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1. New problem: Waypoint Allocation and Motion Planning

(a) WAMP combines task planning and motion planning

(b) vehicle routing but now with real routing!

2. Efficient solver

(a) integrates tabu search, blind search, heuristic search,
linear programming and simple temporal networks

3. Meets application requirements

(a) 2.5x faster and more scalable than industrial partner’s
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Vehicle Routing
allocate tasks to vehicles

routes given as a distance matrix

objective: find cheapest ordering

temporal constraints
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Vehicle Routing
allocate tasks to vehicles

routes given as a distance matrix

objective: find cheapest ordering

temporal constraints

Motion Planning
find feasible trajectory

continuous space

respect vehicle limitations

obstacles

objective: minimize time
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WAMP
allocate tasks to vehicles

routes given as a distance matrix

objective: find cheapest ordering

temporal constraints

find feasible trajectory

continuous space

respect vehicle limitations

obstacles

objective: minimize time

varying traversal costs

objective: minimize time and cost
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A large instance:

■ 16 aircraft

varying velocities and turning radii

■ 40 waypoints

time windows

relative temporal constraints

■ 40 radar sensitive (cost) zones

■ strict no-fly zones

■ 7 second time limit
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1. Can’t do task allocation without routing costs

need cost from one waypoint to next

2. Can’t find routing costs without motion paths

paths may intersect areas of high cost

3. Can’t find motion paths without leg durations

is there time to navigate around high cost?

4. Can’t assign leg durations without time/cost tradeoff

which legs benefit most from additional time?
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01 01

fastest route is too expensive cheapest route is too long
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1. Precomputation: find surrogate objective endpoints

surrogate objective

2. Sequencer: assign and order waypoints to vehicles

ordering

3. Linear Program: assign timepoints to waypoints

timetable

4. Routing: find motion plans between waypoints

5. (Feedback: provide new information to previous layers)

new constraints
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Input: problem
Output: surrogate objective
Techniques: Dijkstra
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Input: problem
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Input: surrogate objective
Output: feasible ordering : {w2, w3, w1}
Techniques: tabu search (based on Lau, Sim and Teo, 2003)

simple temporal network (STN)
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Input: feasible ordering : {w2, w3, w1}, surrogate objective
Output: timetable : {w2 = 2, w3 = 3, w1 = 5}
Techniques: linear programming
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Input: timetable : {w2 = 2, w3 = 3, w1 = 5}
Output: solution
Techniques: discretized A* search 〈location, time〉 , smoothing

■ discretized A* search

■ temporal pruning: t(s, n) + t̂(n, g) > TT (g)

■ re-expansions: g(n) < g(n′) but t(n) > t(n′)

■ resumable
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Input: timetable : {w2 = 2, w3 = 3, w1 = 5}
Output: solution
Techniques: discretized A* search 〈location, time〉 , smoothing

■ smoothing



Feedback

Introduction

Our Approach

■ Overview

■ Step 1

■ Step 2

■ Step 3

■ Step 4

■ Feedback

Experiments

Conclusion

Scott Kiesel (UNH) Integrating Vehicle Routing and Motion Planning – 14 / 24

Router : leg can not be routed to achieve timetable

new constraints

Linear Program : LP can not be solved with new constraint

new constraints

■ Sequencer
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Test scalability against a unified A* Search
single vehicle 〈x, y, θ, t〉
no temporal constraints
spanning tree heuristic
infinite time w/bounded memory (7.5GB)

# Waypoints Failure Rate

1 24%

2 64%

3 88%

4 98%

5 98%

6 100%

Generic A* does not scale to meet our requirements
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Test ability to find quality orderings
single vehicle with ǫ turn radius
no temporal constraints
uniform cost and no keep-out zones

TSP instances
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M G NN
40 tasks

M G NN
100 tasks

The sequencer produces near optimal waypoint orderings for
TSP instances
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Test ability to find solution paths that minimize cost
single vehicle
no temporal constraints

0

1
2

3

The router produces high quality low level plans for complex cost
instances
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Test effects of scaling the number of waypoints
4 vehicles

Scaling waypoints
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The system scales with an increasing number of waypoints



Experiment: Realistic Instances

Introduction

Our Approach

Experiments

■ Small Instances

■ Sequencer

■ Router

■ Realistic

Conclusion

Scott Kiesel (UNH) Integrating Vehicle Routing and Motion Planning – 19 / 24

Test effects of scaling the number of vehicles
20 waypoints

Scaling vehicles
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The system scales with an increasing number of vehicles
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1. New problem: Waypoint Allocation and Motion Planning

(a) combines task planning and motion planning

(b) vehicle routing but now with real routing

2. Efficient Solver

(a) integrates tabu search, blind search, heuristic search,
linear programming and simple temporal networks

3. Meets Application Requirements

(a) 2.5x faster and more scalable than industrial partner’s
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Tell your students to apply to grad school in CS at UNH!

■ friendly faculty

■ funding

■ individual attention

■ beautiful campus

■ low cost of living

■ easy access to Boston,
White Mountains

■ strong in AI, infoviz,
networking,
bioinformatics
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WAMP : 〈Size, V,W,K,C,R〉

■ V : Vehicles

vi = 〈x0, y0, θ0, v, r〉

■ W : Waypoints

wi = 〈x, y, r, θ0, θ1, ts, te, A〉

A ⊆ V

■ K: Keep-Out Zones

ki = 〈x0, y0, x1, y1, x2, y2〉

■ C: Cost Zones

ci = 〈x, y, h, σx, σy, c〉

■ R: Relative Constraints

ri = 〈wi, wj ,min,max 〉
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