

DESIGN AND IMPLEMENTATION OF A FIBRE

CHANNEL SWITCH ON LINUX

by

Xiangdong Huang

B.S., Zhejiang University, China (1992)

THESIS

Submitted to the University of New Hampshire

in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Science

September, 2000

This thesis has been examined and approved.

Thesis Director, Dr. Radim Bartos
Assistant Professor of Computer Science

Dr. Elizabeth Varki
Assistant Professor of Computer Science

Barry B. Reinhold
Director, InterOperability Laboratory

 Date

iii

DEDICATION

To Xiaoyi Zhang.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Radim Bartos, my thesis advisor, for all of his support and guidance throughout

the course of this work. His valuable advice and encouragement make this work possible. My gratitude is

also extended to Dr. Elizabeth Varki for her teachings, valuable discussions, and comments on this

research. I am equally indebted to Barry Reinhold for his enthusiasm, his outstanding expertise, and his

confidence in me. I also want to thank all the guys who worked with me at the InterOperability Lab’s Fibre

Channel consortium. I especially appreciate the help and suggestions from Chris Loveland, Ashish P.

Palekar, and David Woolf. And finally, I would like to express my special thanks to my family, particularly

to my wife, Xiaoyi, for her understanding and patience. Thanks are also due to my friends living in the

Forest Park who make my stay at Durham a memorable one.

v

TABLE OF CONTENTS

DEDICATION ..III

ACKNOWLEDGEMENTS ...IV

TABLE OF CONTENTS .. V

LIST OF FIGURES...VIII

LIST OF TABLES..IX

ABSTRACT ... X

INTRODUCTION .. 1

FIBRE CHANNEL ... 3

2.1 INTRODUCTION.. 3
2.2 FIBRE CHANNEL PORTS AND TOPOLOGIES .. 4

2.2.1 Point to Point .. 5
2.2.2 Fabric .. 5
2.2.3 Arbitrated Loop... 5

2.3 FLOW CONTROL .. 6
2.4 CLASSES OF SERVICE .. 7

FIBRE CHANNEL SWITCH.. 9

3.1 INTRODUCTION.. 9
3.2 NAME SERVER .. 11
3.3 PRINCIPAL SWITCH SELECTION ... 13
3.4 ADDRESS DISTRIBUTION.. 14

SWITCH DESIGN.. 17

4.1 INTRODUCTION.. 17
4.2 SWITCH ARCHITECTURE.. 18
4.3 SWITCH PORT INITIALIZATION .. 20

4.3.1 Login Procedure.. 21
4.3.2 FL_Port Initialization.. 23
4.3.3 F_Port Initialization .. 23
4.3.4 Registered State Change Notification ... 24

vi

SWITCH FABRIC SERVICES IMPLEMENTATION.. 26

5.1 INTRODUCTION.. 26
5.2 E_PORT INITIALIZATION ... 27

5.2.1 Class F Service.. 27
5.2.2 Exchange Link Parameters ... 28
5.2.3 The Linux Timer ... 29

5.3 PRINCIPAL SWITCH SELECTION ... 30
5.3.1 Exchange Fabric Parameters... 31
5.3.2 Principal Switch Selection State Machine .. 31
5.3.3 Keeping Track of Frames.. 34

5.4 DOMAIN ID DISTRIBUTION ... 35
5.4.1 RDI Request Processed by Principal Switch .. 35
5.4.2 RDI Request Received by non-Principal Switch .. 36

NAME SERVER... 37

6.1 INTRODUCTION.. 37
6.2 NAME SERVER STRUCTURE... 37
6.3 IMPLEMENTATION ... 38

6.3.1 Define a Port ... 38
6.3.2 Registration and De-registration ... 39
6.3.3 Query .. 40

ROUTING ... 42

7.1 INTRODUCTION.. 42
7.2 HELLO PROTOCOL... 43
7.3 LINK STATE UPDATE... 44

7.3.1 Initial Topology Database Synchronization.. 45
7.3.2 Topology Database Update... 46

7.4 DIJKSTRA’S ALGORITHM... 47
7.5 ROUTING TABLE ... 48

TESTING AND EVALUATION... 50

8.1 INTRODUCTION.. 50
8.2 FIBRE CHANNEL CONFORMANCE TESTING.. 50

8.2.1 FC-SW-1 Testing.. 50
8.2.2 FC-GS-2 Testing... 51

vii

8.3 PERFORMANCE TESTING ... 52

TESTING TOOL DEVELOPMENT.. 57

9.1 INTRODUCTION.. 57
9.2 FRAME-BASED TESTING... 57
9.3 THE IOCTL SYSTEM CALL.. 59
9.4 USING THE TESTING TOOL ... 62

SUMMARY AND FUTURE WORK .. 64

10.1 SUMMARY .. 64
10.2 FUTURE WORK.. 64

BIBLIOGRAPHY... 67

APPENDIX A: ABBREVIATIONS AND ACRONYMS .. 68

viii

LIST OF FIGURES

Figure 1-1: An Example of Switched Fibre Channel Storage Area Network. .. 2

Figure 2-1: Fibre Channel Layers. .. 4

Figure 2-2: Fibre Channel Ports and Topologies. ... 5

Figure 3-1: Fibre Channel Switch Model. .. 10

Figure 3-2: Multiple Switch Fabric... 11

Figure 3-3: Fibre Channel Port_ID Format. ... 12

Figure 3-4: Principal Switch Selection. .. 14

Figure 3-5: Request Domain ID (RDI) Processing by Principal Switch.. 15

Figure 3-6: Request Domain ID (RDI)Processing by non-Principal Switch. .. 16

Figure 4-1: Switch Architecture. .. 18

Figure 4-2: Internal Frame Forwarding. ... 20

Figure 4-3: Login Frame Format. ... 22

Figure 4-4: FL_Port Initialization... 24

Figure 5-1: Simultaneous ELP Processing. .. 29

Figure 5-2: Exchange Fabric Parameters (EFP) Frame Format. ... 31

Figure 5-3: Principal Switch Selection State Machine. .. 33

Figure 5-4: RDI Processing. ... 36

Figure 6-1: RFT_ID Frame Payload. .. 40

Figure 6-2: GID_FT Accept Payload.. 40

Figure 7-1: Hello Protocol .. 44

Figure 7-2: LSU and LSR Format .. 45

Figure 7-3: Topology Database Synchronization. .. 46

Figure 7-4: An Example of the Least-cost Path Update. .. 48

Figure 7-5: Routing Table... 49

Figure 8-1: Setup for FC-SW Tests. ... 51

Figure 8-2: Setup for Performance Tests. ... 53

Figure 8-3: Data Transfer in the Real Switch and the Emulated Switch. .. 54

Figure 9-1: E_Port Initialization Procedure. ... 59

Figure 9-2: The ioctl() System Call. ... 61

ix

LIST OF TABLES

Table 6-1: Name Server Database Organization... 37

Table 8-1: Response of the Emulated Switch. .. 55

x

DESIGN AND IMPLEMENTATION OF A FIBRE

CHANNEL SWITCH ON LINUX
by

Xiangdong Huang

University of New Hampshire, September, 2000

Abstract

Fibre Channel is a fast serial transport mechanism that moves data reliably over long distances among

heterogeneous systems. It has become the infrastructure for Storage Area Networks (SAN). The Fibre

Channel switch is the key device that provides concurrent traffic between servers and storage resources.

Many of the benefits of Fibre Channel including the ability to simultaneously scale storage capacity and

throughput performance can only be realized with a switched Fibre Channel network.

The lack of interoperability between switches manufactured by different vendors is delaying the

widespread adoption of heterogeneous SANs. The goal for this thesis is to build a Fibre Channel switch

environment in the UNH InterOperability Lab (IOL) which can aid interoperability tests between switches

or between a switch and switch-attached devices. An emulated Fibre Channel switch has been designed and

implemented on a PC running the Linux operating system with multiple Fibre Channel host bus adapters as

switch ports. The switch is able to perform port initialization, frame forwarding, name server management,

principal switch selection, domain ID distribution, and routing. This emulated switch has been developed

into a fabric testing tool, which can be used to carry out interoperability and parametric tests between

switches and devices attached to switches.

1

Chapter 1

Introduction

As computer systems have increased in performance and capacity, I/O bandwidth has failed to keep pace.

That is why Fibre Channel has been introduced in the last few years.

When the IBM PC-AT was introduced in the early 1980's it had a hard disk capacity of 10

megabytes. In the the past two decades, the amount of disk storage on the PC has increased by a factor of

over 2000 with 20 gigabyte disks being widely supplied. Along with the increasing storage capacity of a

single disk, disk arrays consisting of large numbers of commodity disks has also been used. This approach

consists of either "Just a Bunch of Disks" (JBOD) which has identifiers for each disk or "Redundant Array

of Independent Disks" (RAID) which has one identifiers for all disks. Attempting to create large disk arrays

in this fashion has stressed the bandwidth and connectivity capabilities of existing parallel I/O interfaces

well beyond their limits [9].

The server-to-disk data model has not been changed since the first computer was invented. This

model links servers to storage arrays with fixed, dedicated connections. Data on a particular disk can

normally be accessed via the SCSI bus only by a single server. The fact that this server-centric model does

not meet the high-availability, high-flexibility and high-volume requirements of the growing enterprise

networks is the primary impetus for the emergence of the Storage Area Network (SAN) [8].

In the SAN architecture, the storage devices are not attached to the host systems. Heterogeneous

storage resources and servers are connected together to construct a subnet for storage. Figure 1.1 shows the

architecture of a SAN.

2

SANs are currently implemented using Fibre Channel. Fiber Channel switch is the key device in

building the SAN. It allows concurrent traffic between each server and the shared storage resources. The

high bandwidth it provides determines the performance of the whole storage network.

Arbitrated Loop

Tape Library SCSI Storage

RAID

Clients

FC Switch

Servers

Disk

FC/SCSI Bridge

Figure 1-1: An Example of Switched Fibre Channel Storage Area Network.

The primary goal of this thesis is to design, implement and test a Fibre Channel switch using

multiple Fibre Channel host bus adapters (HBA). The HBA card that will be used is the Interphase 5526

Fibre Channel PCI card with “Tachyon” Fibre Channel protocol chip manufactured by Hewlett-Packard.

The UNH InterOperability Lab (IOL) has developed a Fibre Channel Linux driver for the card [12]. The

basic I/O part of this driver will be used for developing the switch.

3

Chapter 2

Fibre Channel

2.1 Introduction

Fibre Channel is a fast serial transport mechanism that moves data reliably over long distances among

heterogeneous systems. It began in 1988 as an outgrowth of a study group investigating strategies to

enhance the Intelligent Peripheral Interface (IPI) physical interface. They were confronting a number of

problems including limited data rate, limited distance, and limited connectivity. They further found that the

problems were not unique to IPI, but rather, were present in all other interfaces based on parallel buses such

as Small Computer System Interface (SCSI). The decision was made to define a new physical interface that

was independent of any specific command set behavior and flexible enough to support different command

sets and their associated architectures. Local Area Network (LAN) technology was in the developing stage

at that time, so the ideas associated with LANs were also borrowed to develop the new interface.

Historically, Fibre Channel has the benefits of high speed, long distance, and high scalability and meets the

needs of both storage channel users and network users.

Fibre channel supports multiple protocols, including SCSI, IP, HIPPI, and IPI. The five layers of

the Fibre Channel Standard define a physical layer, encode/decode scheme, frame protocol, general

services, and upper level protocol (ULP) mapping [10]. There is a Fibre Channel Arbitrated Loop (FC-AL)

protocol between the FC-1 and FC-2 layers. The layer hierarchy is shown in Figure 2.1. Fibre Channel uses

the same physical media and 8b/10b encode/decode as Gigabit Ethernet. Fibre Channel allows distance of

500 meters with multi-mode fiber and up to 10 kilometers with single-mode fiber. Storage users are no

longer restricted to the 12-foot cable lengths of single-ended SCSI.

4

133
Mbps

8b/10b Encode/Decode

Loop Protocol

Frame Protocol / Flow Control

512
Mbps

266
Mbps

1.062
Gbps

2.125
Gbps

General Services

SCSI IPI HIPPI IP 802.2

Channel Protocols Network Protocols Layer

FC-4

FC-3

FC-2

FC-1.5

FC-1

FC-0

FC-PH

FC-AL

FC-PH

FC-PH

 Figure 2-1: Fibre Channel Layers.

2.2 Fibre Channel Ports and Topologies

Equipment connected to Fibre Channel can have one or more ports. Fibre Channel specifies different ports

with different purposes. Five different logical ports are defined for three topologies which is shown in

Figure 2.2. The five kinds of ports are N_Port, NL_Port, F_Port, FL_Port, and E_Port [11].

• = N_Port(Node_Port) is the simplest port which can only participate in a point-to-point connection. It

only connects to another N_Port or to a F_Port.

• = NL_Port(NodeLoop_Port) is the port which can participate in arbitrated loop topology.

• = F_Port(Fabric_Port) is the switch port which connects a N_Port.

• = FL_Port(FabricLoop_Port) is the switch port which participate in arbitrated loop.

• = E_Port(Expansion_Port) is the switch port which connects to another switch to build a fabric

topology.

All these ports are logically defined for different functions. They perform different port initialization

processes before communication can begin. Actually one physical port has the capability of acting as

multiple logical ports. Normally the N_Port and NL_Port are supported by a no-switch port. The F_Port,

FL_Port and E_Port are supported by a switch port.

5

NL_PortN_Port N_Port NL_Port

NL_Port NL_PortPoint-to-Point

Private Loop

E_Port E_Port

F_PortF_Port

FL_PortF_Port

FL_PortFL_Port

N_Port

Fabric

SwitchSwitch

Point-to-Point

NL_Port NL_Port

NL_Port NL_Port

Public Loop

Figure 2-2: Fibre Channel Ports and Topologies.

2.2.1 Point to Point

Point-to-point is a direct channel connection between two ports. No arbitration and addressing are needed

in this setup. The devices have access to the full bandwidth of the link.

2.2.2 Fabric

When one or more switches are used, the topology is called fabric. A fabric appears as a single entity to

attached nodes, called F_Port if the attached node is a N_Port or FL_Port if the attached node is a NL_Port.

The fabric topology is good for interconnecting large numbers of devices and complex configurations.

Fabrics can provide name services, broadcast services, alias services, time services, and routing functions.

2.2.3 Arbitrated Loop

It was realized that there would be a need to connect more than one device to an F_Port. One of the reason

is that the price per fabric port is too high to connect just one device to a F_Port. Although this point-to-

point connection will access the full bandwidth, most nodes do not constantly need the full bandwidth. The

Arbitrated Loop offers a loop topology for devices to share the bandwidth. The loop can contain as many as

126 NL_Ports and one fabric-port with all the nodes arbitrating for usage of the loop. If the loop consist of

only NL_Ports, it is called a private loop. If there is a FL_Port on the loop, it is called a public loop. Every

6

device on the loop has a unique one byte long Arbitrated Loop Physical Address (AL_PA). When

arbitrating, the device with lowest AL_PA will win the arbitration and it can open communication with any

device on the loop.

2.3 Flow Control

The concept of flow control deals with the problem where a device receives frames faster than it can

process them. The solution is that a device can transmit frames to another device only when the other

device is ready to accept them. Before the devices send data to each other, they need to login with each

other. During the process of login, they will report to each other the number of frames a device can receive

at a time, which is called credit. After login has been performed successfully, each device knows how many

frames the other device can receive. When credit runs out, no more frames can be transmitted until the

destination device indicates it has processed one or more frames and is ready to receive new ones. Fibre

Channel uses two types of flow control, end-to-end and buffer-to-buffer.

End-to-End: End-to-End flow control is used by a point-to-point port pair in Class 1 and Class 2 services

which will be introduced in more detail below. It is performed with end-to-end credit count

(EE_Credit_CNT) with EE_Credit as the controlling parameter. When the two ports log into each other,

they report how many receive buffers are available for the other port. This value becomes EE_Credit.

EE_Credit_CNT is set to 0 after login and increments by 1 for each frame transmitted to the other port. It is

decreased upon reception of an Acknowledgement (ACK), Reject (RJT) or Busy (BSY) link control frame

from that port. The ACK frames indicate that the port has received and processed 1 frame or N frames. A

device will not transmit a data frame unless the allocated EE_Credit is greater than zero and the

EE_Credit_CNT is less than the EE_Credit.

Buffer-to-Buffer: This type of flow control is widely used in Classes 1, 2, and 3. Each port on the link

exchanges values of how many frames it is willing to receive at a time from the other port. This value

becomes the other port's buffer-to-buffer credit (BB_Credit) value and remains constant as long as the ports

are logged in. Each port also keeps track of BB_Credit_CNT, which is initialized to 0. For each frame

7

transmitted, BB_Credit_CNT is incremented by 1. The value is decremented by 1 for each R_RDY

primitive signal received from the other port. Similar to end-to-end rules, a device will not transmit a data

frame unless the allocated BB_Credit is great than 0 and the BB_Credit_CNT is less than the BB_Credit.

2.4 Classes of Service

Fibre Channel offers the possibility of using different classes of service for the data. Devices are not

required to implement all of the classes, most implement just a sub-set. Class 3 is the most frequently used

class of service.

Class 1 provides true connection service. The service is circuit switched, dedicated bandwidth connection.

This class of service guarantees in order delivery. End-to-end flow control is used in Class 1. Some

applications use this guaranteed bandwidth delivery feature to move data reliably and quickly without

overhead of a network protocol stack. Class 1 is best suited for continuous and time critical traffic, such as

voice or video.

Class 2 is a connectionless service, independently switching each frame and providing guaranteed delivery

with an acknowledgement of receipt. As with traditional packet-switched (connectionless) systems, the

path between two interconnected devices is not dedicated. The fabric multiplexes traffic from N_Ports or

NL_Ports without dedicating a path through the fabric. A BSY or RJT is sent when no buffer space is

available. The originating port will re-send the frame. This way no data is arbitrarily discarded just because

the switch buffer is full.

Class 3 similar to Class 2, except that no confirmation of receipt is given. It only uses buffer-to-buffer flow

control. Storage interface of arbitrated loop or multicasts and broadcasts on networks use Class 3. A logical

point-to-point connection is established when using Class 3, so no confirmation is needed.

8

Class 4 provides fractional bandwidth allocation of the resources of a path through a fabric that connects

two N_Ports. Class 6 provides dedicated connections for reliable multicast for a fabric topology. These two

classes are used very rarely.

Class F is a connectionless service between E_Ports, used for control, coordination, and configuration of

the fabric between switches. It uses both buffer-to-buffer and end-to-end flow controls. R_RDY is used for

buffer-to-buffer flow control. ACK_1 frame is used to perform end-to-end flow control. The Class F frame

begins with a Start of Frame Fabric (SOFf) delimiter and terminates by an End of Frame Normal (EOFn) or

End of Frame Terminate (EOFt) delimiter. If the switch is unable to deliver the frame to the destination

E_Port, the source will be notified by a Fabric Busy (F_BSY) or Fabric Reject (F_RJT) with a valid reason

code.

9

Chapter 3

Fibre Channel Switch
3.1 Introduction
Of the three kinds of Fibre Channel topologies, point-to-point does not show the benefits of Fibre Channel

because only one other device can be on the bus. The arbitrated loop provides better connectivity than SCSI

can, but it still has bandwidth restriction because bandwidth on a loop is shared by all the devices on the

same loop. Many of Fibre Channel’s benefits including the ability to simultaneously scale storage capacity

and throughput performance can only be realized with a switched Fibre Channel network.

A Fibre Channel switch is composed of the following major components shown in Figure 3.1:

1) One or more switch ports: F_Port, FL_Port, or E_Port.

2) A fabric controller: The fabric controller is a logical entity that performs the management of the

switch.

3) An address manager: The address manager is responsible for the assignment of addresses within

some portion of the fabric. Within the switch, the address manager is responsible for acquiring a

domain and area for the switch, and allocating Port_IDs within the domain and area.

4) A path selector: The path selector is a logical entity that establishes frame routing paths.

5) A router: The router is a logical entity that performs the routing of Class 2 and Class 3 frames to their

final destination.

10

Switch
Port

Switch
Port

Switch
Port

Switch
Port

Switch
Construct

Fabric
Controller

Address
Manager

Path
Selector Router

Figure 3-1: Fibre Channel Switch Model.

A Fibre channel switch supports dedicated connection, connectionless service, connection-

oriented service or distributed fabric element topology. Multiple dedicated connections may exist

simultaneously within the Fabric. The interconnection of F_Ports established by the fabric does not affect

the existing interconnection of any other F_Ports, nor does it affect the ability of the fabric to remove those

connections, nor does it affect the ability of any other FL_Ports to handle connectionless operations. When

a dedicated connection is established, F_Ports and their respective point-to-point links are interconnected

within the fabric, such that the links appear as one continuous link for the duration of the connection. As

connectionless service is used, frames are multiplexed on frame boundaries between an FL_Port and any

other FL_Port and thereby between the NL_Ports attached to them. Connection-oriented service is a virtual

connection service that is commonly implemented upon a connectionless service. It may provide a

fractional allocation of bandwidth between connected N/NL_Ports. Distributed fabric element topology

allows users to combine switches to form a tree topology.

Multiple switches may be joined freely or in a structured fashion to form a larger fabric which is

shown in Figure 3.2. A fabric is an entity which interconnects various Nx_Ports attached to it and is

capable of routing frames using only the destination identifier (D_ID) information in the frame header.

11

Legend:
N: N_Port
F: F_Port
E: E_Port
NL: NL_Port
FL: FL_Port
 Inter Switch Link (ISL)
 Link

FC Switch

Figure 3-2: Multiple Switch Fabric.

3.2 Name Server

Similar to the 48-bit MAC address scheme in Ethernet, each Fibre Channel device has a 64-bit globally

unique world-wide-name (WWN). However the WWN is not used for transporting frames across the

network. A 24-bit port address (Port_ID) is dynamically assigned for every device. The addresses of two

communicating partners are embedded in the frame header for both the destination identifier (D_ID) and

source identifier (S_ID) [4]. By using this shorter address, the frame header and the routing logic are

optimized for high-speed switching of frames. The 24-bit Port_ID format is shown in Figure 3.3. Each

switch is a Fibre Channel domain. A Domain_ID will be assigned for every switch during the fabric

configuration procedure. Every port of a switch has a unique Area_ID which is determined by the switch.

12

Domain_ID Area_ID AL_PA

8 bit 8 bit 8 bit

 Figure 3-3: Fibre Channel Port_ID Format.

Besides Port_ID and WWN, the Node Name, IP address, symbolic port name, and symbolic node

name are also used for addressing in different circumstances. Every port has some attributes related to it

such as Fibre Channel layer 4 types (FC-4 type), class of service, port type, and initial process associator. A

table is needed to keep track of the name mapping and the attribute relations. The name server is

responsible for maintaining this table.

The name server keeps all the information regarding a port, such as Port_Name, Node_Name, Port_ID,

class of service and so on [3]. All the port data is stored in the database. Every port login to the switch

should register one or more of their name mapping and attributes with the name server. The switch and

other devices may use the information kept in the name sever to do device discovery and frame routing.

The name server can accept three kinds of request from other ports:

1) Get Objects: read specific information from the table

2) Register Objects: add specific information to a port entry in the table

3) De-register Objects: remove a port entry from the table

There are two possible responses for all these requests: Fibre Channel service accept (FS_ACC) and

reject (FS_RJT). For different requests, the ACC payload could be different. Such as if one issues a request

to get the Port_Name and another request to get the class of service, the payload in the two ACC would be

the Port_Name and the Class of Service respectively. The FS_RJT payload consists of the reason code and

explanation code.

13

3.3 Principal Switch Selection

In a multiple switch environment, one switch is responsible for assigning Domain_IDs to each switch in the

fabric. This switch is called the principal switch and it is designated as the domain address manager. Inter-

switch links (ISL) are used by switches to transmit frames to and receive frames from other switches.

Multi-switch connection establishes a graph with switches as vertices and ISL as edges. To avoid infinite

loops during fabric configuration, a spanning tree for the graph is established during the process of

principal switch selection. Each switch has its Switch_Priority and Switch_Name. The principal switch is

the switch with the lowest value of Switch_Priority and Switch_Name. Switches use Exchange Fabric

Parameters (EFP) Switch Internal Link Service (SW_ILS) to compare these values. EFP’s payload contains

the Switch_Priority and Switch_Name that the transmitting switch believes is the principal switch and the

Domain_ID_List containing the assigned Domain_ID and the corresponding Switch_Name. There are three

different cases when EFPs are exchanged between different switches [1].

1) If a switch receives an EFP with an empty Domain_ID_List (no Domain_ID has been assigned) and

the switch itself has an empty Domain_ID_List too, then the values of the Switch_Priority and

Switch_Name are compared and the lower pair is kept as the new value. The switch will also note from

which E_Port it received the new value, for the use as the upstream principal ISL.

2) If a switch receives an EFP with non-empty Domain_ID_List (Domain_ID has been assigned) and the

switch itself has an empty Domain_ID_List, then the switch retains the received Switch_Priority and

Switch_Name values. This ISL should be noted as the upstream principal ISL.

3) If a switch receives an EFP with empty Domain_ID_List and the switch itself has non-empty

Domain_ID_List, the switch keeps its own values and transmits an Announce Address Identifier (AAI)

frame to another switch.

14

This process selects one switch to be the principal switch. It is the root of the spanning tree for the

fabric graph. The principal ISLs are the edges of the spanning tree. Figure 3.4 shows the result of the

principal switch selection from six switches with the same priority and different names (A to F).

A

Principle ISL

D

C

F

EB

ISL

Switch A will be selected
as the Principal Switch
Upstream: none
Downstream: AB, AD

Upstream: AD
Downstream: DF

Upstream: DF
Downstream: none

Upstream: BC
Downstream: none

Upstream: BE
Downstream: none

Upstream: AB
Downstream: BC, BE

Figure 3-4: Principal Switch Selection.

3.4 Address distribution

Once a principal switch has been selected, this switch will be the domain address manager. It will grant

itself a Domain_ID and empty its Domain_ID_List. Then the principal switch will send an AAI frame via

all E_Ports. Other switches may request a Domain_ID from the principal switch after getting an AAI

frame.

After receiving an AAI frame, a switch can send the Request Domain ID (RDI) frame to the

upstream principal ISL. If the principal switch is on the other end of this ISL, the principal switch will pick

an ID from the pool of available Domain_IDs and put it in the accept frame to the RDI request. The

accepting switch will use this ID as its domain ID. This process is shown in Figure 3.5. If the switch that

receives the RDI frame is not the principal switch, the switch will forward the RDI to its upstream ISL.

When the reply SW_ACC is received, the SW_ACC will also be forwarded via the downstream principal

15

ISL on which the initial request was received. Figure 3.6 shows this process. After processing each RDI,

the principal switch originates an EFP to all principal ISLs to announce the change to the Domain_ID_List.

AAI

SW_ACC

RDI

SW_ACC

SW_ACC

EFP

Downstream Switch Principal Switch
Inform all downstream
switches that is has an
address identifier

Request a ID from
the principal switch

 Figure 3-5: Request Domain ID (RDI) Processing by Principal Switch.

16

AAI

SW_ACC

RDI

SW_ACC

SW_ACC

EFP

SW_ACC

RDI

EFP

SW_ACC

downstream middle upstream
switch switch switch

If this is a principal switch,
grant a domain_ID, otherwise,
forward the RDI to
 further upstream switch

 Figure 3-6: Request Domain ID (RDI) Processing by non-Principal Switch.

17

Chapter 4

Switch Design

4.1 Introduction

The switch developed in this thesis was implemented on the Linux operating system, version 2.2.14 on an

Intel-based PC equipped with Interphase 5526 Host Bus Adapters (HBA). The HBA uses the “Tachyon”

Fibre Channel chip manufactured by Hewlett-Packard. The Tachyon chip supports loop and link

initialization. The login procedure, Registered State Change Notification (RSCN), and other layer-2 frame

protocol are not supported.

The Tachyon chip can be initialized as N_Port, NL_Port, F_Port or FL_Port if the login process

and Extended Linked Services (ELS) are supported. In order to have full F_Port or FL_Port function,

FLOGI, RSCN, and name server registration process should be implemented after the link or loop

initialization. The Tachyon chip supports Classes 1, 2, and 3 but not Class F [7]. So the E_Port, which

works on Class F, is not supported by the Tachyon chip. However the Tachyon chip will change any

invalid Start of Frame (SOF) into SOFf. We can take advantage of this feature to emulate Class F function.

Under the non-AL setup, we could transmit the fabric service frames with invalid SOF delimiters. These

frames will have the SOFf delimiter. Tachyon reports any frames with SOFf delimiter as unknown frames.

The R-Rdy, which is needed in buffer-to-buffer flow control, is not transmitted by the Tachyon chip when

an unknown frame is received. Instead of the R-Rdy, the ACK_1, which is needed in end-to-end flow

control, is used for the acknowledgement for each valid frame received. The R-Rdy is one of the 4-byte

Fibre Channel Ordered Sets. The ACK_1 is a six-word frame. In point-to-point mode, Tachyon can not be

made to transmit an order set, but can be made to transmit any frame.

18

Each HBA is designed to initialize its ports as an F_Port or FL_Port, or E_Port according to what

devices are attached to the ports. The switch has a name server that keeps the name mappings and attributes

of each switch ports. The fabric controller of the switch provides fabric services, which can perform the

principal switch selection and domain address distribution. Each FC HBA is also assigned a fixed Area_ID.

When a data frame that does not have a well-known ID is received on a HBA, the driver first takes the

Domain_ID from the frame header. If this Domain_ID is not the Domain_ID of the switch receiving this

frame, the frame will be forwarded to the HBA through which the Domain_ID has been granted. Otherwise

the destination is the local switch. Then this frame will be forwarded to HBA with the corresponding

Area_ID.

4.2 Switch Architecture

The switch is implemented on a PC with a Pentium II processor, 128M memory, and four PCI slots. The

HBA can be set to work in the F/FL_Port mode or the E_Port mode. As shown in Figure 4-1, two HBAs

are designed as F/FL_Ports and the other two as E_Ports. The reason why the E_Port is designed separately

is that the Tachyon chip cannot determine whether it is connected to an E_Port or not during the arbitrated

loop initi alization.

F/FL_Port

HBA 1

PCI Bus

F/FL_Port

HBA 2

E_Port

HBA 3

E_Port

HBA 4

Inbound Message Queue (IMQ)
Single Frame Sequence Buffer Queue (SFSBQ)
Multi Frame Sequence Buffer Queue (MFSBQ)

Outbound Command Queue (OCQ)

DMA

Fabric Service
Routing

Principle Switch SelectionName Server

Address Distribution

 Figure 4-1: Switch Architecture.

19

Each HBA is allocated certain memory for DMA. Every time a frame comes in, it is saved in the

Single Frame Sequence Buffer Queue (SFSBQ) or the Multi Frame Sequence Buffer Queue (MFSBQ)

according to its frame size. Tachyon also supports SCSI, but this function is not used in this

implementation because the HBA acts as a switching component, not as a host or a hard drive. Once a

frame has been received, a hardware interrupt will be generated and the corresponding information about

this interrupt is saved in the Inbound Message Queue (IMQ). After the host detects this interrupt, it checks

the interrupt type from the IMQ. If the type indicates that a single or multi frame sequence has been

received, the address where the data has been saved can also be fetched from the inbound message. Then

the host will make a decision based on the contents of the frame received. When the host wants to transmit

a frame, an Outbound Descriptor Block (ODB) will be constructed first. This ODB is then put into the

outbound command queue (OCQ). At this point, the ODB has all the information needed to transmit a

frame including the address of the frame header and payload. When Tachyon detects that a new entry has

been added into the OCQ, it will get the frame header and payload from the ODB and then transmit this

frame.

The routing process will provide the shortest path to the F/FL_Ports if the destination of the frame

is not the current switch. The routing theory and implementation are introduced in Chapter 7. If the frame

received from a F/FL_Port or E_Port is heading to another F/FL_Port on the current switch, this frame is

forwarded to the destination HBA by the switch driver. The mechanism of the internal frame forwarding is

shown in Figure 4-2. From the figure, it can be seen that the data is not copied from the source HBA to the

destination HBA. Only the buffer address and the data length are given to the destination HBA. The

destination HBA then sets the pointer of outbound data to the buffer address of the incoming data. The

performance of the switch is improved by using this method.

Each HBA that acts as the F/FL_Port has an ordered linked list to store all the port identifiers

registered to the fabric name server. The details of name server will be introduced in Chapter 6.

20

Source

Card

Destination

Card

Interrupt Message

Interrupt Message

Interrupt Message

Outbound
Descriptor Block

Outbound
Descriptor Block

Outbound
Descriptor Block

Buffer Address

Buffer Address

Buffer Address

Data

Inbound Message Queue (IMQ)

SFSBQ or MFSBQ

Get the buffer address

Outbound Command Queue (OCQ)

Add a new entry to the OCQ

Figure 4-2: Internal Frame Forwarding.

4.3 Switch Port Initialization

A Fibre Channel switch port may be able to operate in F_Port, FL_Port or E_Port mode. One port can

support more than one mode. In this design, the F/FL_Ports and the E_Ports are implemented on different

HBAs because we have limited access to the low level information which is needed to determine which

type of port the switch is connected to. During the F/FL_Port initialization, the switch port can assume a

mode for the purpose of determining if that mode is appropriate. If it is successful, the switch port works as

the assumed port; otherwise, it tries operating in another mode until it finds a mode in which to operate.

The switch F/FL_Port first tries the FL_Port operation. If it fails, it then attempts F_Port. The E_Port HBA

21

is initialized directly as an E_Port which supports class F, principal switch selection, and domain ID

distribution. The E_Port functionalities will be introduced in Chapter 5.

4.3.1 Login Procedure

The Login procedure is a method by which an N/NL_Port establishes its operating environments with a

Fabric or another N/NL_Port. This procedure happens right after the arbitrated loop or point-to-point link

initialization. The Fabric Login (FLOGI) is performed during the initialization process when a Fabric port

is present. The FLOGI frame is directed to the Fabric using the well-known Fabric address 0xFFFFFE. The

Port Login (PLOGI) is performed when a port wants to talk to another port other than the Fabric. For

example, N/NL_Ports register to the Name Server via the PLOGI. The payloads of the Login frame and its

accept frame (ACC) are same as shown in Figure 4-3.

The Login payload contains seven 4-word-long entries:

• = 1 Common Service Parameter Entry

• = 1 Port Name and Node Name Entry

• = 3 Class Service Parameter Entries

• = 1 Reserved Entry

• = 1 Vendor Defined Entry

The common service parameter entry provides the service parameters common to all three classes: Class 1,

Class 2, and Class 3. These parameters include the value of the buffer-to-buffer credit, the time out, and so

on. The class service parameter entries provide the other service parameters that may be different to the

three classes. These parameters contain the values of the class validity, received data field size, end-to-end

credit, open sequences per exchange and, so on. The destination port, should it find the parameters

acceptable, will transmit an accept (ACC) in response to the Login frame. The FLOGI ACC has another

responsibility to assign a domain ID and an area ID to the N/NL_Port that issued the FLOGI to the fabric.

22

 Byte0 Byte1 Byte2 Byte3

0 R_CTL D_ID

1 CS_CTL S_ID

2 TYPE F_CTL

3 SEQ_ID DF_CTL SEQ_CNT

4 OX_ID RX_ID
Fr

am
e

H
ea

de
r

�

�

�

5 Parameter

0 0x03000000 (PLOGI) or 0x04000000 FLOGI

1
2
3
4

Common Service Parameters

5
6
7
8

Port Name and Node Name

9
10
11
12

Class 1 Service Parameters

13
14
15
16

Class 2 Service Parameters

17
18
19
20

Class 3 Service Parameters

21
22
23
24

Reserved

25
26
27

Pa
yl

oa
d

�

�

�

28

Vendor Defined

Figure 4-3: Login Frame Format.

23

4.3.2 FL_Port Initialization

The FL_Port is a port that operates on an arbitrated loop. The FL_Port, which has a fixed AL_PA 0x00, has

the highest priority among all the ports on the loop. After the loop is initialized, every NL_Port on the loop

gets an AL_PA, but the loop does not have a domain ID and an area ID. These two IDs are assigned by the

switch via the FL_Port during the Fabric Login process. There is a login request bit (L_bit) in the Loop

Initialization Soft Assigned (LISA) loop initialization sequence [5]. If the L_bit is set to one, all the

attached NL_Ports will perform fabric login (FLOGI) to the switch with S_IDs in the format of

0x0000XX, which means they don’t have domain IDs and area IDs. The switch will transmit

acknowledgement frames (ACC) to these FLOGIs with D_ID in the format of 0xDDAAXX which means

the NL_Port is assigned a domain ID 0xDD, an area ID 0xAA and the same AL_PA. If during the loop

initialization process, the switch finds out that the NL_Port has already done FLOGI to the switch, the

L_bit then will be cleared to zero. In this case, the FL_Port will initiate a Fabric Address Notification

(FAN) extended link service (ELS) command to the attached NL_Ports before any other port is able to send

a frame on the loop [6]. If the NL_Port determines that the FL_Port has the same address, FL_Port_Name

and Fabric_Name, the port initialization process will complete the process. If the FL_Port address has been

changed, the NL_Port should redo the FLOGI.

After fabric login, the NL_Ports are required to perform Name Server registration. If the NL_Port

wants to communicate other NL_Ports in the same switch, it will query the name server to find the IDs of

the NL_Ports. The figure for FL_Port initialization is shown in Figure 4-4.

4.3.3 F_Port Initialization

The difference between F_Port initialization and FL_Port initialization is that the F_Port initialization does

not need to transmit the arbitrated loop initialization sequences (LIFA, LIPA, LIHA, LISA, LILP, LIRP).

Whenever an order set such as LR, LRR, OLS or NOS is seen on the link, the F_Port begins its

initialization. The N_Port attached to the F_Port suspends all open exchanges with all other N_Ports or

NL_Ports. After the completion of the link initialization and if the N_Port was implicitly logged out from

24

the fabric, the N_Port performs FLOGI; otherwise, the N_Port performs FDISC to the fabric. If the F_Port

address is not changed, all the suspended exchanges will be resumed and the port initialization is

completed. If the F_Port address is changed, all the suspended exchanges will be discarded and re-do all the

registration to the Name Server. Because the F_Port is connected directly to the N_Port, the AL_PA is not

used on this point-to-point connection. Before the N_Port gets an assigned ID, it uses S_ID 0x000000.

During the login procedure, the switch assigns the N_Port an ID in the format of 0xDDAA00 which means

the domain ID is 0xDD and the area ID 0xAA.

Start of Loop
Initialization

Loop Init.
Sequences

Need to do
FLOGI?

Perform FAN Implicit
Logout

Perform
FLOGI

Initialization
Complete

Can’t deliver FAN

No Yes

Loop Initialization
Primitive (LIP) received

Process Name
Server Request

Transmit RSCN
if Needed

Figure 4-4: FL_Port Initialization.

4.3.4 Registered State Change Notification

When a procedure causes the link re-initialization of the F/FL_Port, such as when a device is added to or

removed from an F/FL_Port, the RSCN frame will be broadcasted to all other N/NL_Ports that have

registered for this service, except the N/NL_Port itself that had causeed the event. The N/NL_Ports can

25

register this service by transmitting a State Change Notification (SCN) frame to the switch. If an

N/NL_Port receives a RSCN, it will re-start the query to the name server.

26

Chapter 5

Switch Fabric Services Implementation

5.1 Introduction

Fabric services are the link services that operate internal to the fabric between switches. All fabric service

frames are transmitted via the Class F service. The fabric controller with the well-known address

0xFFFFFD handles these fabric services. The ELP, EFP, AAI, RDI, SW_RJT, and SW_ACC frames, as

mentioned in Chapter 3, are the fabric services used most often.

• = ELP Exchange Link Parameters

• = EFP Exchange Fabric Parameters

• = AAI Announce Address Identifier

• = RDI Request Domain_ID

• = BF Build Fabric

• = RCF Reconfigure Fabric

• = SW_RJT Switch Fabric Internal Line Service Reject

• = SW_ACC Switch Fabric Internal Line Service Accept

ELP is used during the E_Port initialization procedure to exchange link parameters such as timeout

values, port name, switch name, and service parameters of class 1, 2, 3, and F. EFP is used to exchange

fabric parameters such as current principal switch priority and name and domain IDs granted by the fabric.

When a switch with a domain ID is connected to a switch without a domain ID, an AAI is transmitted to

the un-configured switch to announce that it has the ability to assign a new ID, or ask the principal switch

to do the same. When a switch receives an AAI, it may transmit Request Domain_ID (RDI) to get a new

27

domain ID. Exchange Switch Capabilities (ESC), a newly added fabric service, defines a mechanism for

two switches to exchange vendor and protocol information. BF and RCF are used to request fabric

reconfiguration. BF requests a non-disruptive reconfiguration whereas RCF requests a disruptive

reconfiguration. While doing a disruptive configuration, the addresses allocated to switches may be

changed. A non-disruptive reconfiguration of the fabric does not affect the previous addresses. When a

principal ISL is lost or two fabrics are joined, a BF request is appropriate. RCF is needed only when an

overlapped domain was found or BF failed.

The E_Port is the switch port connected to another switch in a fabric. Frames with a destination other

than the local switch or any NL_Port or N_Port attached to the local switch can exit the local switch

through an E_Port. Fabric services frames are transmitted through E_Ports.

5.2 E_Port Initialization

An E_Port normally functions as a conduit between the switches for frames destined for remote N_Ports

and NL_Ports. An E_Port is also used to carry frames between switches for purposes of configuring and

maintaining the fabric. Switch fabric services operate internal to the Fabric between Switches using

E_Ports. The principal switch selection and Domain_ID distribution will be implemented after E_Port is

successfully initialized.

5.2.1 Class F Service

A switch port may support F_Port, FL_Port, and E_Port at the same time. It requires that the switch have

the ability to detect whether there is a switch connected to itself during loop initialization. The switch

chooses the arbitrated loop physical address (AL_PA) 0x00 in the loop initialization sequences such as

LIFA, LIHA, LIPA and LISA. A switch is present if the AL_PA 0x00 flag is set. The Tachyon chip that is

used in this thesis does not provide this information. In this thesis, the F/FL_Port and E_Port are

implemented in different HBAs because the loop initialization procedure is done by hardware.

28

 We have to solve two problems if the Tachyon chip can work in the E_Port mode. The first

problem is that the Tachyon chip supports F/FL_Port but does not support E_Port and Class F, on which

the fabric services depend. This thesis implements the E_Port and Class F on the Tachyon chip by taking

advantage of Tachyon’s default actions. The host programs the start of frame (SOF) value. Only the SOF

for Class 1, 2, and 3 are acceptable; other values are regarded as invalid SOF and substituted by a SOFf,

which is needed for Class F service. On the receiving side, a frame with SOFf will invoke the

inbound_unknown_frame_received interrupt. Now we are facing another problem. The Tachyon provides

no flow control for unknown-type frames, which means that no R-Rdy will be transmitted when any Class

F frames are received. This problem is solved by transmitting an ACK_1 frame for any inbound Class F

frame. In the point-to-point connection the Tachyon chip cannot be programmed to transmit a R-Rdy which

is required by buffer-to-buffer flow control, but it can be programmed to transmit any frame such as the

ACK_1 which is needed by end-to-end flow control. Fibre Channel switches from all five different vendors

support both buffer-to-buffer and end-to-end flow control. The switch implemented in this thesis can talk to

these switches by end-to-end flow control.

5.2.2 Exchange Link Parameters

Point-to-point connection links two E_Ports. The following primitive sequences are used for point-to-point

communication:

• = NOS: Not Operational

• = OLS: Offline

• = LR: Link Reset

• = LRR: Link Reset Response

After the link is operational for frame transmitting, the E_Port will originate an Exchange Link

Parameters (ELP) fabric service frame. The ELP payload contains the values of the timeout; port name and

switch name; class parameters for Class 1, 2, 3, and F; and flow control parameters. The two E_Ports may

29

transmit ELP at the same time. The port with lower E_Port_name will transmit a SW_ACC. The other one

will transmit a SW_RJT indicating that the ELP is already in progress, which is shown in Figure 5-1.

ELP A ELP B

SW_ACC B

SW_RJT A

Port Name: A Port Name: B

E_Port A sees an ELP with
a higher port name E_Port B sees an ELP

with a lower port name

Figure 5-1: Simultaneous ELP Processing.

5.2.3 The Linux Timer

If the switch has not received an ELP_ACC or ELP for Error_Detect_Timeout (E_D_TOV) period, the

switch will retry ELP. This timer and the EFP timer, which will be introduced later, are implemented by the

Linux timer structure: timer_list.

struct timer_list {
struct timer_list *next; // next timer
struct timer_list *prev; // previous timer
unsigned long expires; // the timeout, in jiffies
unsigned long data; // argument to the handler
void (*function)(unsigned long); // handler of the timeout

}

The entries next and prev in this structure are used for the internal management of all the timers in a doubly

linked list. The timeout value is an absolute value of jiffies, which is the number of clock ticks since the

operating system was booted. Linux timer interrupt is set to a default frequency of HZ, which is an

architecture-dependent value. Linux defines HZ to be 100 for Intel-based platform, which means that the

time interval between two clock ticks is 1/100 second, or 10 milliseconds, with one jiffy being equal to 10

milliseconds. For example, if a timer is set to E_D_TOV (2 seconds), the data member expires of the

timer_list struct shall be set to 200. Some of the kernel functions used to act on timers are:

• = void init_timer(struct timer_list *timer)

• = void add_timer(struct timer_list *timer)

30

• = void del_timer(struct timer_list *timer)

The init_timer() function initializes the timer structure. The add_timer() function inserts a timer

into the global list of active timers. After the timer is added, the system begins to count the clock ticks.

When the timeout expires, the handler is called. It might be worth it to keep in mind that the timer is

managed by the operating system, not by the driver that added the timer. If the driver, which was inserted

as a module, is removed before a timer expires, the timer is still counting the clock ticks and will call the

timer handler, which does not exist at that time, when the timeout expires. In this case, a null pointer is

called and the system is crashed. For example, if a Hello timer (20 seconds) is added and the driver module

is removed, it is extremely difficult to find the reason why the system crashes some point after the driver

was unloaded. If a timer needs to be removed from the list before it expires, the del_timer() function should

be called. When a timer expires, it is removed from the timer list automatically.

 If a delay that is less than 10 milliseconds, the time span of a jiffy, then the function

 void udelay(unsigned long usecs);

should be used. The precision of the function udelay() is as short as one microsecond. It is important to

know that this is a busy-waiting function.

5.3 Principal Switch Selection

Following the successful completion of ELP, the values of buffer-to-buffer and end-to-end Class F credit

are initialized. The E_Port that had originated the successful ELP then resets the link in order to initialize

the flow control parameters. After the link reset, the E_Port is ready to perform the principal switch

selection and domain ID distribution procedures. Principal switch is the switch that is responsible for

granting domain IDs to other switches. Each Fibre Channel switch represents a domain in the Fibre

Channel network. The switches exchange fabric parameters between each other to determine who is the

principal switch, which has the lowest switch priority and switch name value. A priority of 0xFF indicates

the switch is not capable of acting as a principal switch.

31

5.3.1 Exchange Fabric Parameters

The exchange of fabric parameters is used to establish the address allocation within the fabric. The frame

format of EFP fabric service is shown in Figure 5.2. Each EFP frame contains the values of the switch

priority and switch name of the switch, which the transmitting switch believes is the principal switch.

These two values will be updated if a lower pair is found. Every switch in the network keeps a list of all

domain IDs granted to every switch. The EFP frame also contains this domain ID list. Each record of the

domain ID list consists of a domain ID and the switch name for that domain ID. A switch that is not yet

configured uses its own priority and name as the current principal switch priority and name values. The

domain ID list is set to empty. In a non-empty domain ID list, the Principal Switch must have already been

selected because only the Principal Switch has the capability to grant a new domain ID. The priority of the

principal switch is 0x02.

 Figure 5-2: Exchange Fabric Parameters (EFP) Frame Format.

5.3.2 Principal Switch Selection State Machine

During the procedure of the principal switch selection, the switch moves to different states depending on

what action has taken place. The principal switch selection state machine is show in Figure 5.3. There are

six different states in the state machine:

• = Non Disruptive: The switch needs a non-disruptive fabric reconfiguration.

 Command Code and Payload Size

 Current Principal Switch Priority

Current Principal Switch Name

Domain_ID Record 0

……

Domain_ID Record N

 Domain_ID

Switch Name for this Domain_ID

32

• = Disruptive: The switch needs a disruptive fabric reconfiguration.

• = EFP Idle: Idle state before of after EFP processing.

• = EFP Send: EFP processing state.

• = Principal: The switch is the principal switch.

• = Not Principal: The switch is not the principal switch.

The Fabric Stability Timeout Value (F_S_TOV), which is defined to be 5 seconds, is used to

detect inactivity during fabric configuration. The principal switch selection state machine uses twice

F_S_TOV to make transitions to certain states.

Following is the implementation of different state transitions:

1) Receiving a BF or RCF causes the transition to Non Disruptive or Disruptive state respectively. A

non-disruptive re-configuration will not cause any domain ID changes. On the other hand, a

disruptive re-configuration may cause a switch to choose a domain ID other than its former one.

After 2 x F_S_TOV expires in both of these state, the switch transits to EFP Idle state.

2) An AAI indicates that a switch is capable of granting domain IDs. Thus any switch that has

received an AAI will not become the Principal switch because it was already selected.

33

Principal

Not Principal

EFP Idle

EFP Send

Non Disruptive

Disruptive

expire(2 x F_S_TOV) BF received

RCF received

expire(2 x F_S_TOV)

expire(2 x F_S_TOV)

receive AAI

receive AAI

receive EFP no overlap

tx_EFPrx_EFP

Figure 5-3: Principal Switch Selection State Machine.

3) When an EFP frame is received, the switch performs the following checks:

a) If the switch with an empty domain ID list receives in an EFP with a non-empty domain

ID list, the switch retains the newly received switch priority and name values. This switch

will not become the Principal Switch.

b) If the switch with an empty domain ID list receives an EFP that also has an empty

domain ID list, the switch compares the received switch priority and name values to its

own. If the received EFP has lower values, the switch sets its own values to the lower

ones.

34

c) If the switch with a non-empty domain ID list receives in an EFP with an empty domain

ID list, the switch retains its own parameters and transmits an AAI to the switch that is

not yet configured.

d) If the switch with a non-empty domain ID list receives in an EFP also with a non-empty

domain ID list, there are two possibilities: the EFP could be transmitted by the Principal

Switch when a new domain ID is created or the switch in the current Fibre Channel

network could be connected to another Fibre Channel network. In the first case, what the

switch needs to do is just update its domain ID list to include the new domain ID. In the

second case, a fabric reconfiguration fabric service will be performed in order to

reorganize the domain IDs when two Fibre Channel networks are joined.

4) Only the switch that can retain its own switch priority and name for two F_S_TOV and whose

priority is larger than 0xFF will be the principal switch. During this timeout, there is no switch that

has lower switch priority and name values than these values of the principal switch. If the switch

priority is 0xFF, it indicates that the lowest switch priority is 0xFF in this Fibre Channel network.

Because the priority 0xFF also indicates that the switch is not capable of acting as the Principal

Switch, then all the switches will be in the isolated state.

5.3.3 Keeping Track of Frames

In the process of handling the EFP, AAI and RDI, it is necessary for the switch to keep track of where and

when the frame is transmitted. When a SW_ACC or SW_RJT is received, the switch needs to know to

which frame the SW_ACC or SW_RJT is responding. Each fabric service frame will be assigned a unique

Originator Exchange Identifier (OX_ID). Any response to the frame uses the same OX_ID. After the

switch has transmitted a frame, a record is added to an OX_ID list. This record has the values of the type of

the fabric service, the OX_ID of this frame, and the HBA order which generated this frame. When a

response frame is received, the switch searches for the record in the OX_ID list that has the same OX_ID.

This way the switch can know which response is to which frame. Jiffies, mentioned in paragraph 5.2.3, can

35

be used as the time stamp to record when the frame was received. Ten milliseconds time span is precise

enough for debugging in this thesis.

The Tachyon chip can generate an interrupt for every transmitted frame. To improve the

performance, this capability is disabled. This way, the number of interrupts is reduced by half. In most

cases, frames can be successfully transmitted. Even when the outcome completion interrupt is disabled, any

error during the frame transmission can still cause an interrupt. The OX_ID value of the frame is reported

in the interrupt message. The switch handles this interrupt to find out why the error happened and whether a

retry is needed.

5.4 Domain ID Distribution

At the completion of Principal Switch selection, the Principal Switch assumes the role of domain address

manager. The Principal Switch first sets its own priority to 0x02. Then it grants itself a domain ID and

transmits an EFP to broadcast its domain ID and switch name. After that, the Principal Switch transmits an

AAI to announce that it has the capability of granting domain IDs to other switches. The switch that

received the AAI may request a Domain ID by transmitting Request Domain_ID (RDI) fabric service. Only

the Principal Switch can handle the RDI request. Other switches have to forward the received RDI to the

Principal Switch.

5.4.1 RDI Request Processed by Principal Switch

When a RDI is received by the Principal Switch, it first checks its domain ID list to see whether this switch

has requested a domain ID before. If it has requested a domain ID before and is asking for the same one,

the Principal Switch grants this ID; if it is asking for a different one, this action is prohibited. Then a BF is

transmitted to reconfigure the fabric. In the case that the switch has never obtained a domain ID before, the

Principal Switch checks whether the requested ID is equal to zero or used by another switch. If it has, the

Principal Switch grabs a new available ID and grants this one. If the requested ID is a valid domain ID and

is available, the ID is assigned to the requesting switch. It is possible that all available domain IDs are used

36

and no more are available. In this case, a SW_RJT is transmitted with the reason “Domain ID not

available”. Figure 5.4 shows the RDI processing by the Principal Switch.

Receive RDI

Requested
before?

Requesting
Same ID?

Y

N

Transmit BFGrant this ID

Y

Requested
ID available?

N

N or ID==0

Any more
available ID?

Transmit SW_RJT

Grant the new ID

Flood EFP

Y

Y

N

Figure 5-4: RDI Processing.

5.4.2 RDI Request Received by non-Principal Switch

If a non-Principal switch receives a RDI request, this RDI is forwarded to the Principal Switch. The switch

developed in this thesis keeps track of which HBA is connected to the principal switch. After the

RDI_ACC from the Principal Switch is received, it is forwarded back to the requesting switch. What the

non-Principal Switch needs to do is to function as a conduit between the requesting switch and the Principal

Switch. The non-Principal Switch will transmit an AAI when it detects that an unconfigured switch is

connected to it.

37

Chapter 6

Name Server

6.1 Introduction

The switch name server, also called the directory server, maintains tables that correlate port identifiers with

port attributes such as port name, node name, classes of services, FC-4 types, and IP addresses. These

tables will be used to provide the port information in the local domain or any other specific domains. Name

service registration, de-registration, and queries are managed by the name server through FC service

protocols. The N/NL_Port attached to the switch utilizes the name server to get the information of other

N/NL_Ports attached to other switch ports.

6.2 Name Server Structure

The names and attributes of the port attached to the fabric are saved in the name server. The name server

maintains a database with an entry for each port [2]. Table 4-1 shows the organization of the database.

Primary Key Indexed Fields Secondary Key Indexed Fields

Port Identifier Port Name

 Node Name IP Address (Node)

Class of Service Initial Process Associator

FC-4 TYPEs Symbolic Node Name

Symbolic Port Name

Port Type

IP Address (Port)

Hard Address

Table 6-1: Name Server Database Organization.

38

After fabric login, devices are required to register to the name server, which has the well-known ID of

0xFFFFFC. In the registration procedure, the attributes are registered according to different Port_ID or

Node_Name, whereas in the query procedure, information related to corresponding attributes can be

obtained.

6.3 Implementation

 In order to build a Fibre Channel switch on a PC, multiple Fibre Channel PCI host bus adapters (HBA)

will be used as different switch ports. Each HBA maintains an ordered linked list with the information of

all the N_Ports or NL_Ports attached to that HBA. When the link is initialized, the linked list is set to

empty. Whenever a new port is connected to the HBA, a new entry of the linked list is added. The linked

list uses data structure port_info to save the port attributes.

6.3.1 Define a Port

The port_info structure as shown below is defined to hold the attributes that a port could have.

struct port_info {
u_int portID; // Port Identifier
u_int port_name_high; // Port name high word
u_int port_name_low; // Port name low word
u_int s_port_name[64]; // Symbolic port name
u_int node_name_high; // Node name high word
u_int node_name_low; // Node name low word
u_int s_node_name[64]; // Symbolic node name
u_int initial_pa[2]; // Initial process associator
u_int ip[4]; // IP address (node)
u_int class_service; // Class of service
u_int FC_4_types[8]; // FC-4 types
u_int portType; // Port type
u_int ip_port[4]; // IP address (port)
u_int fabric_name_high; // Fabric name high word
u_int fabric_name_low; // Fabric name low word
u_int hard_address; // Hard address
u_int SET_FLAG; // Attributes indicator
struct port_info *next; // Pointer to next port

};

 The FC_4_type field contains a map to indicate which Fibre Channel layer 4 services are

supported. For example, every Fibre Channel device should support SCSI-FCP (Fibre Channel Protocol for

SCSI), but not all devices need to support IP.

39

6.3.2 Registration and De-registration

Fibre channel switches require the nodes that are connected to the F/FL_Ports to perform a fabric login and

name server login. The goal of fabric login is to ask for a domain identifier and area identifier from the

fabric to construct a full-length port identifier. After the nodes get their identifiers, they perform login to

the switch name server. This way, the nodes on other switch ports can know that a new node has been

added to the switch.

As shown in Figure 4-3, the login frame contains the values of the port name, node name, and

class validities of the new node. When a login frame is received to the name server, the name server checks

whether any record has the same port identifier. If the record already exists, the name server goes further to

check whether the port name, node name, and class validities of the existing record are the same as the

values to be registered. In case any change is found, the name server will register the new values and

transmit a Registered State Change Notification (RSCN) frame to other nodes. In fact, the port name, node

name, and class validities are very unlikely to be changed during the time when the node is attached to the

fabric. If the name server cannot find any record with the registering identifier, a new record is created for

the new node and the corresponding port name, node name and, class validities are registered. Other entries

of the new record are set to empty. These entries need other corresponding registration frames to fill them

out.

 The port identifier and node name are the two searching keys used in registration commands.

Figure 6-1 shows an example of the format of the register FC-4 types (RFT_ID) frame, which is the most

commonly used registration frame. When registration is done, the corresponding flag will be set to indicate

that this attribute has been set. The flags will be checked during the query command processing. When the

de-registration frame is received, a flag is set to indicate that this record is now empty.

40

Byte 0 Byte 1 Byte 2 Byte 3

Reserved Port Identifier

FC-4 Types

Figure 6-1: RFT_ID Frame Payload.

6.3.3 Query

The attached nodes use query procedure to get certain information from the switch name server, such as

which ports have already been registered and what characteristics they have. All the port_info entries other

than the symbolic names can be served as the searching key. Some query commands only ask for certain

values. For example, the GA_NXT is used to get the port record of the next higher valued port identifier. If

there are no registered port identifiers higher valued than the value in the GA_NXT request, then the

registered record of the lowest registered port identifier is returned. Query request such as GA_NXT can

get one specific answer every time, whereas some other query requests may get more than one. GID_FT is

the query request used to get all of the port identifiers which have been registered as support for the

specified FC-4 type. One or more port identifiers, having been registered as support for the specified FC-4

type, are returned as shown in Figure 6-2. Each returned port identifier is preceded by an 8 bit control field.

Bit 7 of the control byte is set to zero if the port identifier following the control field is not the last port

identifier to be returned. Otherwise this bit is set to one.

Byte 0 Byte 1 Byte 2 Byte 3

0rrr rrrr Port Identifier No. 1

0rrr rrr Port Identifier No. 2

……

1rrr rrr Port Identifier No. n

 r: reserved

 Figure 6-2: GID_FT Accept Payload.

41

 The GA_NXT and GID_FT are the most often used query requests. A node can keep using

GA_NXT until it gets a port identifier that is same as an identifier it received before. This way all the port

identifiers registered to the name server are retrieved. Normally, using one GID_FT request can get all the

port identifiers which support SCSP-FCP (Fibre Channel Protocol for SCSI).

42

Chapter 7

Routing

7.1 Introduction

In the Fibre Channel storage area network, each switch is a domain. Data frames can be forwarded to their

destination domain when guided by the routing protocol. The Fibre Channel switch community has not had

a routing protocol until the Fabric Shortest Path First (FSPF) routing protocol was accepted by the five

switch companies in late June, 2000. The common routing protocol is a significant step toward the open

Fibre Channel-based storage area network. FSPF is conceptually based on the Open Shortest Path First

(OSPF) internet routing protocol. It is a Link State path selection protocol, which keeps track of the state of

the links on all switches in the fabric topology. A cost is associated with each link. By choosing the path

that has the least-cost, the protocol computes paths from a switch to all the other switches in the fabric.

 The routing protocol has four major components:

• = A Hello protocol

• = A replicated topology database

• = A path computation algorithm

• = A routing table update

The Hello protocol is used to establish communication between a switch and the neighboring

switches that are directly connected to it. When the Hello is done, the switch knows that the inter-switch

link is active and available as a two-way path for frames. The topology database synchronization consists

of an initial database synchronization and an update mechanism. The initial database synchronization is

used when a switch is reconfigured; the update mechanism is used when there is a link state change. The

43

 shortest path computation algorithm takes advantage of the link costs in the topology database to calculate

the least-cost paths to every switch in the fabric. These results will be saved in the routing table.

The switch developed in this thesis implements the Hello protocol. Dijkstra’s algorithm is used as

the shortest path computation algorithm. For each destination switch in the fabric, the routing table keeps

the information on which switch is used as the first hop and which output port is used to route a frame to

that switch.

Due to time restrictions, only a small subset of the topology database update is implemented. The

Hello protocol, the Dijkstra’s algorithm, a simplified link state update method, and the routing table have

been implemented. The periodic link state database synchronization, the reliable LSA flooding, the

dynamic link cost calculation, and other features of the routing have not been added to the routing

implementation.

7.2 Hello Protocol

After a switch detects that one of its ports is directly connected to another switch, it starts to transmit a

Hello message to its neighbor. The Hello frame contains the domain ID and the port ID of the originating

switch and the destination switch domain ID. At the beginning, the destination ID is unknown to the

originating switch and is set to the broadcast address 0xFFFFFFFF. When a Hello frame is received, the

switch knows the domain ID and port ID of the neighboring switch. If a switch detects that its own domain

ID is in the received Hello frame, it concludes that the two-way communication with the neighboring

switch has been established. The switch knows that the inter-switch link is active and available as a two-

way path for frames.

The switch keeps transmitting Hello to its neighbors every 20 (Hello Interval) seconds to make

sure that its neighbors are all active. If it has not received a valid Hello from the neighbor in 80 (Dead

Interval) seconds, the local switch assumes that the link to the neighbor is down for some reason and the

link will be initialized. This procedure happens to every switch. The hello_timer is in charge of transmitting

44

Hello frame every 20 seconds and the dead_timer monitors the incoming Hello frame. When the Hello

process is done, the switch in the fabric knows the domain IDs which are connected to the local ports of the

switch. Figure 7-1 shows an example of the Hello procedure. The port ID is also named as the area ID in

the 24-bit Fibre Channel address (see Figure 3-3). The domain ID is assigned by the principal switch after

E_Port initialization. Thus the first Hello frame is transmitted only when the switch gets a domain ID.

Hello !
To: Whom it may concern.
From: Domain A

Port 01
Switch A Switch B

Hello!
To: Domain A
From: Domain B

Port 07

The neighbor connected
to my port 01 is switch A The neighbor connected

to my port 07 is switch B.

Figure 7-1: Hello Protocol

7.3 Link State Update

The topology database is the most important part of the link-state routing protocol. It is a replicated

database. All switches in a fabric must have the exactly same copy of it at all times in order to prevent

routing problems such as infinite loops or black holes. Keeping the topology database synchronized across

all switches is achieved by Link State Update (LSU) messages. When an inter-switch link comes up or goes

down or switches are added or removed from the fabric, an LSU will be issued by the affected switch to let

other switches know that some changes have occurred. This way, every switch in the fabric can update their

topology database. The LSU message contains one or more Link State Records (LSR) that make up the

45

topology database. Each LSR, which represents the link information for one switch, is the complete list of

its inter-switch links. There is one link descriptor for each link. The LSU and LSR frame formats are shown

in Figure 7-2. LSR age is the time in seconds since the record has been generated. It is used to flush the old

records from the database. The number of the links in the LSR matches the number of ports that have valid

links to their neighboring switch. In the real application, the link cost is calculated based on the available

bandwidth, baud rate, and the administratively set factor. In this thesis, there are no calculations for the link

cost. It can be set to a constant value. The path cost from the source switch to the destination switch is the

sum of the traversed link costs. The Link State Acknowledge (LSA) frame is sent in response to the LSU

frame. The purpose of the LSA is to provide a container to transmit LSR acknowledgements. It contains

only the header of the LSRs that are acknowledged and does not have the link date descriptor fields.

Figure 7-2: LSU and LSR Format

7.3.1 Initial Topology Database Synchronization

After the two-way Hello is established on a link, each switch exchanges its entire link state database with

its neighbor using the LSU message. The recipient of that LSU checks the LSRs in the LSU. If an LSR

contained in the incoming LSU does not exist in the local database, this LSR is added to the local database.

 Command code and Domain ID

Number of Link State Records

Link State Record for domain #1

……

Link State Record for domain #n

LSR Domain ID

LSR Incarnation number and Age

Number of Links

Link Descriptor #1

Neighbor switch Domain ID & Port ID

Originating Port ID and Cost

……

Link Descriptor #2

Neighbor switch Domain ID & Port ID

Originating Port ID and Cost

46

On the other hand, if the LSR already existed in the local database, the incarnation number and the age field

of the LSR will be checked to help determine which of the two instances of an LSR is more recent. The

incarnation number is a progressive number that identifies the LSR. When an LSR is first created, it has an

initial incarnation number. The number is incremented by one each time a new instance of the LSR is

issued. Thus, the one with a larger incarnation number is the most recent. The age field represents how long

a particular instance of an LSR has been sitting in the link state database. When other LSR fields are equal,

this field is used to determine who is younger. The old record will be updated if the incoming LSR is more

recent. Figure 7-3 shows the progress of the topology database synchronization.

LSU(DBA)

Switch B

LSU(DBB)

LSA(DBB) LSA(DBA)

Switch A

Figure 7-3: Topology Database Synchronization.

The entire database may be larger than one LSU can contain. Therefore, a database may need

several LSUs to hold all the LSRs. In this case, the last LSU contains no LSR, which means the database

exchange has been completed.

7.3.2 Topology Database Update

 When the link state databases are in synchronization, further database updates can proceed. If a switch

finds that one of its link state has been changed, this switch will issue an LSU which contains only the link

state record of itself. Unlike the database synchronization process in which the LSU contains the entire

database, during the database update procedure, only the changed LSR is contained in the LSU. Each

47

switch will retransmit the LSU to the entire fabric. Then all the switches know the changes and updates of

their database.

After the new LSR has been transmitted and acknowledged on all of the switch’s inter-switch links, the

switch computes the paths to all the other switches in the fabric again. The routing table will also be

updated. All the other switches in the fabric will do the same work, having received a new LSR.

7.4 Dijkstra’s Algorithm

The link state database has all the topology information of the entire fabric. The costs between any inter-

switch links are used for the shortest path computation. The least-cost path calculation algorithm used in

this thesis is Dijkstra’s algorithm. It functions by constructing a shortest-path tree from the initial vertex to

every other vertex in the graph. Dijkstra’s algorithm is one of the most efficient algorithms for solving the

shortest-path problem. In a weighted graph (otherwise known as a network), it is frequently desired to find

the shortest path between two nodes. The weights attached to the edges can be used to represent quantities

such as costs, distances, or times. In general, the distance along a path is the sum of the costs of that path.

Dijkstra’s algorithm is implemented in this thesis in three stages.

1: Initialization. All the nodes in the network except the source are pushed into a linked list V. The link

costs for the neighboring switches are obtained from the link state database.

2: Find the next node. Find the neighboring node, say node A, in the linked list V which has the least-cost

path from the source node. Remove this node from V because this node was already calculated and will no

longer be computed.

48

A

B

S

10

8
1

Figure 7-4: An Example of the Least-cost Path Update.

3: Update other paths. Check every node in the linked list V to determine whether this node is adjacent to

node A. For instance, if node B is adjacent to node A, the least-cost path to node B may go through node A

because node A was proven to be a least-cost path. Set the least-cost of node B to:

L(B) = min[L(B), L(A) + w(A, B)]

where w(A, B) is the cost between node A and B. Figure 7-4 shows the example under this condition. After

step 3, the path to node B should go through node A and the least-cost should be changed from 10 to 9.

The algorithm terminates when all nodes in the linked list have been calculated. At termination,

every node knows its least-cost path from the source node. In addition, the least-cost paths establish a

spanning tree of the original graph.

7.5 Routing Table

After the shortest path is computed, the switch knows the least-cost paths to every other switch in the

fabric. What is really useful to the switch is the next hop to the destination because all nodes in a graph

generate the same shortest paths in a graph. The first node on the shortest path is the next hop to the

destination. During the Hello process, the switch already knew which neighbor is directly connected to

which local port as mentioned in Chapter 7.2. Then the switch has the port ID which can lead to the

destination switch. The next hop domain ID and the local port ID are stored in the routing table. Whenever

a frame is received with the destination other than the local switch, the local switch checks the port ID for

the destination switch from the routing table. Then the local switch forwards this frame through that port.

An example of the Routing Table is shown in Figure 7-5.

49

SRC

C

A B

D

1 2

4

1

2
1

Port 1

Port 3

Port 2

TO: Port: Next:
A 1 B
B 1

3
B

C
D

C
3 C

To: Shortest Paths:
A B A
B B
C C
D C D

Routing Table

Port 4

Output from the Dijkstra’s Algorithm

 Figure 7-5: Routing Table.

50

Chapter 8

Testing and Evaluation

8.1 Introduction

The emulated switch was run through the test suites developed by the InterOperability Lab’s Fibre Channel

consortium of the University of New Hampshire. There are two standards which describe the operation of

Fibre Channel switches: Fibre Channel Switch Fabric (FC-SW) and Fibre Channel Generic Services (FC-

GS). The Fabric Loop Attachment (FC-FLA) mainly defines the behavior of the fabric attached

N/NL_Port. The test suites that were run on this emulated switch were the FC-SW-1 and FC-GS-2 test

suites. The FLA test suite is not developed for fabric ports, but the emulated switch can be developed as a

FLA testing tool. The development of a switch testing tool will be introduced in this chapter. Apart from

the conformance testing, tests to measure the performance of the emulated switch were also made.

8.2 Fibre Channel Conformance Testing

8.2.1 FC-SW-1 Testing

The FC-SW-1 test suite tests the conformance of a Device Under Test (DUT) to the Fibre Channel Switch

Fabric Standard. The test suite essentially tests the following aspects:

• = Class F Service

• = E_Port Initialization

• = Principal Switch Selection

• = Address Distribution

There is an AL_PA bitmap in the loop initialization sequences such as LIFA, LIPA, LIHA, and LISA. The

AL_PA bitmap shows which AL_PAs are selected by the devices on the loop. The FC-SW requires that if

the LISA sequence indicates only one or two ports are on the loop, the switch shall try point-to-point link

51

initialization. The reason for this procedure is that the point-to-point flow control can save time by not

using the arbitration process on the loop connection. Unfortunately, the AL_PA bitmap of the Tachyon chip

is not available to programmers. Thus the testing items that require the AL_PA bitmap information are not

testable. The setup for FC-SW tests is shown in Figure 8-1. Most of the test cases can be performed via

setup Figure 8-1(a). However, some other test cases need to check whether the switch under test can

forward a frame to other inter-switch links. In this case, a reference switch is needed to establish another

inter-switch link with the switch under test. In this setup, which is shown in Figure 8-1(b), a multi-channel

monitor such as I-Tech tester is required to trace four channels at the same time. The test report is not

included here because it is very detailed and voluminous. Copies of the report can be obtained from the

UNH InterOperability Lab’s web page at www.iol.unh.edu/consortiums/fc/fc_linux.html.

Testing
StationReference Switch

Testing
Station

Monitor

(a) (b)

Monitor

Switch Under TestSwitch Under Test

Figure 8-1: Setup for FC-SW Tests.

8.2.2 FC-GS-2 Testing

The FC-GS-2 test suite tests the conformance of the DUT to the Fibre Channel Generic Services standard.

The test suite essentially tests the features of the switch name server. As mentioned in Chapter 6, there are

three kinds of name server requests, which have more than thirty test cases:

• = Query requests

• = Registration requests

52

• = De-registration request

In order to speed the testing process, the test cases are automated into two parts. One is the conformance

testing and the other is the error-handling testing. The conformance testing is performed by the following

procedure:

• = Step 1: Transmit all registration requests to the name server with pre-defined parameters such

as Port_Name, Node_Name, IP address, and so on.

• = Step 2: Transmit all query requests to conform that all the parameters are correctly registered.

• = Step 3: Transmit GA_NXT after DA_ID to make sure that DA_ID removes all the registered

objects.

The error-handling test is performed in the following steps:

• = Step 1: Transmit the ID registration requests, which use port ID as the searching index, to

register pre-defined parameters.

• = Step 2: Transmit the Node Name registration requests, which use Node Name as the searching

index, with the Node Name that has not been registered. Expect to receive FS_RJTs with

correct reason code.

• = Step 3: Transmit all query requests and DA_ID request with the indexes which have not been

registered. Expect to get FS_RJTs with correct reason code.

The setup for FC-GS tests is the same as the setup shown in Figure 8-1(a). The test report is not included

here because it is very detailed and voluminous. Copies of the report can be obtained from the UNH

InterOperability Lab’s web page at www.iol.unh.edu/consortiums/fc/fc_linux.html.

8.3 Performance Testing

The emulated switch is built on a PC with 450 MHz Pentium II CPU and 128 MB RAM running Linux

2.2.14. The configuration for the tests is shown in Figure 8-2. The initiator used in the performance tests is

a Hewlett-Packard (HP) Host Bus Adapter (HBA), which is installed on a host. The target is a Seagate hard

drive, which is a fabric-attached disk. The monitor is the I-Tech IFC-3016 Fiber Channel Analyzer.

IOMeter, a software for I/O testing, is installed on the PC which has the HP HBA. Using IOMeter, users

can define the transfer request size, transfer time, read-write percentage, and other features of the I/O. The

53

same tests were performed on the emulated switch and on commercial switches. The results show that the

emulated switch has a totally different data transfer mechanism from that of the real switches.

Port A Port B

HP HBA

I-Tech Analyzer

Emulated Switch

Seagate
Disk

TargetInitiator

Running IOMeter

 Figure 8-2: Setup for Performance Tests.

 The frame forwarding between different ports in the real switch is achieved by hardware typically

through the use of Application Specific Integrated Circuit (ASIC). When a real switch receives a sequence,

the switch decodes the D_ID of the first frame and decides which port is the destination port. Figure 8-3

shows an example of the frame switching in the real switch and the emulated switch. In Figure 8-3 (a), the

real switch receives a four-frame sequence on port A. After the switch knows that the destination port is

port B, it begins transmitting the data frame to port B, even while port A is still receiving the data of that

frame. The switch response time is the time from the point when port A receives the first SOF to the point

when port B transmits the first SOF. Normally the response time of the real switch is as short as about 2.15

microsecond.

Because the emulated switch is a kind of software switch, its switching mechanism, shown in

Figure 8-3 (b), is very different from that of the real switch. The emulated switch waits for the completion

of the incoming sequence before it begins to forward this sequence to another port. From the figure, the

emulated switch response time consists of two parts: the receiving time and the processing time. The

receiving time represents the time cost for receiving the entire data of a sequence on port A, which is from

54

the SOF of the first frame to the EOF of the last frame on port A. After all the frames of a sequence are

received on port A, it generates an interrupt to the PC on which the emulated switch is built. When the

interrupt is received, the switch fetches the corresponding pointers on the registers of the Tachyon chip.

(a) Real Switch (b) Emulated Switch

Port A Port B
R

es
po

ns
e

Ti
m

e

Pr
oc

es
si

ng
 T

im
e

R
es

po
ns

e
Ti

m
eR

ec
ei

vi
ng

 T
im

e

Port BPort A

Se
qu

en
ce

�

�

�
Frame

 Figure 8-3: Data Transfer in the Real Switch and the Emulated Switch.

55

The switch then uses these pointers to reconstruct the frame header and data buffers of the

received sequence, which is shown in Figure 4-2. After the switch notifies port B that the outbound data is

ready, the Tachyon chip on port B begins transmitting the sequence. The processing time is between the

EOF of the last frame on port A and the SOF of the first frame on port B. Both the receiving time and

processing time vary with the length of the sequence, whereas the response time of the real switch is

independent of the sequence length. The performance of the real switch and the emulated switch are in very

different levels.

Sequence Length (Bytes) 512 1024 2048 4096

Receiving Time (µs) 5.1 10.0 19.6 39.5

Processing Time (µs) 50.0 80.6 141.4 260.0

Response Time (µs) 55.1 90.6 161.0 299.5

Table 8-1: Response time of the Emulated Switch.

Table 8-1 shows the response times of the emulated switch for different sequence lengths. The

time value in Table 8-1 was the average of the sum of three results which were obtained under the same

conditions. The discrepancy of the three results is less than 2% of their average. It can be seen that the

processing time occupies about 90 percent of the entire response time, which means the software switching

is the most time consuming part of the emulated switch. The receiving time depends mostly on the

transmitting time of the frame and is proportional to the sequence length. The processing time is not

proportional to the sequence length because the processing time consists of two parts: one is the time spent

on moving the data from the host memory to the HBA by Direct Memory Access (DMA), another is the

time spent on creating the frame header by collecting necessary information from the interrupt message.

The DMA time is proportional to the sequence length, but the frame header creation time does not change

with the sequence length. For the processing time listed in Table 8-1, a reasonable explanation is that the

frame header creation time is about 20µs, thus the DMA time is about 30µs, 60µs, 120µs, and 240µs

respectively. This DMA time is also proportional to the sequence length. Because it is very hard to get the

56

real time spent on DMA, this problem is up to further study. The performance of the emulated switch is

limited by the hardware restrictions. It has to be noted that the performance does not affect the goal of this

thesis: to develop a testing tool for switches and switch-attached devices.

57

Chapter 9

Testing Tool Development

9.1 Introduction

The main goal of this thesis is to build an emulated switch which can act as a testing tool for the Fibre

Channel switch or switch-attached device testing. Even though there are several Fibre Channel switches in

the IOL, they act as closed boxes and cannot be controlled to transmit certain frames and sequences of

frames. A real switch cannot generate well-defined error conditions which are important in performing

switch tests. Also more and more Fibre Channel vendors are requesting fabric frame-based testing. The

switch developed in this thesis can act in two different roles depending on how the testing flag of the driver

is set. If the testing tool is set to non-zero, the driver acts as a testing tool and intentionally generates

predefined response to the incoming frames, otherwise the emulated switch works normally as a real

switch.

9.2 Frame-based testing

For different Fibre Channel layers as shown in Figure 2-1, there are different test procedures, such as the

FC-1 Test is for the physical layer and the AL test is for the Arbitrated Loop layer. The FC-2 and FC-3

layers are the General Services and Frame Protocol layers. The tests for these two layers are listed below:

• = Switch Fabric (FC-SW)

• = Generic Services (FC-GS)

• = Private Loop Direct SCSI Attach (FC-PLDA)

• = Fabric Loop Attachment (FC-FLA)

• = IP

58

All these layer FC-2 and FC-3 tests are frame-based tests. Unlike the FC-0 and FC-1 tests, the frame-based

tests require the testing station to generate a lot of frames. In the Fibre Channel Consortium of the UNH

InterOperability Lab, there are three kinds of testing data generator:

1) UNH IOL Tiger Board: Used only for physical layer tests.

2) Finisar Trace Generator: Used for order-set-based tests, has 500-line limitation.

3) Xyratex Generator: Frame-based tester, but no support for Fabric.

There is no fabric frame-based generator in the market right now, but more and more fabric-related tests are

requested by the vendors. This is the reason the IOL develops a frame-based tester for lab’s use. The frame-

based tester is a kind of interactive testing tool, which means the response of the testing tool depends on the

contents of the received frame. A non-interactive testing tool does not have this kind of intelligence

because the outgoing data of a non-interactive testing tool is predefined.

In most cases during a frame-based test, the testing tool has to respond to some frames correctly.

A response frame must match the Originator Exchange Identifier (OX_ID) from the Device Under Test

(DUT). Because the OX_ID varies from time to time, it is very difficult for a non-interactive tester to keep

track of the OX_ID from the DUT. Figure 9-1 shows the switch E_Port initialization procedure. Suppose

we are performing the rx_RDI test, a common test case in FC-SW-1, that checks whether the DUT

responds properly to a received RDI. From Figure 9-1, we can clearly see that the testing tool has to

transmit five ACCs before transmitting the RDI. The Acknowledgement frame, which is transmitted every

time when a fabric service frame is received, is not shown in the figure. We can image how time

consuming it is to perform this test on a non-interactive testing tool.

59

Device Under Test Testing Tool

ELP

ELP_ACC

Link Reset

Link Reset Response

ESC

ESC_ACC

EFP

EFP_ACC

After 10 seconds

EFP

EFP_ACC

AAI

AAI_ACC

RDI

RDI_ACC

 Figure 9-1: E_Port Initialization Procedure.

9.3 The ioctl System Call

This testing tool has two parts: one is the user interface and another it the device driver. The user interface

accepts the testing request such as which fabric service frame is going to be transmitted. Because the user

60

interface runs in the user space, a connection between the user space and kernel space needs to be

established, in order to pass testing requests to the device driver, which runs in the kernel space.

The ioctl system call offers a device-specific entry point for the testing tool to issue testing

requests. The ioctl function is device-specific in which, unlike the common I/O methods such as read and

write, it allows applications to access specific features of the hardware being driven. It is applicable for all

I/O devices such as char devices, block devices, and network devices. In the thesis, the device driver is

registered as a network device. The ioctl system call in the user space corresponds to the following

prototype:

 int ioctl(int fd, int cmd, …);

The first argument is a descriptor, which could be file descriptor or a socket descriptor. The second

argument is the control command to the device. The dots of the third argument are there to prevent type

checking during compilation. The actual nature of the third argument depends on the specific control

command being issued (the second argument). Some commands take no arguments, some take an integer

value, and some take a pointer to other data. The ioctl function used in this thesis has the following

prototype:

int ioctl(int sd, int cmd, struct *ifreq);

The first argument must be a socket descriptor. The second argument is a socket control command. If the

command is system predefined, it is handled by the operating system. If the command is not recognized by

the protocol layer, it is passed to the device layer. The device-related ioctl commands accept a third

argument from user space, a struct ifreq *, which is the interface request structure used for socket ioctl’s.

The ioclt implementation for sockets recognizes 16 commands as private to the interface:

SIOCDEVPRIVATE throught SIOCDEVPRIVATE + 15 [14]. Normally one command number is not

enough for the I/O control. In most situations, a control command takes some parameters. For instance, if

the testing tool is asked to transfer a fabric service frame, it needs to know the payload of that frame. The

third argument contains the data related to the command, such as to which device this command is issued

and what data is passed to the device. A pointer is used to pass arbitrary data to the device. When one of the

private socket control commands is recognized, the dev->do_ioctl is called in the relevant device driver:

61

 int (* do_ioctl) (struct device *dev, struct ifreq *ifr, int cmd);

The do_ioctl function receives the same struct ifreq that the user-space ioctl function uses. The using of the

ioctl system call is shown in Figure 9-2 [13].

dev->ioctl

User Space

Kernel Space

Device Name

Device-specific
Data

Device Driver

User Interface

ioctl

Socket descriptor
Command
Interface request pointer

Device Name

Device-specific
Data

Interface Request

Copy of the Interface Request
in the Kernel Space

Figure 9-2: The ioctl() System Call.

 The interface request is copied to the kernel space when the ioctl is called, and the kernel-space

address of the interface request is then passed to the do_ioctl. After the driver processed the command, the

interface request is copied back to the user space; the driver can thus use the private command to both

receive and return data.

 The testing tool developed in this thesis fully takes advantage of the features of the system call

ioctl. Because there are only sixteen private control commands available, only the very frequently used

testing case is allocated a command number. Other testing case commands are passed to the driver using

the interface request data. Two testing tools are developed in this thesis: the switch testing tool and the non-

switch testing tool.

62

9.4 Using the testing tool

The switch testing tool works only as a switch, which means the ports can only be initialized as E_Port,

F_Port, or FL_Port. Because the switch port and non-switch port have very different behavior, they are

separately implemented. Following is the switch testing tool user menu.

Initialize as FL_Port ---> 1
Initialize as F_Port ----> 2
Initialize as E_Port ----> 3

Tx SW_ILS ---------------> 5
Tx FCS command: ---------> 8
Tx ELS : ---------------> 9

Tx SCSI command: ------------> 11
Tx SCSI single-frame data:----> 13
Tx very generate frame:------> 14

Tx an ABTS: -----------------------------> 80
Tx FCS all name_server commands: --------> 88
Tx FCS all error handling commands:-----> 89

E_Port testing:
1) rx_ELP.ELP: Higher E_Port Name -----------> 41
2) rx_ELP.ELP: Lower E_Port Name ------------> 42
3) rx_BSY_RJT.ELP: F_BSY --------------------> 43
4) rx_BSY_RJT.ELP: P_BSY --------------------> 44
5) rx_BSY_RJT.ELP: F_RJT --------------------> 45
6) rx_BSY_RJT.ELP: P_RJT --------------------> 46
7) rx_SW_RJT.ELP: --------------------> 47
8) rx_other_frames.ELP --------------------> 48
9) rx_no_valid_response.ELP -----------------> 49
10) zero_list_rx_EFP.principal: zero List ----------> 50
11) zero_list_rx_EFP.principal: non-zero List ------> 51
12) non_zero_list_rx_EFP.principal: ----------------> 52
13) rx_EFP_no_overlap.principal: -------------------> 53
14) rx_EFP_overlap.principal: ----------------------> 54

Quit---------------------> 0
Selection Option:

 From them menu, we can see that the E_Port (FC-SW) testing is embedded in the driver. After

users inputs a command, the driver will work in the testing mode. For example, if the input command is 41,

the “rx_ELP.ELP: Higher E_Port Name” test case, the driver is reinitialized to E_Port and waits for a

incoming ELP. Then the driver takes the DUT’s E_Port name from the ELP frame received, increments the

value of the name, and put the new name in to outgoing ELP frame. This action, of course, does not happen

during a normal E_Port initialization process. When initialized as an F_Port or FL_Port, the testing tool can

63

be used for FLA testing. Different Extended Link Service frames can be transmitted through the testing tool

from a pseudo public port ID.

The non-switch testing tool works as a non-switch device, which means the ports can only be

initialized as N_Port, or NL_Port. The name server tests (FC-GS), private loop tests (FC-PLDA), and IP

tests are heavily dependent on the testing tool. In the FC-GS, FC-PLDA, and FC-FLA tests, there are many

similar test cases. For instance, in the name server tests, different name server requests are transmitted to

the DUT. The only difference among these frames is the payload data. They have the same D_IDs, S_IDs,

frame types, control bits, and so on. In this case, it is better to automate these tests so that all the similar

frames can be transmitted together. The testing tool achieved the automated testing by reading the payload

contents from files and issuing ioctls to the device driver.

64

Chapter 10

Summary and Future Work

10.1 Summary

The lack of interoperability between switches from different vendors is delaying the widespread adoption

of heterogeneous SANs. The goal for this thesis is to build a Fibre Channel switch environment in the UNH

InterOperablity Lab (IOL) which can aid interoperability tests for switches or switch-attached devices.

Currently, more and more Fibre Channel vendors are requesting fabric frame-based tests. Even though

there are several Fibre Channel switches in the IOL, they act as closed boxes and cannot be controlled to

transmit well-defined error conditions, which are important in switch testing.

An emulated Fibre Channel switch has been designed and implemented on an Intel-based PC

running Linux by using multiple Fibre Channel host bus adapters. The switch, which complies with the FC-

SW and FC-GS standards, is able to perform F/FL_Port or E_Port initialization, frame forwarding, name

server management, principal switch selection, and domain ID distribution. A subset of the routing

protocol, which includes the Hello protocol, Dijkstra’s algorithm, and a simplified link state update

method, has been implemented. A Fibre Channel switch testing tool, which can be used to perform the FC-

SW, FC-GS, and FC-FLA tests, has also been developed on the emulated switch. The switch has

accomplished the proposed goal of developing a tester for fabric interoperability testing.

10.2 Future work

The Fibre Channel switch has seven elements of interoperability:

1) Link Initialization

2) Principal Switch Selection

65

3) Domain ID Distribution

4) Distributed Name Server

5) Routing

6) Distributed State Change Notification

7) Zoning

The link initialization has been implemented except for some features that depend on the hardware support.

The principal switch selection and the domain ID distribution have been fully implemented in this thesis.

The name server developed in this thesis is a local name server. In order to collect all the port information

on the Fibre Channel network, the distributed name server has to be developed. The routing and the

distributed state change notification are partially implemented and need further development. The zoning

remains undone.

The additional features that need to be implemented on the emulated switch are briefly described below.

• = The distributed name server could be developed based on the current local name server. When a

name server query request is received, the local name server only checks the local port database;

whereas the distributed name server will broadcast the request to all switches in the Fibre Channel

network and collect the results from all switches.

• = The FSPF routing protocol could be implemented more accurately after the standard is fully

published. The periodic link state database synchronization, reliable LSA flooding, dynamic link

cost calculation, and other features could be added to the routing implementation.

• = Currently, the RSCN is only sent to the local switches. The distributed state change notification

could be added to let the entire fabric know the changes happened on the local switch.

• = Zoning could be implemented to set zones for different groups of devices.

• = The testing tool, a high level application, could be implemented to get the low level testing data

from the driver using system call ioctl. The testing tool could be further developed to have a

graphical user interface.

• = Some storage management function could be added to the emulated switch. The switch could be

more aggressive to transmit SCSI commands to find out the features of the attached devices. Then

66

these features, such as the device type (initiator or target) and the target capacity, could be used for

storage management.

67

BIBLIOGRAPHY

[1] ANSI T11/Project 959-D/Rev 3.3, October 21, 1997, Fibre Channel Switch Fabric (FC-SW).

[2] ANSI T11/Project 1134-D/Rev 5.3, November 25, 1998, Fibre Channel Generic Services-2

(FC-GS-2).

[3] ANSI X3T11/Project 958D/Rev 3.5, August 7, 1996, Fibre Channel Fabric Generic Requirements

(FC-FG).

[4] ANSI X3T11/Project 755D/Rev 4.3, June 1, 1994, Fibre Channel Physical and Signaling Interface

(FC-PH).

[5] ANSI X3T11/Project 960D/Rev 4.5, June 1, 1995, Fibre Channel Arbitrated Loop (FC-AL).

[6] ANSI X3T11/Project 1235DT/Rev 2.7, August 12, 1997, Fibre Channel Fabric Loop Attachment

(FC-FLA).

[7] Hewlett-Packard Company, May, 1996, TACHYON User's Manual, First Edition, Revision 5.0

[8] Tom Clark, “Designing Storage Area Networks,” Addison-Wesley. 1999.

[9] Robert W. Kembel, “Comprehensive Introduction to Fibre Channel,” Solution Technology. 1998.

[10] UNH InterOperability Lab, Fibre Channel Tutorial, http://www.iol.unh.edu/consortiums/fc.

[11] University of Minnesota, Fibre Channel Howto, http://www.globalfilesystem.org.

[12] Vineet M. Abraham, “Design, Implementation and Evaluation of a Fibre Channel Driver for IP on

Linux,” MS Thesis, University of New Hampshire, August, 1999.

[13] Maurice J. Bach, “The Design of the UNIX operating system”, Prentice Hall, 1986.

[14] Alessandro Rubini, “Linux Device Drivers”, O’REILLY, 1998.

68

APPENDIX A: Abbreviations and Acronyms

AAI Announce Address Identifier

ACC Accept

ACK Acknowledgement

AL Arbitrated Loop

AL_PA Arbitrated Loop Physical Address

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

BB_Credit Buffer to Buffer Credit

BF Build Fabric

D_ID Destination Identifier

DUT Device Under Test

E_D_TOV Error_Detect_Timeout Value

EE_Credit End to End Credit

EFP Exchange Fabric Parameters

ELP Exchange Link Parameters

ELS Extended Link Service

EOF End of Frame

EOFn End of Frame Normal

EOFt End of Frame Terminate

F_BSY Fabric Busy

F_RJT Fabric Reject

F_S_TOV Fabric_Stability_Timeout Value

FAN Fabric Address Notification

FC Fibre Channel

69

FC-GS Fibre Channel Generic Services standard

FC-PH Fibre Channel Physical and Signaling Interface standard

FC-SW Fibre Channel Switch Fabric standard

FLA Fabric Loop Attachment

FLOGI Fabric Login

FSPF Fabric Shortest Path First

GA_NXT Get All Next

GCS_ID Get Class of Service

GID_FT Get Port Identifiers with the FC-4 Type

HBA Host Bus Adapter

IOL UNH InterOperability Lab

IPI Intelligent Peripheral Interface

ISL Inter-Switch Link

JBOD Just a Bunch of Disks

LAN Local Area Network

LISA Loop Initialization Soft Assigned

LR Link Reset

LRR Link Reset Response

NCITS National Committee for Information Technology Standards

NOS Not Operational

OLS Offline

OX_ID Originator Exchange Identifier

FC-PLDA Fibre Channel Private Loop Direct SCSI Attach

R_A_TOV Resource_Allocation_Timeout Value

RAID Redundant Array of Independent Disks

RCF Reconfigure Fabric

RDI Request Domain_ID

RFT_ID Register FC-4 Types

70

R-RDY Receiver Ready

RSCN Registered State Change Notification

S_ID Source Identifier

SAN Storage Area Network

SCR State Change Registration

SCSI Small Computer System Interface

SCSI-FCP Fibre Channel Protocol for SCSI

SOF Start of Frame

SOFf Start of Frame Fabric

SOFi3 Start of Frame Initiate Class 3

SW Switch

SW_ACC Switch Fabric Service Accept

SW_ILS Switch Internal Link Service

SW_RJT Switch Fabric Service Reject

ULP Upper Level Protocol

WWN World Wide Name

	2.1	Introduction
	Fibre Channel Ports and Topologies
	Point to Point
	Fabric
	Arbitrated Loop

	2.3	Flow Control
	2.4	Classes of Service
	Introduction
	3.2	Name Server
	3.3	Principal Switch Selection
	3.4	Address distribution
	Introduction
	4.2	Switch Architecture
	4.3	Switch Port Initialization
	Login Procedure
	4.3.2	FL_Port Initialization
	F_Port Initialization
	Registered State Change Notification

	5.1	Introduction
	5.2	E_Port Initialization
	Class F Service
	Exchange Link Parameters
	The Linux Timer

	5.3	Principal Switch Selection
	Exchange Fabric Parameters
	5.3.2	Principal Switch Selection State Machine
	5.3.3	Keeping Track of Frames

	5.4	Domain ID Distribution
	RDI Request Processed by Principal Switch
	RDI Request Received by non-Principal Switch

	6.1	Introduction
	6.2	Name Server Structure
	6.3	Implementation
	Define a Port
	Registration and De-registration
	Query

	7.1	Introduction
	7.2	Hello Protocol
	Link State Update
	Initial Topology Database Synchronization
	Topology Database Update

	Dijkstra’s Algorithm
	7.5	Routing Table
	8.1	Introduction
	Fibre Channel Conformance Testing
	8.2.1	FC-SW-1 Testing
	FC-GS-2 Testing

	Performance Testing
	9.1	Introduction
	9.2	Frame-based testing
	The ioctl System Call
	Using the testing tool
	10.1	Summary
	10.2	Future work

