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Abstract

We consider the case of sparse mobile sensors deployed
to implement missions in challenging environments. This
paper explores a notion of tour networks that is well suited
to circumstances in which autonomous sensing agents can-
not rely on standard networking abstractions and must cre-
ate their own opportunities for communication and interac-
tion. Tours are high-level building blocks that combine mo-
tion, communication and sensing and can be assembled to
implement a broad class of autonomous sensing missions.
They are supported by an architecture designed to deliver
performance and robustness without compromising design
abstraction.

1 Background and paper overview

Mobility has the potential to dramatically broaden the
range of sensing applications, but it also presents an array of
unfamiliar obstacles to the networking task. Moreover, sen-
sor mobility often coexists with environmental challenges
that make it even more difficult to implement standard
networking abstractions reliably and efficiently. We have
started to explore strategies that forgo all-purpose network-
ing in favor of mission-aware designs that can better use
communication links opportunistically. We refer to such
systems, in which mission-driven agent interaction is not
expressed in terms of standard general-purpose networking
abstractions, as disconnected mobile sensors.

Much work has been done to implement standard net-
working functions and protocols as efficiently and compre-
hensively as possible in mobile networks with the goal of
attaining a general purpose networking abstraction that can
support a broad range of missions. Mobility, sparseness of
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the network, and environmental challenges must be circum-
vented in order to provide users with the functionality found
in more structured networks. Major progress has been made
in the recent past towards this goal, for instance through
elaborate routing algorithms that perform satisfactorily in
spite of network disruptions, including in topologies that
are possibly never fully connected [10, 4, 9].

Nevertheless, there remains circumstances in which a
general purpose network is undesirable, if at all possible.
Reasons that prevent the establishment of a general purpose
network vary and may result from design, the sensitivity of
the mission to delays, limited resources or characteristics of
the environment. An illustrative example is the case of Au-
tonomous Underwater Vehicles (AUV) deployed in vast ar-
eas and limited to comparatively short-range acoustic com-
munication [7, 8]. Other cases include stealth missions, in
which short-range communication is used to avoid enemy
detection, or the use of energy efficient point-to-point di-
rectional communication devices, which make it difficult to
maintain a connected network when nodes are mobile. In
situations like these, agents are able to (or choose to) com-
municate in particular configurations of the agents only, for
instance by having AUVs move underwater to within com-
munication range of each other or surface in order to use
radio links, or by having autonomous drones fly in close
parallel lines so they can rely on low-power communication
links difficult to intercept by their adversary.

In contrast to the work mentioned above, a key char-
acteristic of our approach to such networks is that it does
not attempt to hide the fact that the system is disconnected.
In particular, this shift in perspective means that agents do
not rely on a seemingly stable communication layer im-
plemented on top of dynamic links but rather acknowledge
the fact that application-level interactions can only happen
in specific system configurations. Recently, computation
models have emerged for such disconnected mobile agents,
in which participants opportunistically form groups in order



to interact [5, 1]. These models have been used to character-
ize classes of computable functions and to show that mean-
ingful computations can be performed under fairly weak as-
sumptions regarding which groups of agents actually get to
interact as the system evolves.

These models take the extreme view that the environ-
ment controls the interaction among agents and only min-
imal constraints are specified regarding what this environ-
ment might do. In reality, many networks consist of au-
tonomous agents, which have more control over their mo-
bility than this adversarial model allows for. This controlled
mobility can be taken into account to refine the models so
that more precise evaluations can be performed, including
performance-related results. Work on data ferrying [11] ex-
ploits controlled mobility to minimize communication de-
lay. In this paper, we focus on a model of opportunistic
computation induced by controlled mobility, which we call
a tour-network. Our model retains the notion of group-
based, joint operations and the absence of a standard net-
work abstraction. However, it is defined in a context of con-
trolled mobility in which agents are responsible for reaching
system configurations that enable the desired interactions.

Controlled mobility does not mean that we assume en-
vironments to be benign. We still envision autonomous
sensors deployed in challenging surroundings and therefore
do not expect that they can always reach the desired sys-
tem configurations successfully. Accordingly, the proposed
tour-network model must be supported by an architecture
that makes it possible for designers to rely on tour-based
designs in spite of failures, delays and other environmental
disturbances. This paper proposes such an architecture.

Since mobile sensor networks are being tasked with in-
creasingly complex missions, designers will benefit from
new abstractions that let them focus on the mission objec-
tives. We propose that missions for disconnected mobile
sensors be designed in terms of a tour-based abstraction,
for which we provide a supporting architecture. This archi-
tecture facilitates the design of complex missions by com-
bining motion, sensing and computation within a unified
tour mechanism. We focus on a class of missions charac-
terized by periodic sampling accompanied by an ongoing
in-network computation of the mission’s objectives by the
sensors in a distributed way. Examples of such missions
include complex event detection, intrusion perception and
tracking, or monitoring of physical phenomena.

2 Tours and tour-networks

At a conceptual level, each agent in the system is charged
with a sensing task (to repeatedly sample its share of the
area of interest) and a computing task (to collaborate with
other agents in order to perform a distributed computation
based on the data acquired by sensing). This data is used,

individually or cooperatively, in an ongoing mission-related
computation. The systems implemented by these agents are
thus reactive systems, characterized by a continuing inter-
action with their environment. Agents are mobile and they
clearly use their motion capabilities in their sensing task.
Moreover, since we assume a mission context in which it is
impossible or undesirable to maintain connectivity among
participants in the system, agents also need to rely on mo-
bility to arrive at system configurations in which interac-
tion is possible and to form groups that perform collabo-
rative computation steps. Tradeoffs and design complexity
stem from the fact that motion, which takes time and con-
sumes resources like energy, is used for both the sensing
task and the interaction with other agents. Agents must be
programmed so they all visit their share of the area of inter-
est and they form groups often enough to carry out a dis-
tributed computation from the acquired data. We propose to
facilitate the implementation of such networks by designing
them in terms of an abstraction that combines motion, sens-
ing and computation, and by developing an architecture that
supports this abstraction with efficiency and reliability.

The primary component of the proposed abstraction is
a tour. A tour represents a period of activity of an agent,
including motion, sensing and computation. It is defined
by an area, a collection of meeting points and a schedule.
The tour area represents the agent’s share of the overall area
of interest. Meeting points are those configurations of the
system in which agent interaction is possible. (In its sim-
plest form, a meeting point is a location where agents gather
to communicate, hence its name.) The tour schedule de-
fines the times at which these meetings occur. Each agent
implements its tour with a trajectory that repeatedly visits
meeting points according to the schedule (thus allowing in-
teraction and collaboration with other agents) while scan-
ning and sensing its assigned area and while maintaining
mission-related constraints such as maximum speed, energy
consumption or sensing-rate.

The notion of a tour provides system designers with
building blocks they can assemble into solutions to par-
ticular missions, allowing them to shift low-level mo-
tion, sensing and communication operations into the tour-
implementing trajectory. Given a specification, a solution
is designed as a collection of tours (one per agent) assem-
bled into a network (of tours). In particular, the algorithmic
steps necessary to solve the mission are designed as compu-
tation and communication steps that agents perform during
meetings.

Formally, a tour network can be represented as a graph.
The vertices of this graph are the tours and the edges are the
meeting points. The meaning of an edge is that the agents
in charge of the tours connected by the edge will meet reg-
ularly at this meeting point to exchange information and to
perform joint computations. In contrast to typical graph rep-
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Figure 1. A rectangular grid network of tours
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Figure 2. A hexagonal grid network of tours

resentations of networks, it is not that the agents share a link
through which they may communicate at any time. We con-
sider graphs with both multi-edges (the same agents may
meet in more than one location) and hyper-edges (meetings
may involve more than two agents). Moreover, these graphs
are enriched with node and edge annotations that represent
the geometry of the area covered by a tour and the locations
and schedules of meeting points.

As an example, fig. 1 shows a section of a fully labeled
tour network in which tours are assembled into a rectangu-
lar grid. Each tour area is a rectangle to be monitored by
an agent and is associated with four meeting points, located
on the four borders of this area. Meeting points are labeled
with relative times within the tour cycle, chosen from the
set {0, 1

4 , 1
2 , 3

4}. This results in a schedule that maximizes
the shortest time between two meetings (to a quarter of the
cycle). The idea is to give agents as much time as possi-
ble between any two consecutive meetings to scan the re-
gion during trips from one meeting point to the next. The
right-hand side of the figure shows a possible implement-
ing trajectory for one of the tours. Such a trajectory vis-
its the meeting points at the specified times while scanning
exactly a quarter of the area when traveling from a meet-
ing point to the next. Fig. 2 shows a different network, in
which tours are assembled into a hexagonal grid. In this

network, each agent interacts with six neighbors and must
attend three meetings per period at relative times {0, 1

3 , 2
3}.

In contrast to the pairwise meetings of the previous exam-
ple, each meeting in this network involves three agents and
represents a tripartite computational step.

3 Tour-supporting architecture

In tour-based designs, agents must attend meetings ac-
cording to an agreed-upon schedule in order to communi-
cate and collaborate with other agents. Each agent is re-
sponsible for building a trajectory that allows it to visit
meeting points at the scheduled times while scanning its
area for data acquisition. Relying on tour networks thus
requires agents to interact in a loosely choreographed way
so the necessary encounters are likely to occur. This makes
the realization of a tour-based design a nontrivial task, espe-
cially in challenging environments: Agents may miss meet-
ings because of failures or delays, and this can have adverse
effects on the agents’ mission. If tour networks are expected
to facilitate mission design, they must be supported by an
architecture that implements them reliably and efficiently
in spite of environmental challenges.

We propose an architecture capable of realizing tours
and tour networks in spite of challenges such as agent loss
(transient or permanent) or delay. This architecture al-
lows agents to monitor their surroundings and to adapt both
the tour network itself (in a distributed, cooperative way)
and their individual tour implementing trajectories based on
changes in the environment. This capacity of the architec-
ture to reconfigure tours as the mission progresses results
in an implementation of tour-based designs that is adaptive,
efficient and reliable. The architecture is built on top of
standard system control interfaces, which are used for the
low-level implementation of the motion, sensing and com-
munication necessary in each tour.

The proposed layered architecture is outlined in figs. 3
and 4. It starts with a mission planner, which is an offline
component in charge of designing a tour-based solution to
a particular mission, given resource and environment con-
straints. This design may or may not be computer aided,
making use for instance of optimization techniques, but it
is essentially an offline activity. It results in a tour network
that represents the stable state of the system—which parts of
the area are monitored by which agents, where the meeting
points are located and when meetings are scheduled. These
initial tour specifications are uploaded into the agents before
they are deployed, after which the tour control layers handle
the online activities required to evolve and implement this
statically designed tour network.

The Tour network transformation layer is handed over
the tour network designed by the mission planner as well as
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a set of desirable mission properties enjoyed by the network
in its stable state, like resilience or adaptiveness or perfor-
mance. These properties involve quantities such as the size
(number of participants) of meetings, the duration between
two consecutive meetings on a given trajectory, or the low-
est sensing rate acceptable for the mission. The role of the
tour network transformation layer is to adjust the network
to take into account changes in the environment, including
the loss of agents, while striving to maintain mission related
properties of tour networks, as specified by mission design-
ers. Some desired properties can be guaranteed to endure,
for instance that no agent is attending more than N meet-
ings per cycle, or that no meeting involves more than M
agents. Other properties, however, are only used as guide-
lines and are handled in a best-effort fashion. For example,
it is not possible to guarantee a minimum sensing rate for
each point in the area if there is no known upper bound on
the number of agent failures.

The tour network transformation layer relies on a col-
lection of distributed protocols used by agents to au-
tonomously and cooperatively reconfigure a tour network
in reaction to changes in their environment, for instance
by adding or removing meeting points, by changing the
location and/or time of a meeting point, or by repartition-
ing an area among a group of agents. Most (but not all)
of these network transformations are coordinated, requir-
ing that agents interact to put them into effect, but they are
essentially local (no central coordination) and have limited
impact on the rest of the network. Some transformations
are triggered by single-agent detection of a change in the
environment, after which an agreed upon modification to
the network is performed. As an example of such an un-
coordinated transformation, consider an agent that interacts
with four other agents using four meeting points for pair-
wise meetings. If this agent is lost and hence stops attend-
ing its meetings, all four agents can detect this loss individ-
ually when they realize that the fifth agent has not attended
a meeting and then implement a transformation that the four
of them had agreed upon beforehand. Sect. 4 illustrates pos-
sible tour network transformations and the mission-related
properties they result in.

The next layer in our architecture is the Tour imple-
mentation layer, in charge of implementing and monitoring
tours at the level of one agent. The task of this layer is to im-
plement, by building a suitable trajectory, the current tour of
an agent, as handed down by the tour network transforma-
tion layer following network evolution. In the upward direc-
tion, the tour implementation layer is used to monitor tours
and report relevant information to the tour network trans-
formation layer. For instance, agent loss can be detected
by missed meetings and reported above so the network can
be reconfigured accordingly. Various information regarding
the current trajectory and sensing data can be forwarded to
the tour network transformation layer to be used as guide-
lines when network transformations are being considered
and decisions that affect the tour implementation layer need
to be made, such as the location and schedule of meeting
points.

Finally, the tour implementation layer relies on a con-
trol layer to physically drive the corresponding agent and
gather information from its environment. This layer is re-
sponsible for localization, sensing, the implementation of
low-level motion and communication commands and ele-
mentary distributed computing operations, like leader elec-
tion or atomic commitment. It handles variations in the en-
vironment, both in terms of motion primitives (using stan-
dard control system) and communication primitives (using
standard networking techniques), and informs the tour im-
plementation layer of conditions that this layer cannot han-
dle directly.
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Figure 5. An example of topological transformations after a node failure and corresponding geometric transformations

4 Tour-network transformations

At a fundamental level, the role of the tour network
transformation layer in the architecture described above is
to maintain the desirable topological (graph-theoretic) and
geometrical properties of a network of tours in spite of
changes in the environment. For instance, when agents
meet, they can decide to move the location and schedule
of the meeting point for the next cycle if they jointly de-
cide that the new time and location will result in better
trajectories. In contrast to such transformations involving
only meeting times and tour area geometry, more elaborate
transformations can modify the tour network topology by
adding, removing or merging meeting points, or by modify-
ing the membership of one or more meetings.

Such topological and geometrical transformations may
be interdependent: A topological transformation may trig-
ger geometrical adjustments and vice-versa. For instance,
a topological step that removes a meeting point from a
network can be followed by geometrical steps that adjust
tour areas and trajectories now that there is no need for
agents to visit the meeting point that was eliminated. Con-
versely, changes in agent tour areas and in the locations of
their meeting points may result in a suboptimal topology in
which agents geometrically close do not interact directly,
thus triggering a topological step to create a new meeting
point.

To illustrate the changes that take place in the tour trans-
formation layer, the external events that trigger them and
the mission-related metrics that guide them, consider the
following scenario. A regular grid of tours is deployed for a
sensing mission during which, at one point, an agent is per-
manently lost. Fig. 5 represents a possible series of steps
that agents can take to adapt the network after such a fail-

ure. The top row outlines the topological transformations
undertaken by the network; the bottom row describes the
evolution of tour areas, meeting point locations and aver-
age scanning rates. Black dots represent meeting points and
large white circles represent tours, as before (the meeting
times associated with each meeting point are omitted for
clarity). Each tour area is drawn in the bottom part of the
picture, using gray levels that represent scanning rates (the
darker the gray, the higher the rate).

In (a), the network is in its stable state: each agent mon-
itors a unit square using a trajectory that visits four meeting
points per cycle (up, down, left and right) and the entire
area is sampled with high rate. In (b), the agent in charge
of the central tour fails. The corresponding area is then not
monitored at all (null sensing rate). In (c), the four neigh-
bors of the missing agent detect (at different times) that the
agent is missing, based on the fact that it is not attending its
scheduled meetings. They unilaterally switch to an agreed
upon new pattern in which the lost agent is replaced with
a new meeting point attended by all of its four neighbors.
At the same time, the tour area of the missing agent is split
into four triangles used by all four neighbors to extend their
own tours. Since the tour areas of these agents get larger,
they are rendered using a lighter gray to represent the de-
crease in scanning rate. So far, the agents of the four corner
tours have not been involved. They continue to scan their
areas with the same rate and they attend the same meetings
as before. In stage (d), the four agents already involved
in the operation decide to split the new meeting point into
four pairwise meetings, presumably because a meeting of
four agents was deemed undesirable by the mission plan-
ner. Finally, in (e), the agents responsible for the four corner
tours are notified of the failure as asked to adjust to the new
network. Four sets of three pairwise meetings are merged



into four three-agent meetings and tour area boundaries and
meeting point locations are recalculated to balance the sens-
ing workload. This results in a new network fragment that
is uniformly scanned with a sensing rate not quite as high as
what it is in the rest of the network, since an area originally
monitored by nine agents is now handled by eight. More-
over, each agent now attends three meetings, presumably
because the mission planner regarded this as more desirable
than having some agents attend five meetings.

For each stage of the scenario above, the tour transfor-
mation layer implements a simple distributed protocol that
guarantees that the transformation is successfully imple-
mented. The first operation (replacement of a missing agent
with a meeting point) uses no communication among the
participants, but requires an agreed-upon location and time
for the new meeting. The second operation is implemented
in a centralized way, since all four agents attend a meeting
in which they all participate. The last operation, however,
requires a true distributed protocol because the three agents
involved in each merge form a clique of pairwise meetings
but there is no single meeting of all three agents.

In terms of network properties maintained, it can be
shown easily that this way of handling agent loss will al-
ways result in a connected graph of tours, even in case of
multiple failures (assuming each transformation is atomic
and can be implemented entirely between failures). These
operations also have a clear impact on the diameter of the
graph and on the number of meetings per agents and of
agents per meeting, and they can be used to increase or de-
crease these metrics in accordance to the goals of a mission
planner. Furthermore, the last stage can easily be imple-
mented in such a way that all eight areas have equal size in
the end, thus guaranteeing, as a geometrical property, that
the operation maximizes the lowest scanning rate among all
agents.

5 Current and future work

This paper proposes an architecture to support tour-
based mission design abstraction for mobile sensors oper-
ating in a sparse and challenging environment where es-
tablishment of traditional networking infrastructure is either
impractical or undesirable. As the next step in the evolution
of the architecture, we are currently designing tour network
transformation operations that maintain desirable topologi-
cal and geometrical properties of the tour network. We are
studying optimization of and trade-offs in tour-based mis-
sion designs [6] and evaluating metrics to guide the defini-
tion of tour network transformations. We are also devising
protocols, to be run within the proposed architecture, so that
agents can implement these transformations efficiently and
reliably. As a part of our ongoing partnership with the Au-
tonomous Undersea Systems Institute (AUSI) [2], we will

define the interfaces between the layers and build a refer-
ence implementation together with supporting simulation
and emulation tools. We intend to port the reference ar-
chitecture to the AUSI Solar-powered AUV and test it in
the context of real-world missions. On the theoretical side,
we are studying the fundamental properties of formal mod-
els of disconnected mobile sensors [3]. We are exploring
how properties of the joint computation executed in meet-
ings can inform the design of a tour network and its evolu-
tion through transformations.
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