METHODOLOGY

- ► Throughput measurements:
 - Motivation: bulk data transfer using a reliable protocol
 - Measurement methods:
 - * Kermit file transfer
 - * TCP throughput measured using *netperf*
- ► Latency and jitter measurements:
 - Motivation: command and control messaging
 - Two scenarios:
 - * Single character round-trip
 - * Round trip of a 64-byte message
 - Jitter measures:
 - * *Average jitter*: average of the absolute values of differences between message latency and the average latency
 - * Max-min jitter: difference b/w max. and min. latencies


THROUGHPUT EXPERIMENTS: FREEWAVE MODEMS

Throughput of a kermit file transfer

THROUGHPUT EXPERIMENTS: MAXSTREAM MODEMS



Throughput of a kermit file transfer

DISTANCE EXPERIMENTS

Tests were carried out on the UNH campus, one modem on the third floor of a campus building, the other in a car. For most test locations, there were trees and overhead wires in the line of sight but no buildings.

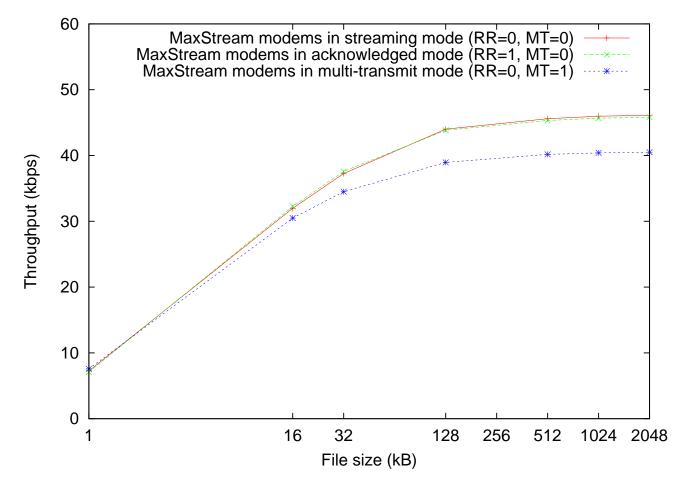
Throughput and round-trip latency of NovaRoam modems – measured using netperf

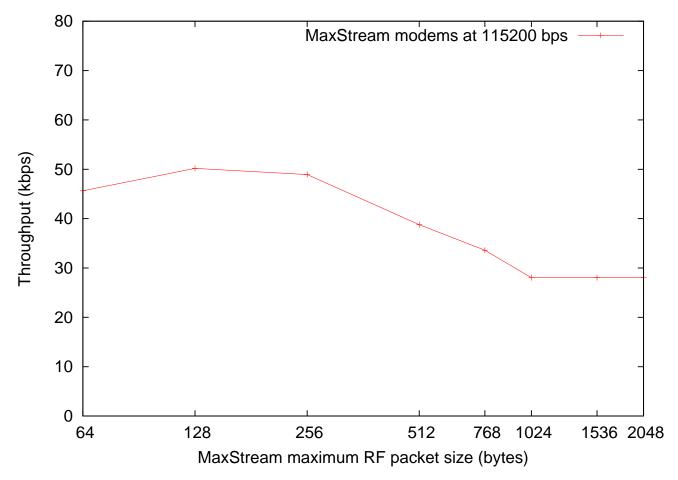
Experiment	RF Data Rate	Router	Bridge
	(kbps)	mode	mode
TCD throughout (laber)	100	48.3	37.2
TCP throughput (kbps)	400	203.5	186.4
TCD 1 but a request response (100 mg)	54.4	52.9
TCP 1-byte request-response (1	400	14.5	12.3
TCP 64-byte request response	(ms) 100	70.0	63.2
101 04-byte request response	400	19.0	17.7

LATENCY AND JITTER FOR 1-BYTE REQUEST-RESPONSE EXPERIMENTS

Modem Type	Rate	Latency	Jitter (ms)	
	(bps)	(ms)	Average	Min/Max
Loopback connector	9600	5.85	0.08	6.51
	19200	2.95	0.12	1.21
	115200	0.90	0.04	1.29
Null modem cable and a	9600	15.70	0.48	12.01
character-loopback client	19200	7.97	0.31	14.00
	115200	4.01	0.59	44.73
Free Wave w/o repeater	19200	20.95	2.33	21.06
with a repeater (2 hops)	19200	88.40	14.41	80.15
MaxStream	9600	46.17	3.16	33.01
	115200	45.09	4.64	17.89

LATENCY AND JITTER FOR 64-BYTE REQUEST-RESPONSE EXPERIMENTS


Modem Type	Rate	Latency	Jitter (ms)	
	(bps)	(ms)	Average	Min/Max
Null modem cable and a	9600	135.76	0.13	2.01
message-loopback client	115200	14.24	1.90	6.08
MaxStream	9600	319.98	1.33	32.01
	115200	80.46	1.33	14.26


MAXSTREAM TRANSMISSION MODES

MaxStream modems under different modes (RF rate 115200 bps)

MAXSTREAM PACKET SIZE EXPERIMENTS

Kermit file transfer throughput vs. maximum RF packet size (kermit packet size fixed at 1024 bytes, RF rate 115200 bps)

CONCLUSIONS AND FUTURE WORK

- Maximum achievable payload throughput is only a fraction of the RF data rate.
- ► There is significant increase in latency when compare to wired connections, likely caused by packetization overhead.
- ► Similarly, there is a significant increase in jitter.
- Support for automated control and management of the modems can be improved.
- Multi-hop transmission capabilities of RF modems are still immature.

QUESTIONS?

