Integrating Vehicle Routing and Motion Planning

Scott Kiesel, Ethan Burns, Christopher Wilt and Wheeler Ruml

Department of Computer Science

We are grateful for funding from the DARPA CSSG program (grant HR0011-09-1-0021) and NSF (grant IIS-0812141).

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 1 / 24

Contributions

Introduction

- Contributions
- WAMP
- An Instance
- Application
- Central Challenge
- Surrogate
- Objective
- Our Approach
- Experiments
- Conclusion

- 1. New problem: Waypoint Allocation and Motion Planning
 - (a) WAMP combines task planning and motion planning(b) vehicle routing but now with *real* routing!
- 2. Efficient solver
 - (a) integrates tabu search, blind search, heuristic search, linear programming and simple temporal networks
- 3. Meets application requirements
 - (a) 2.5x faster and more scalable than industrial partner's

Combining Vehicle Routing and Motion Planning

Introd	luction
muou	uction

- Contributions
- WAMP
- An Instance
- Application
- Central Challenge
- Surrogate
 Objective

Our Approach

Experiments

Conclusion

Vehicle Routing

allocate tasks to vehicles routes given as a distance matrix objective: find cheapest ordering temporal constraints

Combining Vehicle Routing and Motion Planning

Introd	uction
	action

- Contributions
- WAMP
- An Instance
- Application
- Central Challenge
- Surrogate
- Objective
- Our Approach
- Experiments
- Conclusion

Vehicle Routing

allocate tasks to vehicles routes given as a distance matrix objective: find cheapest ordering temporal constraints **Motion Planning** find feasible trajectory continuous space respect vehicle limitations obstacles objective: minimize time

Combining Vehicle Routing and Motion Planning

Introduction

- Contributions
- WAMP
- An Instance
- Application
- Central Challenge
- Surrogate
 Objective
- Our Approach
- Experiments
- Conclusion

WAMP

allocate tasks to vehicles

routes given as a distance matrix objective: find cheapest ordering temporal constraints

find feasible trajectory continuous space respect vehicle limitations obstacles

objective: minimize time

varying traversal costs objective: minimize time and cost

naturally combines task allocation and motion planning

A Realistic-Sized Instance

Introduction

- Contributions
- WAMP
- An Instance
- $\blacksquare Application$
- Central Challenge

Surrogate

Objective

Our Approach

Experiments

Conclusion

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 4 / 24

n+rod	uction
mtrou	uction

- Contributions
- WAMP
- An Instance
- Application
- Central Challenge
- Surrogate
- Objective
- Our Approach
- Experiments
- Conclusion

- A large instance:
 - 16 aircraft
 - varying velocities and turning radii
 - 40 waypoints
 - time windows
 - relative temporal constraints
 - 40 radar sensitive (cost) zones
 - strict no-fly zones
 - 7 second time limit

Central Challenge

Introduction

- Contributions
- WAMP
- An Instance
- Application
- Central Challenge
- Surrogate
 Objective
- Our Approach
- Experiments
- Conclusion

- 1. Can't do task allocation without routing costs need cost from one waypoint to next
- 2. Can't find routing costs without motion paths paths may intersect areas of high cost
- 3. Can't find motion paths without leg durations is there time to navigate around high cost?
- 4. Can't assign leg durations without **time/cost tradeoff** which legs benefit most from additional time?

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 7 / 24

Introd	uction

Our Approach

- Overview
- Step 1
- Step 2
- Step 3
- Step 4
- Feedback
- Experiments
- Conclusion

Our Approach

Overview

Introduction

Our Approach

- OverviewStep 1
- Step 2

■ Step 3

- Step 4
- Feedback

```
Experiments
```

Conclusion

- Precomputation: find surrogate objective endpoints surrogate objective
- 2. Sequencer: assign and order waypoints to vehiclesordering
- 3. Linear Program: assign timepoints to waypoints
 timetable
- 4. Routing: find motion plans between waypoints
- 5. (Feedback: provide new information to previous layers)
 ▶ ↑ new constraints

Step 1: Precomputation

Our Approach

- OverviewStep 1
- Step 2
- Step 3
- Step 4
- Feedback
- Experiments
- Conclusion

Input: problem Output: surrogate objective Techniques: Dijkstra

Step 1: Precomputation

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 10 / 24

Step 2: Sequencer

Introduction
Our Approach
■ Step 1
Step 2
■ Step 3
■ Step 4
Feedback
Experiments
Conclusion

Input: surrogate objective **Output:** feasible ordering : $\{w_2, w_3, w_1\}$ **Techniques:** tabu search (based on *Lau, Sim and Teo, 2003*) simple temporal network (STN)

Step 3: Linear Program

Step 4: Router

Introduction	
Our Approach	
Overview	
■ Step 1	
■ Step 2	
■ Step 3	
Step 4	
Feedback	
Experiments	
Conclusion	

Input: timetable : $\{w_2 = 2, w_3 = 3, w_1 = 5\}$ **Output:** solution **Techniques:** discretized A* search $\langle location, time \rangle$, smoothing

■ discretized A* search

u temporal pruning: $t(s,n) + \hat{t}(n,g) > TT(g)$

• re-expansions: g(n) < g(n') but t(n) > t(n')

resumable

Step 4: Router

Introduction
Our Approach
Overview
■ Step 1
■ Step 2
■ Step 3
Step 4
Feedback
_Experiments
Conclusion

Input: timetable : $\{w_2 = 2, w_3 = 3, w_1 = 5\}$ **Output:** solution **Techniques:** discretized A* search $\langle location, time \rangle$, smoothing

■ smoothing

Feedback

Introduction
Our Approach
Overview
■ Step 1
■ Step 2
■ Step 3
■ Step 4
Feedback
Experiments
Conclusion

Router : leg can not be routed to achieve timetable new constraints

Linear Program : LP can not be solved with new constraint new constraints

■ Sequencer

Introduction

Our Approach

Experiments

- Small Instances
- Sequencer
- Router
- Realistic

Conclusion

Experiments

Scott Kiesel (UNH)

Experiment: Small Instance Scaling

Test scalability against a unified A* Search single vehicle $\langle x, y, \theta, t \rangle$ no temporal constraints spanning tree heuristic infinite time w/bounded memory (7.5GB)

# Waypoints	Failure Rate
1	24%
2	64%
3	88%
4	98%
5	98%
6	100%

Generic A* does not scale to meet our requirements

Scott Kiesel (UNH)

Experiment: Sequencer Stressing

Test ability to find quality orderings single vehicle with ϵ turn radius no temporal constraints uniform cost and no keep-out zones

The sequencer produces near optimal waypoint orderings for TSP instances

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 17 / 24

Experiment: Router Stressing

Introduction

Our Approach

Experiments

- Small Instances
- Sequencer
- Router
- Realistic

Conclusion

Test ability to find solution paths that minimize cost single vehicle no temporal constraints

The router produces high quality low level plans for complex cost instances

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 18 / 24

Experiment: Realistic Instances

Integrating Vehicle Routing and Motion Planning – 19 / 24

Scott Kiesel (UNH)

Experiment: Realistic Instances

Test effects of scaling the number of vehicles 20 waypoints

The system scales with an increasing number of vehicles

Scott Kiesel (UNH)

Integrating Vehicle Routing and Motion Planning – 19 / 24

Introduction

Our Approach

Experiments

Conclusion

■ Summary

Advertising

Conclusion

Summary

Introduction

Our Approach

Experiments

Conclusion

Summary

Advertising

1. New problem: Waypoint Allocation and Motion Planning

- (a) combines task planning and motion planning
- (b) vehicle routing but now with *real* routing
- 2. Efficient Solver
 - (a) integrates tabu search, blind search, heuristic search, linear programming and simple temporal networks
- 3. Meets Application Requirements
 - (a) 2.5x faster and more scalable than industrial partner's

Introduction

Our Approach

Experiments

Conclusion

Summary

Advertising

Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- low cost of living
- easy access to Boston,White Mountains
- strong in AI, infoviz, networking, bioinformatics

Integrating Vehicle Routing and Motion Planning – 22 / 24

Introduction

Our Approach

Experiments

Conclusion

Back-up Slides

Formulation

Back-up Slides

Problem Formulation

$WAMP: \langle Size, V, W, K, C, R \rangle$	
■ V: Vehicles	
$v_i = \langle x_0, y_0, \theta_0, v, r \rangle$	
■ W: Waypoints	
$w_i = \langle x, y, r, \theta_0, \theta_1, t_s, t_e, A_i \rangle$	$ \rangle$

- $A \subseteq V$ $\blacksquare K: \text{Keep-Out Zones}$
 - $k_i = \langle x_0, y_0, x_1, y_1, x_2, y_2 \rangle$
- \blacksquare C: Cost Zones

 $c_i = \langle x, y, h, \sigma_x, \sigma_y, c \rangle$

• R: Relative Constraints $r_i = \langle w_i, w_j, min, max \rangle$

Scott Kiesel (UNH)

Introduction

Our Approach

Experiments

Conclusion

Back-up Slides
Formulation