SCALABILITY OFHTTP PACING WITH INTELLIGENT BURSTING
Kevin J. Ma, Radim Bartos, and Swapnil Bhatia

Department of Computer Science, University of New Hamggslihurham, NH 03824
{kjma, rbartos, sbhatjg@cs.unh.edu

ABSTRACT width management. The former relies on frame-based paecitietin

and unreliable UDP transport to allow graceful degradatioring
packet loss. However, with the advances in network infuasare,
Cfailures are less frequent, and most content providers dvpréfer
to ensure high quality, with no packet loss, using TCP. Ferl#t-
ter, the pacing employed by our HTTP streaming architeditireys
bandwidth and quality management to HTTP. RTSP/RTP also has

While streaming protocols like RTSP/RTP have continued/tdved,
HTTP has remained a primary method for Web-based video r
trieval. The ubiquity and simplicity of HTTP makes it a pogul
choice for many applications. However, HTTP was not designe
for retrieving data with just-in-time tolerances; HTTP\&s have
always taken an as-fast-as-possible approach to datedeliFor 4 disadvantage of requiring the creation of multiple UDRnec-
m_?_?_g ‘év(';:\]/ekrr;o‘évgnbzzdgéit:ngggsgﬁ?tzég ﬁ?i.z'e?ju%)c/)/ \:;dli(ﬁz)’ the éi60ns between server and client, which many firewalls do Hotva
S Performance evaluations exist for traditional Web Seratra
constraints into account. For these data types, we preserdro network level [8], but not at the architectural level. Otheports

chitecture for an HTTP streaming server using paced outia. confirm the performance of the download model compared teroth

d'S(r:]L.JtSS tthe sczlablllty adyztantgttﬁets ((j)ft.our IHHT'l:rTPP streamimgese streaming schemes [9]. In this paper we dive a step deepearamnd
architecture and compare It with fraditiona SErvepmse pare different HTTP architectures (i.e., HTTP streamingW3 TP

times an.d bandwidth usage. We alsa introduce an intel[mming download), from a video delivery perspective. HTTP dowdloa
mechanism and consider its effects on end user experience. is still widely used for video retrieval on both desktop and-m

bile platforms. Most RTMP and RTSP/RTP servers support HTTP
1. INTRODUCTION tunneling for its firewall traversability. Windows Med and

QuickTime® desktop clients support both RTSP/RTP and HTTP.
The popular definition of multimedia has evolved over tinead- Windows Medid“ mobile player, until recently, only supported
vances in technology have enabled new types of media iti@nac HTTP, and QuickTim&® mobile player continues to only support
The current focus of mainstream multimedia is undoubtetiBasn- HTTP download. In this paper, we compare the characteristics of
ing video. Over the past few years, Internet-based stregmideo our own HTTP streaming server implementation with that efdle
has become a commoditized fixture of modern culture. Schemefgcto standard Apache HTTP server. We also introduce igesit
have been proposed to combat network congestion [1], hawes® bursting and detail its effect on HTTP streaming perforneanc
work bandwidth has largely increased to meet the needs ebyid
and the performance bottleneck has moved back to the smmgami
servers. While server networking has been studied [2]astiieg
server architecture requires additional scrutiny.

From a networking perspective, video delivery breaks dovm i
streaming vs. download. Streaming is typically associatét
RTSP [3] and RTP [4]. Download is typically associated witRTHP
[5], but divided into two categories: straight download grd-

2. APACHEHTTP SERVER ARCHITECTURE

Traditional HTTP servers are optimized for delivering welge con-
tent, which typically consists of many small files. Smalldikypi-
cally imply short-lived connections. For video, howevele Bizes
are large and connections are much longer lived. With dhead
) . . ; connections, the number of concurrent connections is muncthler.
gressive download, with the latter using range requeststtieve S hich imized for f i
data in chunks. A third HTTP option, which we proposeHisTP ervers which are optimized for fewer concurrent connestimay
. ’ - . ; . suffer from head-of-line blocking in the request queue hwitffic
streaming uses paced data output. (Client side pacing, using rangg. . rilv comoosed of long-lived video streams
requests, is another HTTP option [6], however, it requingstam P y P 9 ’

.) L The Apache Web Server is the de facto standard in open source
client software, which negates the ubiquity advantagesToff) :
-~ . Web serving. Apache spawns a bounded number of new processes
Our results show resource efficiency advantages with ourfHTT

streaming architecture, over straight HTTP download. HTTPto handle incoming requests, where each request is assigriedi

.] o own process in a run-to-completion model. Output data i$ asn

streaming also maintains the ubiquity advantage of HTTRr ov ; . : - .
. SO fast as possible, with fairness between active connecfmosesses)
protocols like RTSP/RTP or RTMH7]. Ubiquity is a key factor as managed by the underlving OS
we consider the future of multimedia. As browser-based damie 9 Y ying '
continues, HTTP will continue to play a crucial role in moigdia’s
evolution, and HTTP needs to evolve to meet the changingmneed 3. ZIPPY HTTP SERVER ARCHITECTURE
While RTSP/RTP have a number of streaming related enhance-

ments, two of the key features are network resilience andl-ban The Zippy streaming server we developed uses a single tficead
managing all sessions, rather than a process per conned@ies-

1While the ubiquity of RTMP in Web-based video distributicoutd eas-
ily be argued, the proprietary nature of RTMP make it inasit#s to server 2While iPhonéM/iPod® Touch use range requests, the default is to re-
and protocol developers. guest the entire file, in a degenerate case that mimics Istrddagvnload.

Apache Zippy 6

Process 1 Process 2 Process N Process T Zipp)} (no-bhrst) T n
Session 1 Session 2 Session N Session 1 Session 2 Session N lep&(b:crrs]te) :
state state state state state |77""°7 state 5r p 1
T T ¥ -
’ Session pacer ‘ ; 4t e
w w] 2
v ¥ v o] J—
© HHE
- 3 F i
0OS and protocol stack 0OS and protocol stack ~
[5}
(]
Network Network 2
iinterface iinterface E 2F]
o
Fig. 1. Comparison of Apache and Zippy architectures. ir ewaenRReR0ect

___0oe0m0

! ! !

0 10 20 30 40 50 60 70 80 90 100

sion state is managed by our session pacer rather than lyydinali

processes. Fig. 1 shows the difference between the Apachie mu Session ID
process architecture and the Zippy single thread architectWith
Zippy, connection fairness is explicitly enforced by thesien pacer, Fig. 2. Playback latency for 100 concurrent sessions.

rather than the OS scheduler. While other single-thread€dFH
server options exist, Zippy is focused on using fair accesset

sources, via the session pacer, to better support largeemsnath qual 2.5 GHz quad core Xeons and 4 GB RAM, running RHELS5.1.
concurrent long-lived connections. The large number ddifelrses- The machines were connected via a Gigabit Ethernet network.
sions provides an advantage over servers capped by prawéss | The tests were performed using a 1 MB data file. A constant
The session pacer maintains sessihsn a heap, ordered by it rate of 400 kbps was assumed, which gives the file a duratio
the sessions’ next absolute send time. Absolute send tineesak of 20 seconds. The client buffering requirement was assutmed
culated as current wall clock time plus the pacing delay siany pe 4 seconds (or 200 KB). Client underruns checks were paeior
overhead:Ticna(i) = Trnow + Gpace(i) — ki- The pacing delay is against the known constant bit rate, for each packet afeeiritial
calculated using Zippy's fixed chunk size and a known cotdtéin p ffer load (i.e., first 200 KB).
rate (assumed for simplicity) for the sessi@;cc(;) = c/ri. The The test client is a multithreaded application which spaans
constant bitrate is derived from the file size divided by thedura- 4,ead per connection. The connections are initiated astadrawd,
tion: r; = s;/d;. Overhead includes processing latency and catchyith 500 microseconds between each request. Timestamps wer
up delays as described below. _ _ recorded relative to the start of the test, as well as raatvthe
Zippy employs intelligent bursting mechanisms: one to RalC firs; TCP connection attempt. A sniffer monitored actualdsidth
up sessions when network latency inhibits chunk sendshen® seq. As scalability was our main focus, for each test, wenined

decrease playback latency for media files. During period@tfork he nerformance of 100 and 1000 concurrent connections.
congestion, full or near-full TCP buffers may cause pag@ids or

send failures. In such an event, future pacing delays amtestenl to
help the sessions catch®uThis adaptive bursting is used to prevent 4.1. Playback L atency
network issues from causing underrun.

User experience can also be enhanced through client buff
preload. To combat jitter and prevent underrun, video fitg/pack
typically will not commence until a sufficient amount of viéas
been buffered. With paced output, the playback bufferingney
negatively effects user experience. This can be avoideditstibg
the initial portion of the media file.

Zippy manages bursting by monitoring bandwidth threshtdds
prevent bursting sessions from interfering with the minimioand-
width requirements of paced sessions. Bursting uses ordgssex
system bandwidth, divided evenly between all burstingieassor
only high priority sessions.

e\l')/e consider playback latency as the amount of time requiredrd

enough data to fill the client buffer. Given our assumption dfsec-
ond buffer, streamed output without bursting should taks tean 4
seconds to send the 200 KB. For a single straight downloa,Gi
gabit Ethernet, 200 KB should take about 2 millisecondss plker-
head. Figs. 2-3 show the playback latencies for each of 000/1
sessions, respectively. The latencies are offsets fronfirgteT CP
connection request, in seconds, sorted from low to high.

In Fig. 2 the Zippy no-burst line, as expected, is consigtgust
below 4 seconds. The Zippy burst line shows a much lower ¢gten
but with similar consistency across all sessions. The figi@ache
connections are must faster than Zippy (burst or no-bufst first
20 Apache connections take about 60 milliseconds3(millisec-
4. EXPERIMENTAL RESULTS onds per connection). Taking into account overhead, thechga

. . . results are as expected. The rest of the Apache plot, howleois
For our experiments, Zippy and Apache 2.2.6 were installed 0 e 5 step function. The steps represent the head-of-lioeking
server with a 2.2 GHz Core2 Duo CPU and 2 GB RAM, running gnq latency of run-to-completion download.

FC8. (The Apache version corresponds to the default httgtelia-
tion for the FC8 distribution used.) To ensure that the tésttis not
a limiting factor, test client software was installed on achiiae with

In Fig. 3 we can see that Apache performance is noticeably
worse, compared to 1000 sessions. At a certain point, Afmche
head-of-line blocking delays begin to cause TCP timeoutstha
SWhile a larger chunk size (rather than a shorter delay) cbeldised TCP back off causes more significant latency penalties.

for catch up, if network congestion is the cause of the fajltinen the TCP With 1000 sessions, the total bandwidth requirement goes up
window is most likely limiting how much data can be sent. significantly, which inhibits Zippy's ability to burst. Weaa see this

30 T T ‘ ‘
Zippy (no-burst) +
Zippy (burst) ©
25 L Apache i
O —rT |
> 20]
(8]
c
i}
S 15}]
X
Q
<
<
=z 10 ;]
o
5 . 4
 —
0 L L L L L L L L L

0 100 200 300 400 500 600 700 800 900 1000
Session ID

Fig. 3. Playback latency for 1000 concurrent sessions.

in Fig. 3 as the playback latency for Zippy burst and Zippytowst
converge. However, the worst case for both bursting andumstibg
is still significantly better than Apache.

Apache is faster than Zippy (burst or no-burst), for 20 ordew
connections. This is due to the default Apache process fonit

the given machine. The Apache process limit maybe manualy i

creased, however, the strain on system resources is gieeat, wan-
aging 1000 processes. Zippy consumes far fewer resourdéat
concurrent sessions, and its consistency in processisgsgions in
parallel gives it a noticeable advantage in response time.

4.2. Download Time

We consider download time as the relative time at which th&esn
file download completed. Given our assumptions of a 20 sefilend
duration, streamed output without bursting should take tean 20
seconds from the time the HTTP connection is accepted. Fogkes
straight download, over Gigabit Ethernet, 1 MB should takewa 10
milliseconds, plus overhead, from the time the HTTP corineds
accepted. Figs. 4-5 show the download start and end timesafdr
of 100/1000 sessions, respectively. The times are offsets the
start of the test in seconds, sorted from low to high.

In Fig. 4 the Zippy no-burst line, as expected, is consiténst
below 20 seconds. The Zippy burst line is consistently autté
seconds, which takes into account the 4 second burst, fetidyy
pacing thereafter. The Apache download times are dwarfetthdy
paced completion times. In the worse case it takes littleentioain 1
second to complete the straight download, which is as eggect

30

‘ Zipp)} (no-Burst) —
Zippy (burst) me—
25 Apache m— J

)
]
E
'_
0 10 20 30 40 50 60 70 80 90 100
Session ID
Fig. 4. Download time for 100 concurrent sessions.
30 —— ‘ ‘ ‘
Zippy (no-burst) m—
Zippy (burst) s
25 Apache m—
20
e
(0]
2 15
|_
10
5
0

0 100 200 300 400 500 600 700 800 900 1000
Session ID

Fig. 5. Download time for 1000 concurrent sessions.

4.3. Bandwidth Usage

We consider bandwidth usage as an aggregate for the entuer.se
Given our assumptions of a 400 kbps second constant bit rate,
streamed output without bursting should require 400 kbpsiptve
connection. Figs. 6-7 show the bandwidth used in the 10100
sessions cases, respectively. The bandwidth (in Mbps)dslesed,
over time, as an offset (in seconds) from the start of the test

In Fig. 6 the Apache plot is clustered within the first second a
close to the practical capacity of the Gigabit Ethernet netvand

In Fig. 5 we can see again that for 1000 sessions, Zippy perfoithe OS protocol stack. The Zippy burst plot also has a marksec

mance is about the same, but Apache does noticeably worsdadth

100 or so bursted sessions did not have enough excess bamdovid

really burst, however we can see that those sessions sttltie no-
burst deadlines. Apache, on the other hand, due to the expahe
backoff in TCP, takes significantly longer to download thst 200
or so connections. Even though the total time to actuallyrdoad
is less, the user perceived time is quite high.

For larger files, straight download latency gets worse, aotem
TCP timeouts occur. Compounding this is that many typesients
(esp. mobile) are unable to buffer entire files, which causgp
back pressuring. This only exacerbates head-of-line bigaksues.

to the network limits, at the very beginning, representitsgburst,
then periodic bursts of data are seen. A similar pattern gbgie
bursts is seen for the Zippy no-burst plot, but shifted toribét,
given the longer duration. The end times times for the Zippssb
and no-burst plots are at the expected 16 and 20 secondgcresp
tively and the calculated average bandwidth used, oveuth&g/20
seconds, is close to the expected 40 Mbps.

The irregular burstiness of Zippy plots is an artifact caubg
data send clustering and offset sampling. Data send cingtec-
curs when all sessions are initated at the same time, as with o
flash crowd scenario. This synchronization manifestsfiesebursty

1200 — T T T
Zippy (no-burst) +
Zippy (burst) ©
1000 | Apache x]
@ L]
2 800 o
=3
K=
ES 600 - X X 1
s L o + * .
-8 o + o] ° + ° ©
g 400 ° o i A 0 .. 1
200f. ° 17, ° 1
0 o} ° +4L ® o j O@O‘A*)
0 5 10 15 20 25
Time (s)
Fig. 6. Bandwidth usage for 100 concurrent sessions.
1200 — T T T
Zippy (no-burst) +
Zippy (burst) ©
1000 f Apache *]
2 800
] ¥
=3
z
ES 600
2
2
3 400
200
0

Fig. 7. Bandwidth usage for 1000 concurrent sessions.

bandwidth usage. Average bandwidth used is actually muekrlo

due to the pacing delays. Offset sampling is the differerstevéen

pacing rate and bandwidth sampling rate. When the burstesos

to be the preferred medium for distributing all types of aining
media and as such, HTTP servers need to evolve to incorpopate
timizations for these new classes of realtime media. Webelihat
our architecture is a step in that direction.

We continue to explore new aspects of HTTP streaming scala-

bility. We believe that combining some of the streaming atieges
of RTSP/RTP with the ubiquity, simplicity, and robustne§sid TP

provides an optimal solution for practical deploymentpeesally in

the case of mobile devices. We are evaluating differentdyrearst-
ing schemes, for maximizing bandwidth usage, as well astige-
ing their effects on different traffic profiles (includingf@rent types
of audio/video files, as well as alternative types of stremnmedia,
e.g., microblogging or ticker data). We are also looking idiffer-

ent jitter injection mechanisms (similar to BFD [10]) to cbat data
send clustering, without impacting user experience. Tleréuof
multimedia is going to include more categories of realtirm&acand
new modes of interactivity. With HTTP the likely transporeah-

anism, these new traffic patterns need to be studied so thaPHT
server architecture can be properly optimized for the futur

(1]

(2]

(3]

[4]

(5]

(6]

a sampling boundary, a high and low bandwidth measurement ar

seen; the offset sampling rate ensures that boundariebanifiossed
at different points within the burst.

[7]

In Fig. 7 the Apache plot is again always at maximum band-

width, with holes representing the TCP backoff. The Zippysbu

plot shows the burst at the beginning and tails off at abousei®
onds. The Zippy no-burst plot is relatively evenly disttisiL

5. CONCLUSIONSAND FUTURE WORK

We have shown the scalability value of a single threadedegac-
chitecture for HTTP streaming. This architecture enabt@mec-
tion fairness for a larger number concurrent connectiorslevstill

maintaining the ability to use greedy delivery for a smatiamber
of concurrent connections. Traditional HTTP servers ateroped
to service short-lived connection requests, but they abetimal
for long-lived connections (e.g., live and on-demand atvitieo, as
well as other emerging live data streams). The browser woes

6. REFERENCES

C. Chen, Z. Li, and Y. Soh, “TCP-friendly source adaiati
for multimedia applications over the Interned@urnal of Zhe-
jiang University - Science A (JZUS-A)p. 1-6, February 2006.

D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradha
and J. Tracey, “Server Network Scalability and TCP Offload,”
in Proceedings of the 2005 Annual USENIX Technical Confer-
ence April 2005, pp. 209-222.

H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Stnea
ing Protocol (RTSP),” RFC 2326, Internet Engineering Task
Force (IETF), April 1998.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson
“RTP: A Transport Protocol for Real-Time Applications,” RF
3550, Internet Engineering Task Force (IETF), July 2003.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter
P. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol
— HTTP/1.1” RFC 2616, Internet Engineering Task Force
(IETF), June 1999.

N. Farber, S. Dohla, and J. Issing, “Adaptive Progness
Download Based on the MPEG-4 File Formaigurnal of Zhe-
jilang University - Science A (JZUS-Ap. 106-111, February
2006.

L. Larson-Kelley, “Overview of streaming with Flash Me-
dia Server 3,” February 2008http://www.adobe.com/devnet/
flashmediaserver/articles/overviestreamingfms302.html.

[8] T.Shinozaki, E. Kawai, S. Yamaguchi, and H. Yamamotey-'P

[9] Y. Won, J. Hong, M. Choi, C. Hwang, and J. Yoo,

(10]

formance Anomalies of Advanced Web Server Architectures in
Realistic Environments,” ifProceeding of IEEE International
Conference on Advanced Communication Technology, 2006
(ICACT 2006) Feb 2006, pp. 169-174.

“Mea-
surement of Download and Play and Streaming IPTV Traffic,’
IEEE Communications Magazinpp. 154-161, October 2008.

D. Katz and D. Ward, “Bidirectional Forwarding Deteain,’
Internet Draft Version 8 (draft-ietf-bfd-base-08), Intet En-
gineering Task Force (IETF), March 2008.

