
Adaptive Tree Search

A thesis presented

by

Wheeler Ruml

to

The Division of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May, 2002

To my family.

Copyright c© 2002 by Wheeler Ruml.

All rights reserved.

Abstract

Advisor: Stuart M. Shieber Adaptive Tree Search Wheeler Ruml

Combinatorial optimization and constraint satisfaction problems are ubiquitous in com-

puter science, arising in areas as diverse as resource allocation, automated design, planning,

and logical inference. Finding optimal solutions to such problems often entails searching an

intractably large tree of possibilities. Problems beyond the reach of exhaustive enumeration

require methods that exploit problem-specific heuristic knowledge to find the best solution

possible within the time available. Previous algorithms typically follow a fixed search order,

making inefficient use of heuristic information. For a new problem, it is not always clear

which predetermined search order will be most appropriate.

I propose an adaptive approach in which the search order is adjusted according to

heuristic information that becomes available only during the search. By adapting to the

current problem, this approach eliminates the need for pilot experiments and enables the

use of good search orders that would be too complicated to program explicitly.

To demonstrate the feasibility of the approach, I first present a simple but incomplete

technique, adaptive probing. Empirical results demonstrate that the method can effectively

adapt on-line, surpassing existing methods on several synthetic benchmarks. I then intro-

duce a general framework for complete adaptive tree search, best-leaf-first search, and show

how previous work can be viewed as special cases of this technique. Incorporating different

sources of information into the framework leads to different search algorithms. Five dif-

iii

ferent instantiations are tested empirically on challenging combinatorial optimization and

constraint satisfaction benchmarks, in many cases yielding the best results achieved to date.

Best-leaf-first search can be understood as an extension of traditional heuristic shortest-path

algorithms to combinatorial optimization and constraint satisfaction. By extending heuris-

tic search to these new domains, I unite these previously separate problems.

iv

Contents

List of Figures . viii
List of Tables . x
Acknowledgments . xi

1 Introduction 1

1.1 Types of Search Problems . 3
1.1.1 Combinatorial Optimization . 3
1.1.2 Shortest-path Problems . 6
1.1.3 Adversarial Search . 7
1.1.4 Improvement Search . 8

1.2 An Adaptive Approach . 10
1.3 Outline . 11

2 Tree Search Under Time Constraints 14

2.1 Greedy Construction . 14
2.2 Depth-First Search . 16
2.3 Iterative Broadening . 19
2.4 Limited Discrepancy Search . 20
2.5 Depth-bounded Discrepancy Search . 23
2.6 Tunable Techniques . 26
2.7 Conclusions . 26

3 Learning How to Search: Adaptive Probing 28

3.1 The Algorithm . 29
3.2 An Additive Cost Model . 30

3.2.1 Learning the Model . 32
3.2.2 Using the Model . 34

3.3 Empirical Evaluation . 35
3.3.1 An Abstract Tree Model . 37
3.3.2 Boolean Satisfiability . 41
3.3.3 Number Partitioning . 43
3.3.4 Summary of Results . 49

3.4 Using Previous Experience . 50
3.4.1 Reusing Learned Models . 50
3.4.2 Blending Search Policies . 54
3.4.3 Summary of Results . 57

3.5 Parametric Action Cost Models . 58
3.5.1 Evaluation . 60

v

3.6 Summary of Results . 62
3.7 Related Work . 62

3.7.1 Tree Probing . 62
3.7.2 Learning to Search . 64
3.7.3 Decision-theoretic Search . 66
3.7.4 Reinforcement Learning . 66

3.8 Limitations . 67
3.9 Other Possible Extensions . 68
3.10 Conclusions . 69

4 Best-Leaf-First Search 71

4.1 The BLFS Framework . 72
4.2 The Tree Model . 74

4.2.1 Properties of f(n) . 75
4.2.2 Estimating the Cost Bound . 76
4.2.3 On-line Learning . 77

4.3 Rational Search . 78
4.4 Relations to Shortest-path Algorithms . 80
4.5 Conclusions . 85

5 BLFS with a Fixed Model: Indecision Search 86

5.1 Two Tree Models . 87
5.2 The Algorithm . 88
5.3 Estimating the Allowance . 90
5.4 Implementation . 95

5.4.1 Manipulating Distributions . 95
5.4.2 Finding an Appropriate Allowance 97

5.5 Evaluation . 98
5.5.1 Latin Squares . 98
5.5.2 Binary CSPs . 101
5.5.3 Time Overhead . 104

5.6 Related Work . 105
5.7 Possible Extensions . 106
5.8 Conclusions . 107

6 BLFS with On-line Learning 108

6.1 The Tree Model . 109
6.2 Evaluation . 111

6.2.1 Greedy Number Partitioning . 113
6.2.2 CKK Number Partitioning . 114
6.2.3 Time Overhead . 116

6.3 Integrating Multiple Sources of Information 116
6.3.1 Evaluation . 117

6.4 Summary of Results . 120
6.5 Possible Extensions . 121

vi

7 Conclusions 124

7.1 Future Directions . 126

References . 127

vii

List of Figures

1.1 A tree representation of alternatives in a small combinatorial problem. . . . 2
1.2 A tree representing a combinatorial optimization problem. 3
1.3 A tree representing a shortest-path problem. 6
1.4 A tree representing a game against an adversary. 7
1.5 A graph representing an improvement-based search. 8

2.1 Pseudo-code for greedy construction. 15
2.2 The path explored by a greedy construction algorithm. 15
2.3 Pseudo-code for depth-first search (DFS). 16
2.4 The paths explored by DFS after visiting three leaves. 17
2.5 The second pass of iterative broadening restricts search to a binary subtree. 19
2.6 Each iteration of iterative broadening (IB) restricts the effective branching

factor of the tree. 20
2.7 The second pass of limited discrepancy search (LDS) visits all leaves with

zero or one discrepancies in their path from the root. 21
2.8 Each pass in a limited discrepancy search (LDS) visits all leaves whose path

from the root contains allowance discrepancies. This pseudo-code shows the
variant that explores discrepancies at the top of the tree first. 21

2.9 Improved limited discrepancy search (ILDS) only enters subtrees that con-
tain paths with the desired number of discrepancies. This variant explores
discrepancies at the top of the tree first. 22

2.10 The second through fourth iterations of depth-bounded discrepancy search
(DDS). The depth bound is 0 for the second iteration (top), then 1 (middle),
and then 2 (bottom). 24

2.11 Depth-bounded discrepancy search (DDS) is greedy below the depth bound. 25

3.1 Pseudo-code for adaptive probing. 29
3.2 The parameters of a separate cost action model for a binary tree of depth

three. 30
3.3 Probability of finding a goal in trees of depth 100 with m = 0.1 and p linearly

varying between 0.9 at the root and 0.95 at the leaves. 38
3.4 Performance on trees of depth 100, m = 0.1, and p varying from 0.9 at the

root to 0.98 at the leaves. 39
3.5 Performance on trees of depth 100, m = 0.1, and p varying from 0.98 at the

root to 0.9 at the leaves. 40

viii

3.6 Fraction of random 3-satisfiability problems solved. Error bars indicate 95%
confidence intervals around the mean over 1000 instances, each with 200
variables and 3.5 clauses per variable. (The DFS and DDS means are lower
bounds.) . 42

3.7 Searching the greedy representation of number partitioning. Error bars indi-
cate 95% confidence intervals around the mean over 20 instances, each with
128 44-digit numbers. 45

3.8 Performance on the greedy representation of number partitioning as a func-
tion of nodes generated. 46

3.9 Searching the CKK representation of number partitioning. Each instance
had 64 25-digit numbers. 48

3.10 Performance on the CKK representation of number partitioning as a function
of nodes generated. 49

3.11 Searching the greedy representation of number partitioning. Error bars indi-
cate 95% confidence intervals around the mean over 20 instances, each with
128 44-digit numbers. 52

3.12 Performance on the greedy representation as a function of nodes generated. 52
3.13 Searching the CKK representation of number partitioning problems. 53
3.14 Searching the greedy representation of number partitioning instances, each

with 64 25-digit numbers. 55
3.15 Searching the CKK representation of number partitioning instances, each

with 64 numbers. 56
3.16 Searching the CKK representation of instances with 128 numbers. 57
3.17 The action costs learned for an 18-number partitioning problem using the

CKK representation. Filled circles represent the non-preferred actions. . . . 59
3.18 Adaptive probing in the CKK space using 128 numbers and a model which

constrains action costs to be a quadratic function of depth. 60
3.19 A quadratic action cost model learned by adaptive probing for searching the

CKK representation. 61

4.1 Simplified pseudo-code for best-leaf-first search. 73
4.2 Pseudo-code for the inner loop of iterative-deepening A* search (IDA*). . . 81

5.1 Indecision search treats the BLFS cost bound as an allowance that is spent
to visit non-preferred children. 89

5.2 The process of estimating the number of nodes at the next level of the tree. 90
5.3 The process of estimating the allowance available at the next level. 92
5.4 Performance on completing 21 × 21 latin squares that already have 30% of

the cells assigned. 99

6.1 Simplified pseudo-code for best-leaf-first search using on-line learning. . . . 109
6.2 Greedy partitioning of 128 numbers . 113
6.3 Greedy partitioning of 256 numbers . 114
6.4 CKK representation for partitioning 128 numbers 115
6.5 CKK representation for partitioning 256 numbers 115
6.6 Performance on 64-number problems. 118
6.7 Performance on 128-number problems. 119
6.8 Performance on 256-number problems. 119

ix

List of Tables

4.1 A comparison of BLFS and IDA*. 82

5.1 The number of nodes generated to solve latin square completion problems,
represented by the 95th percentile of the distribution across random instances.101

5.2 The number of nodes generated to solve 100 instances of binary CSPs in the
〈30, 15, .4, p2〉 class. 102

5.3 The number of nodes generated to solve 100 instances of binary CSPs in the
〈50, 12, .2, p2〉 class. 102

5.4 The number of nodes generated to solve 100 instances of binary CSPs in the
〈100, 6, .06, p2〉 class. 103

x

Acknowledgments

Stuart Shieber and Joe Marks, with help from Tom Ngo, showed me how research could be

serious fun. Thanks guys! You changed my life.

Stuart has been an excellent research advisor, always willing to let me explore and

yet always happy to offer insightful suggestions. His clear thinking, good humor, high

standards, and intellectual curiosity will forever be a model for me. Barbara Grosz showed

me firsthand what it means to care about teaching and was always willing to share her

hard-won wisdom. Her dedication to community-building, from the AI Research Group

to the international level, has been inspirational. Yu-Chi Ho generously welcomed me to

meetings of his research group and kindly agreed to serve on my thesis committee.

The Harvard AI Research Group has been a wonderfully friendly and supportive environ-

ment. Avi Pfeffer suffered through many conversations about work that became Chapter 3

and offered key suggestions. I hope to someday be able to explain things as calmly and

clearly as he can. I have been blessed with fantastic officemates. Rebecca Hwa was a burst

of sunshine. Her high standards for civilized life remain inspirational. Luke Hunsberger was

a rock of integrity—talking with him always left me better connected to reality. Mookie

Wilson provided welcome comic relief. The burning intellect that is Ken Shan left delightful

and refreshing sparks all over the office. I miss Joshua Goodman’s incisive, unpretentious

xi

analyses. I wish Kobi Gal peace and prosperity. David Parkes, Jill Nickerson, Lillian Lee,

Stan Chen, Ellie Baker, Kathy Ryall, Tamara Babaian, Tim Rauenbusch, Dave Sullivan,

Emir Kapanci, and Marco Carbone also enriched my time at Harvard, and I learned from

each of them. While not official members of AIRG, Rocco Servedio, Joe Marks, Ric Crabbe,

Christian Lindig, Norman Ramsey, and Harry Lewis offered friendship and support that

was much appreciated.

While his influence is not directly present in this work, Alfonso Caramazza left an

indelible mark. It was an honor to work with him. Michele Miozzo’s patience was invaluable,

as was his friendship. Josh Tenenbaum also humored me good-naturedly when I indulged

my weakness for cognitive science.

Other important inspirations who deserve mention here include Julia Child, Harry Oli-

var, Brian Kernighan, and John A. and Janette H. Wheeler. I would also like to thank

Harvard University, my pleasant home for so many years.

This thesis is dedicated to my family, especially Kate, Mom, Dad, Anton, Frances, and

Fred. Without you, none of this would have happened. Thanks for encouraging me to do

whatever I wanted and for your unwavering support along the way.

This research was supported in part by NSF grants CDA-94-01024 and IRI-9618848

and by DARPA contract F30602-99-C-0167 through a subcontract with SRI International.

Portions of Chapter 3 were described in the Proceedings of IJCAI-01 (Ruml, 2001a), the

Proceedings of the IJCAI-01 Workshop on Stochastic Search (Ruml, 2001b), and the Pro-

xii

ceedings of the 2001 AAAI Fall Symposium on Using Uncertainty Within Computation

(Ruml, 2001c).

xiii

Chapter 1

Introduction

This thesis proposes a new approach to solving combinatorial search problems. In guises

such as mazes, puzzles, and games, such problems have fascinated people for millennia

(Herodotus, 440 BC, 148). They present a simplified version of everyday decision-making,

capturing the essential fact that the best choice for one decision often depends on the choices

that are made for the other decisions. In abstract formulations such as Hamiltonian path

problems, bin packing, or propositional satisfiability, such problems have long been at the

core of computer science (Euler, 1759; Dantzig, Fulkerson, and Johnson, 1954). We can

think of a combinatorial problem as a fixed set of decision variables, each of which must

be assigned a value selected from a set of discrete alternatives. For instance, the variables

might represent the actions to take at each step in a puzzle and their possible values would

represent the choices available at the corresponding step.

Unfortunately, many combinatorial problems are NP-hard and the only known methods

for solving them optimally require enumerating all possible assignments to the variables

(Garey and Johnson, 1991). One can conceptualize these methods as traversing a tree that

compactly represents the possibilities. As shown in Figure 1.1, each internal node in the

1

decision 1

decision 2

option 1

(1,1)

option 1

(1,2)

option 2

decision 2

option 2

(2,1)

option 1

(2,2)

option 2

Figure 1.1: A tree representation of alternatives in a small combinatorial problem.

tree represents a decision variable in the problem and each branch represents a possible

value for that variable. The leaves of the tree represent candidate solutions. Clearly, the

computation time required to exhaustively search such a tree for the optimal solution is

exponential in the size of the problem. For large problems or in real-time applications,

our only hope is to find the best solution possible within a given time bound. This thesis

introduces a new rational framework for approaching this vexing yet ubiquitous problem

and demonstrates that algorithms derived within the framework can surpass existing ad

hoc methods.

The central idea is to use problem-specific information that arises during the explo-

ration of the tree to adapt the search to the specific problem being solved. A tree search

algorithm can be viewed as an agent gathering information as the exploration proceeds,

making inferences about where good solutions might lie, and selecting appropriate actions

to reach them. Any prior information one might have about the nature of the problem

can be easily incorporated into this learning process. One might assume that this rational

approach to search would have impractical overhead. However, as we will see, an adaptive

search algorithm for combinatorial optimization need not be complex to be efficient and

effective. Furthermore, by pursuing the idea of the search algorithm as an agent with ex-

2

1.6 2.3 2.1 3.9 1.5 2.6 6.2 4.4

Figure 1.2: A tree representing a combinatorial optimization problem.

plicit knowledge, we will show how combinatorial tree search can be elegantly unified with

traditional work on shortest-path problems.

1.1 Types of Search Problems

Combinatorial tree search problems arise in any situation in which the best course of action

is not immediately evident and one may need to return to a previously visited state. These

states form the internal nodes in the tree. There are four main kinds of combinatorial search

problems: combinatorial optimization problems, shortest-path problems, adversarial search

problems, and improvement search problems. In this thesis, we will mainly be concerned

with combinatorial optimization. A brief review will make these distinctions clear.

1.1.1 Combinatorial Optimization

As we mentioned above, a combinatorial optimization problem consists of a fixed set of

variables, each of which must be assigned a value drawn from a set of discrete possibilities.

For instance, we might be trying to decide which machine to use for manufacturing each

component of a product. An optimization problem also specifies an objective function which

3

assigns a numerical value to every possible set of assignments. In our example, each complete

manufacturing configuration might have an associated production cost. Solving the problem

means finding the minimum cost solution. We will view this as the task of finding the best

leaf in the tree of possibilities, as illustrated in Figure 1.2. The tree’s depth is bounded by the

number of problem variables and its branching factor is bounded by the maximum number

of possible values for any variable. This general problem formulation covers an enormous

number of problems, including the traveling salesman problem, automated design problems,

scheduling problems, combinatorial auctions, and many problems in machine learning.

Much work in operations research considers how to construct pruning rules and cutting

planes that use information about the current problem instance to quickly eliminate many

candidate solutions from consideration and thus reduce the size of the search tree. For

instance, assigning a certain machine to manufacture a certain component might turn out

to be so costly that it is immediately clear that no solution that includes this assignment

could be better than the best solution found so far. Such techniques can be used as a

pre-processing step as well as during the course of the search. Of course, even after such

pruning, one is usually still left with a tree to search, so such techniques are orthogonal

to our concerns here. For large problems, we will always be reduced to finding the best

solution we can in a bounded-depth tree that is too large to enumerate.

For some applications, such as automatically laying out graphics in an interactive inter-

face, time constraints will apply even for a relatively small problem. Similarly, the increasing

diversity in computing platforms motivates consideration of anytime algorithms, which can

provide mediocre solutions quickly and then improve them if given additional computation

time. Such software can perform well across multiple platforms, flexibly adapting its perfor-

mance to the resources at hand. With the current interest in intelligent embedded systems,

4

sophisticated real-time search and optimization algorithms will increasingly find application

on computationally limited devices.

Constraint satisfaction problems are very similar to combinatorial optimization prob-

lems. One is given a fixed number of variables and each of them can take one of a finite

number of values. However, instead of finding the assignment that minimizes the value of an

objective function, one merely attempts to find a solution that does not violate any of the

given constraints. Matching up sports teams for a season’s worth of games is a problem of

this sort. The possibilities are discrete and various constraints must be satisfied, such as an

equal number of home games and away games, no more than two away games or two home

games in a row, and the inclusion of traditional rivalry matches. Many other problems,

such as configuration, graph coloring, and propositional inference can also be viewed as

constraint satisfaction problems. Sophisticated constraint processing techniques can often

be used to help reduce the size of the corresponding search tree, setting certain variables

automatically and skipping decisions known to be irrelevant. For this reason, some authors

treat constraint satisfaction separately from combinatorial optimization.

Since we are concerned with tree search, rather than with particular problem-specific

kinds of constraint processing, we will just treat constraint satisfaction problems as an

additional kind of combinatorial optimization problem. The objective function will be a

measure of the degree of constraint violation, such as the number of variables that remained

to be assigned when the first constraint violation was detected. Any leaf that represents a

successful assignment to all the variables will have a lower score than any leaf representing a

partial assignment that violates a constraint, so finding the best leaf will return a satisfying

solution if one exists. This generic point of view is completely compatible with the use of

constraint processing techniques.

5

initial state

0.4

5.5

5.1 2.3

4.5

1.8

7.6

4.9 5.1

4.7

1.6

1.2

3.5*

0.7 6.4

4.8

Figure 1.3: A tree representing a shortest-path problem.

1.1.2 Shortest-path Problems

In a shortest-path problem, one attempts to find the cheapest path from a given initial node

to any goal node that meets certain criteria. This problem has been the focus of much work

in artificial intelligence. It arises in planning, for instance, in which one might want to find

the cheapest set of actions that incrementally transform an initial state into a goal state

exhibiting some desired properties. Figure 1.3 shows a search tree resulting from a small

shortest-path problem. The branches represent the possible actions from each state and they

are labeled with their costs. Leaves represent states consistent with the goal conditions.

The optimal goal node is labeled with an asterisk (*). As in the problem of combinatorial

optimization mentioned above, there are discrete choices at each step. A solution consists

of a sequence of choices and can be given a value. Solving the problem means finding the

minimum cost solution. But a combinatorial optimization problem involves a fixed and

known number of variables, whereas the number of choices that will need to be made in a

shortest-path problem is not clear in advance. Because of this, it is difficult to bound the

depth of a tree search for a shortest-path problem.

6

1.6 2.3 2.1 3.9 1.5 2.6 6.2 4.4

Figure 1.4: A tree representing a game against an adversary.

There are many existing algorithms for shortest-path problems. Some of them require

that the entire tree or graph be explicitly represented in the computer at one time. But

in many problems, the tree is much too large to represent explicitly and child nodes must

be generated dynamically from their parent when needed. The process of generating the

children is also known as expanding the parent. We will be assuming henceforth that

dynamic tree expansion is necessary and we will be evaluating search algorithms based

on the number of nodes they generate. Although this thesis focuses on combinatorial

optimization, we will briefly return to shortest-path problems in Section 4.4, where we

will see how the two different problems can be approached using a common algorithmic

framework.

1.1.3 Adversarial Search

Combinatorial optimization also seems superficially similar to game playing. Games can

be modeled as optimization problems in which we must select a sequence of actions so as

to minimize (or maximize) a scoring function. In games, however, there is an adversary

who can influence the score we can achieve. A game with alternating turns, such as chess,

7

1.6

2.3

3.9

2.1

1.5

2.6 4.4

6.2

Figure 1.5: A graph representing an improvement-based search.

might be modeled as in Figure 1.4, in which every other level of the tree corresponds to the

decisions made by the adversary. In large games like chess, a depth cut-off is usually applied

and the scores at the leaves represent an estimate of the strength of the corresponding board

position, or the probability of winning from that position, rather than an actual win or loss

score from a terminal state of the game.

But merely finding the best leaf in a game search tree is not sufficient, as it was in

combinatorial optimization. Even if we take the first action along the path toward the best

leaf, our adversary might easily respond with an action that prevents us from reaching that

leaf. Instead, one usually seeks to find the top-level decision whose worst case leaf outcome

is best, assuming that the adversary is trying to reach the leaves that are poorest for us.

This type of multiple-agent strategic search is sufficiently different from the single-agent

case that we will not consider it further in this thesis.

1.1.4 Improvement Search

Searching a tree of possibilities is not the only way to attack a combinatorial optimization

problem. Another popular method is to construct an initial solution (perhaps even ran-

domly) and then attempt to improve it incrementally by making modifications. Because

the changes are typically small, this approach is also called ‘local search.’ An improvement-

8

based approach leads to a very different type of search problem. In a tree-based approach,

many nodes represent partial solutions in which some variables have not yet been assigned

values. In an improvement-based approach, one moves from one complete solution to the

next, trying to find one with a good score. This can be visualized as traversing a graph

in which possible modifications lead to neighboring nodes, each of which is annotated with

its cost. Figure 1.5 shows the graph corresponding to the search tree in Figure 1.2. As the

figure suggests, the search graph often has the structure of an n-dimensional hypercube,

where n is the number of variables in the problem.

One disadvantage of improvement search methods is that they are incomplete: there is

no guarantee that they will find the optimal solution within a bounded amount of time. In a

tree search for combinatorial optimization, one will eventually traverse the entire tree. But

when moving through a graph, the high connectivity of the search space makes it difficult

to keep a concise record of the states that have and have not been visited. This means that

there is no guarantee that every part of it will eventually be explored.

In practice, however, most problems are so large that complete enumeration is infeasible,

so the incompleteness of improvement search is not a handicap. Improvement methods are

usually simple to implement and they can work very well. In fact, it is not uncommon

for researchers to conflate the ideas of improvement search and incomplete search. Of

course, the superior performance displayed by improvement search over tree search on many

problems may be merely the result of having poor algorithms for incomplete tree search.

Many of the results in this thesis will show that the most widely used tree search method,

depth-first search, is in fact a terrible choice in many applications.

Further understanding the relative merits of improvement search and tree search is an

important direction for future research. The trade-off between the flexible movement af-

9

forded by improvement search and the ease with which tree search can incorporate problem-

specific information is complex. For the remainder of this thesis, however, we will focus our

attention on how best to explore tree-structured spaces. By developing principled meth-

ods for tree search under time constraints, this thesis will provide a sound basis for future

comparisons with other approaches to search.

1.2 An Adaptive Approach

This thesis approaches the problem of finding good leaves using decision-making concepts

from artificial intelligence. The central idea is to adapt during the search process to the

particular tree that is being searched. When faced with a new type of optimization problem,

or even a new instance from a known type, the optimal search order is not clear a priori. So

we will view the search algorithm as a rational agent making decisions about which leaf to

visit next. New information, such as the costs of the solutions at the visited leaves, becomes

available as the algorithm explores the tree. This information is valuable because it can

reflect important properties of the current search tree. A rational algorithm would combine

this new information with any current beliefs it might have to help infer where to explore

next.

Traditional search algorithms for combinatorial optimization, such as depth-first search

(DFS), visit leaves in a fixed order, making no use of any information gathered about the

nodes visited. Such thoughtless repetition of preprogrammed behavior is an embarrassing

caricature of automated problem solving. Although search algorithms are traditionally

viewed as lying at the core of an intelligent agent, there is no reason why they should not

also be viewed as intelligent agents in their own right. In fact, as we will see, this can lead

10

to both improved algorithms and conceptual advances.

Having an adaptive algorithm considerably lightens the burden for the user, who cur-

rently must carry out extensive preliminary experiments to determine which prespecified

search order works best for each new problem. Furthermore, because the next action of

an adaptive algorithm can be predicated on the complete set of observations to date in a

particular tree, an adaptive algorithm can effectively implement a search order that would

be very difficult to prespecify.

1.3 Outline

The ability of a search algorithm to adapt intelligently to a particular tree depends on the

information that is available during the search. The branching structure of the tree itself

typically gives little information—many search trees are uniformly binary branching with

a fixed maximum depth. At the very least, however, solution costs are available at leaf

nodes. This information is usually computed anyway, to enable the search to remember the

best solution seen. After a brief review in Chapter 2 of previous algorithms for tree search,

Chapter 3 presents adaptive probing, a method for exploiting this leaf cost information

during search. We will see that it is possible, using relatively weak assumptions, to efficiently

infer the location of good leaves from the positions and costs of the leaves that have already

been observed. This is done by learning a model that predicts the costs of leaves based

on their location. In a manner reminiscent of reinforcement learning, the model is both

learned and exploited during the search. Empirical tests of the algorithm’s behavior on

both combinatorial optimization and constraint satisfaction problems demonstrate that an

adaptive approach can lead to good performance and very robust behavior.

11

While adaptive probing flexibly adapts to each search tree it encounters, it is not guar-

anteed to visit every leaf within bounded time. In Chapter 4, we will overcome this in-

completeness by proposing a general framework for adaptive tree search called best-leaf-first

search (BLFS). BLFS follows adaptive probing in using a predictive model of leaf costs

to guide search. However, BLFS ensures completeness by using systematic search and an

expanding search horizon. BLFS is rational, in the sense that it attempts to maximize its

performance based on its current information. As we will discuss, BLFS can be seen as a

model-based extension of the iterative deepening A* (IDA*) shortest-path algorithm (Korf,

1985). Their common framework of single-agent rationality provides a clean unification

of search for combinatorial optimization and constraint satisfaction with the tradition of

heuristic search in AI for shortest-path problems.

BLFS is a general framework that can be specialized according to the particular infor-

mation that is available in a given application. Often, domain-specific knowledge is available

about the likely suitability of each choice at a decision node. These heuristic preferences are

usually computed as a numeric score for each child. In Chapter 5, we consider a particular

instantiation of BLFS, called indecision search, that exploits this information to guide its

search. The idea is to backtrack first to those nodes where the children had very similar

scores. Intuitively, these are the nodes at which the scoring function was least sure which

child was better. The BLFS framework allows this process to be done efficiently. Results on

constraint satisfaction problems show indecision search to be superior to existing methods

on most classes of difficult problems.

The child scores used in indecision search only become available during the search itself.

While these scores are used as input to the leaf cost model to guide the search, the leaf

cost model itself remains fixed. In Chapter 6, we investigate an instantiation of the BLFS

12

framework that learns the parameters of the cost model online. This algorithm is essen-

tially a complete and deterministic analogue of the adaptive probing method of Chapter 3.

Empirical tests on the combinatorial optimization problem of number partitioning demon-

strate that the method yields the best performance known. On a different, less effective

formulation of the problem, BLFS is competitive with the best method known.

These results show that an adaptive approach to tree search can be practical, general,

and effective. Adaptive algorithms are extremely robust, yielding performance that is either

competitive or superior to the best existing techniques in each domain tested. This advance

has far-reaching consequences, as combinatorial optimization and constraint solving are

ubiquitous problems. In addition, by improving the performance and robustness of opti-

mization in tree-structured search spaces, this approach opens avenues toward quantifying

the value of various kinds of heuristic knowledge and comparing the relative advantages of

tree-based versus improvement-based problem formulations.

13

Chapter 2

Tree Search Under

Time Constraints

We briefly review previous work on tree search for combinatorial optimization.

Our observations will inform the proposals of subsequent chapters.

We are approaching the problem of combinatorial optimization as a search for the lowest-

cost leaf in a tree of bounded depth. Many algorithms have been proposed for this setting

and we will briefly review some of them. The algorithms we will consider later can be

viewed as generalizing these methods in various ways.

2.1 Greedy Construction

Probably the most common way of dealing with a combinatorial problem is not to search

the tree of possibilities at all, but merely to try to construct as good a solution as possible on

the first try without backtracking. This is called the greedy construction technique because,

at every decision, the algorithm takes what seems at that time to be the best choice. These

decisions will never be reconsidered, even if the resulting solution is suboptimal. Pseudo-

14

Greedy (node)
1 If is-leaf(node)
2 Return node
3 else
4 Greedy(best-child(node))

Figure 2.1: Pseudo-code for greedy construction.

Figure 2.2: The path explored by a greedy construction algorithm.

code for this method is shown in Figure 2.1. A greedy algorithm can be viewed as visiting

one leaf in the tree of all possibilities, as shown in Figure 2.2. Note that the tree is drawn

such that the left child of each internal node is the one that is seen as more desirable by the

greedy algorithm. The leftmost leaf corresponds to the greedy solution. We will continue

this convention throughout this thesis.

The greedy algorithm chooses between the available alternatives at each decision point

on the basis of some heuristic information. This might be an estimate of the quality or

number of solutions available under each child node. For constraint satisfaction problems,

where the objective is to find an assignment that violates no constraints, one might use

an estimate of the probability that a solution lies below each child. For some problems, a

lower bound on solution quality can be calculated and used to order the choices. Often,

quantitative heuristic values can be derived as solutions to relaxed versions of the original

15

DFS (node)
1 If is-leaf(node)
2 Visit(node)
3 else
4 For i from 0 to num-children
5 DFS(child(node, i))

Figure 2.3: Pseudo-code for depth-first search (DFS).

problem. We will refer to this general kind of child preference information as ‘child ordering’

or ‘node ordering’ information.

Of course, the greedy solution is rarely optimal, but much theoretical research has been

done to determine exactly how poor it will tend to be for certain problems. For some

problems, bounds can be proved on how far from optimal the greedy solution will be.

Constructive algorithms with such bounds are known as approximation algorithms. Such

algorithms can provide a good starting point for optimization. But if one has extra time

available, one might wish to visit other leaves in the hopes of obtaining a better solution.

2.2 Depth-First Search

Every rational algorithm will first explore the path generated by expanding the most pre-

ferred child at every decision node.1 The challenge comes in deciding what to do next.

Current algorithms make various assumptions about where to go against the heuristic pref-

erence. The most popular backtracking algorithm for exploring a bounded-depth tree is a

simple depth-first search (DFS). Pseudo-code for DFS is presented in Figure 2.3. Visiting

a leaf, as in step 2 of the pseudo-code, involves computing its cost, checking whether it is

1As we will discuss briefly in Section 4.3, active learning may be preferable if both the deadline and the
uncertainty of the algorithm’s beliefs are known.

16

Figure 2.4: The paths explored by DFS after visiting three leaves.

the best leaf seen so far, and exiting if it is recognizably optimal. The backtracking order

of depth-first search will visit the second-ranked child of the last internal branching node

before reconsidering the choice at the next to last branching node.

If one insists on finding the best leaf in the tree and this leaf cannot necessarily be

recognized when it is encountered, then the entire tree must be enumerated. DFS is optimal

in this case, because it visits every leaf and generates each internal node only once. The

number of internal nodes expanded per leaf visited is at most 1 and even less in non-binary

trees. Of course, for most trees, complete enumeration will be out of the question.

DFS can easily take advantage of the same kind of child ordering information as is used

by the greedy algorithm. By expanding the children of a node in rank order, DFS will

visit first the subtree thought to contain better solutions. As illustrated in Figure 2.4, DFS

completely enumerates the subtree below every left child before expanding the right sibling.

The convention that the children of a node are ranked left to right in tree diagrams and in

decreasing order of desirability according to the heuristic function in pseudo-code will be

continued in the remainder of this thesis.

Child ordering information is a form of weak heuristic knowledge that is not necessarily

correct. Sometimes, information is also available in the form of provably correct knowledge,

17

such as a lower bound on the cost of any solutions in a particular subtree. In the traveling

salesman problem, for instance, the cost of the tour so far plus the cost of the minimum

spanning tree of the remaining unvisited cities gives a provably optimistic estimate. In a

constraint satisfaction problem, the constraints themselves may be represented in a form

that allows early detection of subtrees that cannot contain solutions. Because these stronger

forms of knowledge are known to be accurate, they can be used to prune the search tree,

eliminating poor regions and reducing its size. This technique is widely used in branch-and-

bound algorithms for combinatorial optimization and constraint satisfaction. Of course,

even after these strong forms of knowledge have been exploited, one is usually left with

a tree to search. Because the weaker forms of knowledge are possibly inaccurate, they

cannot be used to prune the tree and hence they can only be exploited to order search

in the parts of the tree that are left. In this sense, they are orthogonal to the pruning

information. Throughout this thesis, we will assume that any available pruning methods

have been applied and focus exclusively on exploiting heuristic knowledge.

DFS enumerates leaves very quickly. But when there is not enough time to enumerate

the entire tree, or when the best leaf can be immediately recognized when it is encountered,

then it may be advantageous to visit the leaves in a different order. Following Harvey

and Ginsberg (1995), we will call each decision at which a non-preferred child is chosen a

discrepancy. Depth-first search will visit the leaf whose path from the root has all discrep-

ancies below depth i before visiting the leaf with a single discrepancy at depth i. Its search

order implicitly represents the assumption that the cost of every leaf whose path includes a

discrepancy at the root is greater than the cost of the worst leaf that does not. Equivalently,

the penalty for taking a discrepancy at a given depth is assumed to be greater than the

cost of taking discrepancies at all deeper depths. This strong assumption is not necessarily

18

Figure 2.5: The second pass of iterative broadening restricts search to a binary subtree.

correct in a given tree. This will be vividly illustrated in Section 5.5.1 (page 98), where

we will see that DFS can exhibit very brittle behavior, performing well for some problem

instances and very poorly on others, even when the instances are from the same problem

domain. We will now turn our attention to some alternative search methods that rely on

different assumptions.

2.3 Iterative Broadening

When the search tree has a high branching factor, the behavior of DFS can seem too

stubborn. By trying every child at a given node before backtracking to a previous decision,

DFS can become trapped in the lower left portion of the tree. Figure 2.4 illustrates this

phenomenon on a small scale. For a large problem, the decision nodes higher in the tree

will probably never be revisited by DFS.

Iterative broadening (IB), proposed by Ginsberg and Harvey (1992), attempts to modu-

late the behavior of DFS. IB works by running a sequence of restricted depth-first searches,

each of which considers a larger subset of the tree than the previous. The first iteration

treats each node as having only one child: the heuristically preferred one. The second it-

19

IB (node, bound)
1 If is-leaf(node)
2 Visit(node)
3 else
4 For i from 0 to bound
5 IB(child(node, i), bound)

Figure 2.6: Each iteration of iterative broadening (IB) restricts the effective branching
factor of the tree.

eration treats each node as having two children, which will be the two top-ranked children

from the original tree. Figure 2.5 gives an example in a ternary tree. In general, iteration

k in a tree of depth d visits kd leaves. Pseudo-code is given in Figure 2.6.

The search order of IB corresponds to the rather loose assumption that the cost of a leaf

is proportional to the maximum rank of any child in its path to the root. For a relatively

shallow and bushy tree, this may be appropriate. Unfortunately, many trees are dozens or

hundreds of levels deep and so even the binary tree explored during the second iteration of

IB is too large to enumerate completely. Many problems give rise to trees that are uniformly

binary. IB reduces to DFS in such situations. Finer-grained control of the search order is

needed. Perhaps because of this flaw, I am not aware of any systems that actually use IB

in practice.

2.4 Limited Discrepancy Search

Because DFS and IB will probably never revisit the first decisions they make in large

trees, their search orders are implicitly assuming that those decisions were correct. Limited

discrepancy search (LDS), introduced by Harvey and Ginsberg (1995), was designed with

a different assumption in mind. It assumes that the child ordering function is equally

20

Figure 2.7: The second pass of limited discrepancy search (LDS) visits all leaves with zero
or one discrepancies in their path from the root.

LDS (node, allowance)
1 If is-leaf(node)
2 Visit(node)
3 else
4 If allowance > 0
5 LDS(child(node, 1), allowance − 1)
6 LDS(child(node, 0), allowance)

Figure 2.8: Each pass in a limited discrepancy search (LDS) visits all leaves whose path
from the root contains allowance discrepancies. This pseudo-code shows the variant that
explores discrepancies at the top of the tree first.

21

ILDS (node, allowance, remaining)
1 If is-leaf(node)
2 Visit(node)
3 else
4 If allowance > 0
5 ILDS(child(node, 1), allowance − 1, remaining− 1)
6 If remaining > allowance
7 ILDS(child(node, 0), allowance, remaining− 1)

Figure 2.9: Improved limited discrepancy search (ILDS) only enters subtrees that contain
paths with the desired number of discrepancies. This variant explores discrepancies at the
top of the tree first.

likely to make mistakes at every level and thus that discrepancies at any depth are equally

disadvantageous. LDS visits all leaves with k discrepancies anywhere in their paths before

visiting any leaf with k + 1 discrepancies. The algorithm proceeds in passes, with pass k

exploring paths with k or fewer discrepancies and therefore visiting O(dk) leaves for a tree

of depth d. Figure 2.7 shows the leaves visited when k equals one. Note that a leaf in the

right subtree from the root is visited on this early pass, but would probably never be visited

when running DFS under time constraints. Pseudo-code for a single iteration of LDS is

shown in Figure 2.8.

Noting that each iteration of LDS generates a strict superset of the tree explored during

the previous iteration, Korf (1996) proposed a modification in which pass k of the algorithm

attempts to traverse only those paths containing exactly k discrepancies. This can be done

if one knows the maximum depth of the tree, by tracking the remaining depth and making

sure that enough decisions are always left to use up the desired number of discrepancies.

Pseudo-code for the resulting algorithm, which is called improved limited discrepancy search

(ILDS), is shown in Figure 2.9.

ILDS visits
(n
k

)

leaves on pass k, which leads to a large improvement over LDS when

22

O(n) passes are performed. When many passes are performed, later iterations of plain LDS

will generate more previously-seen nodes than new ones. However, in most applications,

n is very large and only the first few passes are ever performed. In the first few passes,

both LDS and ILDS must generate O(n) internal nodes to reach each leaf, because only

the greedy path above the discrepancy point can be shared across leaves. Thus they have

higher overhead per leaf than DFS. As we will see later, experimental results show that

the improved search order of ILDS can often overcome this overhead (Korf, 1996; Meseguer

and Walsh, 1998), although this depends on the accuracy of the heuristic and the density

of recognizably optimal solutions.

Unfortunately, it is not clear how to employ ILDS on a non-binary tree. Some researchers

have suggested that all non-preferred children should count as one discrepancy (Korf, 1996;

Meseguer and Walsh, 1998), although there is little evidence to suggest that this is preferable

to considering less-preferred children to count more. It is also not clear whether to take

discrepancies at the top or bottom of the tree first. Such decisions must be made on an ad

hoc basis by running pilot experiments.

2.5 Depth-bounded Discrepancy Search

Of course, the basic assumption that discrepancies at each level are equally disadvantageous

is itself merely plausible and not necessarily correct. Depth-bounded discrepancy search

(DDS), introduced by Walsh (1997), uses a still different assumption: a single discrepancy

at depth i is worse than taking discrepancies at all depths shallower than i. Motivated

by the idea that node-ordering heuristics are typically more accurate in the later stages

of problem-solving, when local information better reflects the remaining subproblem, this

23

Figure 2.10: The second through fourth iterations of depth-bounded discrepancy search
(DDS). The depth bound is 0 for the second iteration (top), then 1 (middle), and then 2
(bottom).

24

DDS (node, remaining)
1 If is-leaf(node)
2 Visit(node)
3 else
4 If remaining < 1
5 DDS(child(node, 0), remaining)
6 else if remaining = 1
7 DDS(child(node, 1), remaining− 1)
8 else
9 DDS(child(node, 0), remaining− 1)
10 DDS(child(node, 1), remaining− 1)

Figure 2.11: Depth-bounded discrepancy search (DDS) is greedy below the depth bound.

assumption is directly opposed to the one embodied by depth-first search. The algorithm

proceeds in passes, iteratively lowering a depth bound. Above the bound, it behaves like

DFS, exploring all possible paths. Below the bound, it always selects the preferred child.

In this way, discrepancies are always taken high in the tree.

Note, however, that each pass of DDS includes all the leaves that were visited on the

previous pass. In a clever improvement, Walsh prevents duplication by having the algorithm

take only non-preferred children at the level of the current depth bound. Because we can

be certain that the previous pass, with its depth bound higher in the tree, selected only

the preferred child at that level, this ensures that each pass only visits leaves that have not

been visited before. Figure 2.10 shows the leaves visited by DDS when the depth bound is

zero, one, and two. Pseudo-code for the algorithm is given in Figure 2.11.

DDS can be used with a non-binary tree. In a tree with branching factor b, DDS visits

bk leaves on iteration k. Like ILDS, DDS suffers from O(n) overhead per leaf in the early

iterations, although the overhead for DDS is slightly worse because no significant sharing

of internal nodes takes place along the paths to one visited leaf and the next. As we will

see, experimental results tend to indicate that DDS expands leaves in an excellent order

25

but that this often does not compensate for its overhead (Meseguer and Walsh, 1998).

Both ILDS and DDS have recently been added to the commercial ILOG Solver product,

and have enabled the solution of previously unsolved scheduling problems (Toby Walsh,

personal communication).

2.6 Tunable Techniques

In addition to the methods we have discussed so far, there are other, more complicated

tree search techniques that rely on adjustable parameters. Most of these are incomplete

stochastic methods, which we will discuss later in Section 3.7. Meseguer (1997), however,

has proposed a systematic search technique called interleaved depth-first search (IDFS).

The algorithm simulates running multiple DFS processes, each exploring a different subtree.

While this algorithm has been shown to be effective on certain CSP problems, it depends

on parameters which are not obvious to set, such as the number of simulated processes and

the depth at which the tree is divided between them. Chu and Wah (1992) have proposed

a similar technique which they call band search. At any given setting of these algorithms’

parameters, each of them follows a deterministic ordering.

2.7 Conclusions

Every tree search technique we have discussed either visits leaves in a predetermined order,

making strong fixed assumptions about the relative costs of leaves in the tree. Some even

require manual tuning of parameters, essentially asking the user to select the most appropri-

ate assumptions from a predefined family. None of the techniques adapts its actions based

on its experience in the tree. What we would like is a search method whose cost predictions

26

are based on the current search tree. In the next chapter, we will examine a technique for

guiding search based on cost predictions that are learned during the search itself.

27

Chapter 3

Learning How to Search:

Adaptive Probing

We show that a learning approach to tree search can be efficient and effective.

The adaptive probing algorithm is introduced, which uses leaf costs to infer

the costs of choosing the various children at each level of the tree. Empirical

results on both combinatorial optimization and constraint satisfaction problems

demonstrate that an adaptive approach can lead to good performance and very

robust behavior.

We saw in the previous chapter that existing algorithms can be viewed as making strong

assumptions about the locations of good leaves. Limited discrepancy search (LDS), for

instance, assumes that all discrepancies are equally disadvantageous and that any two dis-

crepancies are worse than any single discrepancy. In this chapter, we will investigate a

simple algorithm that incorporates explicit learning in order to avoid strong a priori as-

sumptions. In this adaptive approach to tree search, we will use the costs of the leaves we

have seen to estimate the actual mean cost of a discrepancy at each level. Simultaneously,

we will use these estimates to guide search in the tree. Because the cost predictions are

28

AdaptiveProbing (root)
1 Initialize model
2 Loop until time runs out:
3 Probe(root)

Probe(node)
4 If is-leaf(node)
5 Visit(node)
6 Update model based on node
7 else
8 Choose a child of node using current model
9 Probe(child)

Figure 3.1: Pseudo-code for adaptive probing.

made dynamically at run-time, they can reflect observed properties of the current search

tree. We would thus expect them to lead to better performance than assumptions that are

fixed a priori. We will see that these expectations are in fact fulfilled. However, the simple

algorithm we will consider here has the disadvantage of being incomplete. Later chapters

will consider a more elaborate scheme which retains completeness.

3.1 The Algorithm

We will use a very simple framework for the algorithm. To visit a leaf, we will always begin

at the root of the tree and select children until we reach a leaf. This lets us avoid having

to decide when to return to the root. The choice of child at each node will be guided by

the model we have learned so far. Initially, the model has no information about the relative

merits of particular children. Starting with no preconceptions, we randomly probe from the

root to a leaf. Observing the cost of the solution at that leaf will let us update our model

of the actions we took to reach that leaf. By sharpening our action cost estimates based

on the leaf costs we observe and choosing children with the probability that they lead to

29

L0

L1

L2 R2

R1

L2 R2

R0

L1

L2 R2

R1

L2 R2

Figure 3.2: The parameters of a separate cost action model for a binary tree of depth three.

solutions with lower cost, we will focus the probing on areas of the tree that seem to contain

good leaves. Pseudo-code is given in Figure 3.1.

This stochastic probing approach is incomplete because the method cannot easily keep

track of which leaves remain to be visited. Thus, adaptive probing cannot be used to prove

the absence of a goal leaf. In addition, it generates the full path from the root to every leaf it

visits, incurring overhead proportional to the depth of the tree when compared to depth-first

search, which generates roughly one internal node per leaf. However, the problem-specific

search order of adaptive probing has the potential to lead to better leaves much faster. Since

an inappropriate search order can trap a systematic algorithm into exploring vast numbers

of poor leaves, adaptive probing would be useful even if it only avoided such pathological

performance on a significant fraction of problems.

3.2 An Additive Cost Model

There are many different ways to instantiate the general algorithm outlined above. We will

begin by considering a very simple (yet plausible) model of the search tree. Recall that the

model must relate the choice taken at each decision node to the observed cost of the leaf

30

that is eventually reached. We will do this by predicting the cost of every leaf as simply the

sum of certain costs, one cost for each choice made along the path from the root. Each cost

will depend only on the level at which the choice was made and the rank of the child that

was chosen. The model assumes, for instance, that the effect of choosing the second-most-

preferred child at level 23 is the same for all decisions at level 23, no matter which choices

are made at previous or subsequent levels. We will call this the separate action cost model.

Figure 3.2 shows an example for a small binary tree. A tree of depth d and branching factor

b requires db parameters, one for each action at each level.

The separate action cost model is just a generalization of the assumptions used by DFS

and the other search algorithms discussed in Chapter 2. DFS uses an exponential cost

assumption in which later children high in the tree have costs greater than the sum of the

worst choices at all lower levels. For a tree of depth d and maximum branching factor b, DFS

assumes that the cost of child r at level l is rbd−l. In iterative broadening, later children

are assumed to be more expensive than taking any combination of lower ranked children.

In other words, child r costs roughly dr. ILDS assumes that each non-preferred child costs

the same, no matter what the depth. (One could model slight differences between levels,

depending on whether ILDS was implemented to explore discrepancies at the top or bottom

of the tree first.) DDS assumes that discrepancies at the bottom of the tree are expensive,

essentially assuming a cost of rbl for child r at level l. And for interleaved depth-first search

(IDFS), the assumptions depend on the parameters used but are roughly equivalent to DFS

with the additional stipulation that all actions in the first few levels of the tree cost 0. This

yields depth-first searching within multiple subtrees.

Although the model generalizes many current tree search algorithms, there are, of course,

many orderings it cannot represent. The model generalizes across the breadth of the tree,

31

assuming that all children of a particular rank at a given depth have the same cost no matter

how they were reached. The effect of decisions at each level is assumed to be independent

from those at other levels. This disallows a model in which taking many poor actions has

an effect only slightly worse than taking a few poor actions.

The separate action cost model is simple and can be related directly to observed leaf

costs because that is what the model attempts to predict. But recall that the adaptive

probing algorithm also needs a method for using the model to decide which child to choose

at each decision node. We do not want to always choose the action with the lower estimated

cost because the difference between actions might be tiny and our estimates might be

inaccurate. Instead, we will use a technique from reinforcement learning called Q-value

sampling (Wyatt, 1997; Dearden, Friedman, and Russell, 1998) in which actions are selected

with the probability that they are best. To calculate these probabilities in adaptive probing,

the model will need a notion of action cost variance. In addition to estimating of the costs

of each action, we will estimate the variance of the action costs by assuming that each

estimated cost is the mean of a normal distribution, with all actions having the same

variance.

3.2.1 Learning the Model

This model is easy to learn during a search. Each probe from the root corresponds to a

sequence of actions and results in an observed leaf cost. If ai is the cost of taking action

a at depth i and lk is the cost of the kth leaf seen, probing three times in a binary tree of

32

depth three might give the following information:

L0 + L1 + R2 = l0

L0 + R1+ L2 = l1

R0+ L1 + L2 = l2

We can then estimate the ai using a least squares regression algorithm. In the experi-

ments reported below, the Widrow-Hoff procedure was used to estimate the parameters

incrementally on-line (Bishop, 1995; Cesa-Bianchi, Long, and Warmuth, 1996).

This simple gradient descent method (also known as LMS, and very similar to the

Perceptron) updates each cost according to the error between a prediction of the total leaf

cost using the current action estimates, l̂k, and the actual leaf cost, lk. If d actions were

taken, we update each of their estimates by

η
(lk − l̂k)

d

where η controls the learning rate (or gradient step-size). All results reported below use

η = 0.2, although similar values also worked well. (Values of 1 and 0.01 resulted in reduced

performance.) This update requires little additional memory, takes only linear time, adjusts

d parameters with every leaf, and often performed as well as an impractical O(d3) singular

value decomposition estimator. It should also be able to track changes in costs as the

probing becomes more focused, if necessary. Essentially, though, we regard the target

values as fixed. More complex approaches, such as the Kalman filter , are required to deal

with time-varying state estimation, which is a slightly different problem.

Because we assume that it is equal for all actions, the variance is also straightforward to

33

estimate. If we assume that the costs of actions at one level are independent from those at

another, then the variance we observe in the leaf costs must be the sum of the variances of

the costs selected at each level. The only complication is that the variance contributed by

each level is influenced by the mean costs of the actions at that level—if the costs are very

different, then we will see variance even if each action has none. More formally, if X and Y

are independent and normally distributed with common variance σ2
XY , and if W takes its

value according to X with probability p and Y with probability 1− p, then

σ2
W = E(W 2)− µ2

W

= p(µ2
X + σ2

XY) + (1− p)(µ2
Y + σ2

XY)− (pµX + (1− p)µY)2

= σ2
XY + pµ2

X + (1− p)µ2
Y − (pµX + (1− p) µY)2

Since we can easily compute p by recording the number of times each action at a particular

level is taken, and since the action costs are estimates of the µi, we can use this formula

to subtract away the effects of the different means. Following our assumption, we can then

divide the remaining observed variance by d to distribute it equally among all levels.

3.2.2 Using the Model

Using the model during tree probing is also straightforward. If we are trying to minimize

the leaf cost, then for each decision, we want to select the action with the lower expected

cost (i.e., the lower mean). As discussed above, we do not always want to select the child

with the lower estimated cost. Rather, we merely wish to select each action with the

probability that it is truly best. Given that we have estimates of the means and variance of

the action costs and we know how many times we have tried each action, we can compute

the probability that one mean is lower than another using a standard test for the difference

34

of two sample means. We then choose each action according to the probability that its

mean cost is lower. (Preliminary experiments in which an action was chosen according to

the probability that a sample from its cost distribution will be less than one from the other’s

gave worse performance, as expected.)

For deciding between more than two actions, we can just sample from the distributions

of the sample means and choose the action whose distribution gave the lowest sampled value.

(Note that this is different from sampling from the distributions of the costs themselves.)

This gives the desired result without computing any explicit probabilities. To eliminate any

chance of the algorithm converging to a single path, the probability of choosing any action

is clamped at 0.051/d for a depth d tree, which ensures at least one deviation on 95% of

probes.

Now we have a complete adaptive tree probing algorithm. It assumes the search tree

was drawn from a simple model of additive discrepancy costs and it learns the parameters

of the tree efficiently on-line. Exploitation of this information is balanced with exploration

according to the variance in the costs and the number of times each action has been tried.

The method extends to trees with large and non-uniform branching factors and depths.

The underlying model should be able to express assumptions similar to those built into

algorithms as diverse as depth-first search and depth-bounded discrepancy search, as well

as many other weightings not captured by current systematic methods.

3.3 Empirical Evaluation

Because the model class we are using can express such a wide range of trees and because a

learning algorithm exists for the incremental setting, it seems as if the algorithm is guaran-

35

teed to perform well. However, there are several challenges facing the algorithm. Learning

could fail for several reasons:

1. Most learning algorithms, including the one used here, have been proved effective only

for the case in which samples are drawn at random. But because we are using the

model to guide search, the samples are not random at all. After many leaves have

been seen, the probing algorithm is likely to find one particular action more likely to

have lower cost than another and it will bias the sampling accordingly.

2. Learning is driven entirely by the leaf costs. If the level of noise is high and they are

not informative enough, no useful information will be extracted.

3. A useful model must be learned quickly enough that the search can adapt to the

current problem instance. Slowly learning a general trend may not be enough to

achieve good performance within a reasonable amount of time.

We first investigate the performance of this adaptive probing algorithm using an abstract

model of heuristic search. This gives us precise control over the density of good leaves and

the accuracy of the heuristic. We will find that adaptive probing outperforms systematic

methods on large trees when the node-ordering heuristic is moderately inaccurate, and ex-

hibits better worst-case performance whenever the heuristic is not perfect at the bottom of

the tree. To ensure that our conclusions apply to more complex domains, we will also evalu-

ate the algorithm using two NP-complete search problems: the combinatorial optimization

problem of number partitioning and the goal-search problem of boolean satisfiability. It

performs well on satisfiability and the naive formulation of number partitioning, but when

using the powerful Karmarkar-Karp heuristic, it is competitive only for long run-times or

when exploiting significant prior knowledge.

36

3.3.1 An Abstract Tree Model

In this model, introduced by Harvey and Ginsberg (1995) for the analysis of limited dis-

crepancy search, one searches for goal nodes in a binary tree of uniform depth. This is an

abstraction of the search trees arising in constraint satisfaction problems. (In combinatorial

optimization, each leaf would have a score, rather than either being a goal or not.) Each

node either has a goal below it, in which case it is good, or does not, in which case it is bad.

The root is good and bad nodes only have bad children. Goals are distributed according to

two parameters: m, which controls goal density, and p, which controls the accuracy of the

heuristic. The generation of children from the root can be thought of as a kind of extinction

process, whereby goodness is passed on to one or both of the children. The probabilities of

the various configurations of parent and children are:

P(good → good good) = 1− 2m

P(good → bad good) = 1− p

P(good → good bad) = 2m− (1− p)

The expected number of goal nodes is (2− 2m)d, where d is the depth of the tree.

Following Walsh’s (1997) analysis of depth-bounded discrepancy search (DDS), we will

estimate the number of leaves that each algorithm must examine before finding a goal using

empirical measurements over random trees. Random trees can be generated lazily during

the search by deterministically propagating seed values for a random generator down the

tree. To provide a leaf cost measure for adaptive probing, we continue the analogy with the

constraint satisfaction problems that motivated the model and define the leaf cost to be the

number of bad nodes in the path from the root. (If we were able to detect failures before

reaching a leaf, this would be the depth remaining below the prune.) The results presented

37

Fr
ac

tio
n

of
 P

ro
bl

em
s

So
lv

ed 0.8

0.6

0.4

0.2

Leaves Seen
2,0001,6001,200800400

Adaptive
DDS
ILDS

Biased
DFS

Figure 3.3: Probability of finding a goal in trees of depth 100 with m = 0.1 and p linearly
varying between 0.9 at the root and 0.95 at the leaves.

below are for trees of depth 100 in which m = 0.1. The probability that a random leaf is a

goal is 0.000027. By investigating different values of p, we can shift the locations of these

goals relative to the paths preferred by the heuristic.

Figure 3.3 shows the performance of DFS, Korf’s (1996) improved version of limited

discrepancy search (ILDS), DDS, and adaptive probing on 2,000 trees. A heuristic-biased

probing algorithm is also shown. This algorithm selects the preferred child with the largest

probability that would be allowed during adaptive probing. Following Walsh, we raise the

accuracy of the heuristic as depth increases. At the root, p = 0.9 which makes the heuristic

random, while at the leaves p = 0.95 for 75% accuracy. ILDS was modified to incorporate

this knowledge and take its discrepancies at the top of the tree first.

38

Fr
ac

tio
n

of
 P

ro
bl

em
s

So
lv

ed 0.8

0.6

0.4

0.2

Leaves Seen
4,0003,0002,0001,000

DDS
Adaptive

ILDS
Biased

DFS

Figure 3.4: Performance on trees of depth 100, m = 0.1, and p varying from 0.9 at the root
to 0.98 at the leaves.

Adaptive probing quickly learns to search these trees, performing much better than the

other algorithms. Even though DDS was designed for this kind of tree, its assumptions

are too strong and it only branches at the very top of the tree. ILDS wastes time by

branching equally often at the bottom where the heuristic is more accurate. The ad hoc

biased probing algorithm, which branches at all levels, is competitive with ILDS (and will

actually surpass it, given more time) but fails to exploit the structure in the search space.

DFS vainly branches at the bottom of the tree, ignorant of the fatal mistake higher in

the tree, and solves almost no problems within 2,000 leaves. The superiority of adaptive

probing over the heuristic-biased sampling indicates that the tree model is providing a

benefit. Adaptive probing’s performance cannot be explained simply by its basic stochastic

sampling framework.

39

Fr
ac

tio
n

of
 P

ro
bl

em
s

So
lv

ed 0.8

0.6

0.4

0.2

Leaves Seen
2,0001,6001,200800400

DDS
ILDS

Biased
Adaptive

DFS

Figure 3.5: Performance on trees of depth 100, m = 0.1, and p varying from 0.98 at the
root to 0.9 at the leaves.

DDS does better when the heuristic is more accurate, since its steadfast devotion to

the preferred child in the middle and bottom of the tree is more often correct. Figure 3.4

shows the algorithms’ performance on similar trees in which the heuristic is accurate 90%

of the time at the leaves. DDS has better median performance, although adaptive probing

exhibits more robust behavior, solving all 2,000 problems within 4,000 leaves. DDS had

not solved 1.4% of these problems after 4,000 leaves and did not complete the last one

until it had visited almost 15,000 leaves. In this sense, DDS has a heavier tail in its cost

distribution than adaptive probing. Similar results were obtained in trees with uniform

high p. Adaptive probing avoids entrapment in poor parts of the tree at the expense of an

initial adjustment period.

40

Even with an accurate heuristic, however, the assumptions of DDS can be violated.

Figure 3.5 shows what happens in trees in which the heuristic is accurate 95% of the time

at the top of the tree and random at the very bottom. DDS still has an advantage over

ILDS because a single bad choice can doom an entire subtree, but adaptive probing learns

a more appropriate strategy.

To ensure that our insights from experiments with the abstract tree model carry over

to other problems, we will now evaluate the algorithms on three additional kinds of search

trees.

3.3.2 Boolean Satisfiability

Boolean satisfiability is the problem of determining whether a given formula in propositional

logic can ever be true (has any satisfying models) or whether it is self-contradictory, as in

p ∧ ¬p. It is a fundamental problem in logical inference and, in recent years, it has been

used as a target representation for compilers from problems such as planning and graph

coloring. It is also used for circuit verification.

Following Walsh (1997), we generated problems according to the random 3-SAT model

with 3.5 clauses per variable and filtered out any unsatisfiable problems. All algorithms

used unit propagation, selected the variable occurring in the most clauses of minimum size,

and preferred the value whose unit propagation left the most variables unassigned. The

cost of a leaf was computed as the number of variables unassigned when the empty clause

was encountered.

Figure 3.6 shows the percentage of 200-variable problems solved as a function of the

number of nodes generated. The distribution for DDS extends beyond the plot to 106.7.

ILDS, random probing, and adaptive probing solved all problems within 106 nodes. Al-

41

Fr
ac

tio
n

of
 P

ro
bl

em
s

So
lv

ed

0.8

0.6

0.4

0.2

Log10(Nodes Generated)
65432

ILDS
DDS

Random
Adaptive

DFS

Figure 3.6: Fraction of random 3-satisfiability problems solved. Error bars indicate 95%
confidence intervals around the mean over 1000 instances, each with 200 variables and 3.5
clauses per variable. (The DFS and DDS means are lower bounds.)

42

though Walsh used these problems to argue for the suitability of DDS, he measured leaves

seen rather than nodes generated. As we saw in Section 2.5, DDS generates O(n) nodes

for every leaf and so performs worse when performance is measured in nodes. Both ILDS

and purely random sampling perform significantly better than DDS. (Crawford and Baker

(1994) similarly found random sampling effective on scheduling problems that had been

converted to satisfiability problems.) DFS performs very poorly. Adaptive probing per-

forms slightly better than random sampling (this is most noticeable at the extremes of the

distribution). Although slight, this advantage persisted at all problem sizes we examined

(100, 150, 200, and 250 variables).

3.3.3 Number Partitioning

Number partitioning is a simple yet NP-hard combinatorial optimization problem. The

objective is to divide a given set of numbers into two disjoint groups such that the difference

between the sums of the two groups is as small as possible. One might think of a load

balancing problem or dividing a poorly cut pizza between two equally hungry graduate

students. Number partitioning is a notoriously difficult problem: it was used by Johnson

et al. to evaluate simulated annealing (1991), Korf to evaluate ILDS (1996), and Walsh to

evaluate DDS (1997).

When the numbers are chosen uniformly over an interval, the difficulty of the problem

depends on the relation between the number of digits in the numbers and the number of

numbers. With few digits and many numbers, the probability of a partitioning with a

difference of 0 or 1 increases (Karmarkar et al., 1986). This makes the tree search easier,

as the search can terminate once such a partitioning is found. To encourage difficult search

trees, we can reduce the chance of encountering a perfectly even partitioning by increasing

43

the number of digits in each number. The experiments below use instances with enough

digits that, based on the results of Karmarkar et al., we would expect an instance to have

a perfect partition with probability 10−5. For n numbers and perfect partition probability

p, this is:
⌈

− log10

(

p

2n

√

n

24π

)⌉

For 64 numbers, this is 25 digits; for 128 numbers, 44 digits; and for 256 numbers, 82 digits.

These sizes also fall near the hardness peak for number partitioning (Gent and Walsh, 1996),

which specifies log102
n digits for a problem with n numbers.

Common Lisp, which provides arbitrary precision integer arithmetic, was used to imple-

ment the algorithms. Results were normalized as if the original numbers had been between

0 and 1. To better approximate a normal distribution, the logarithm of the partition dif-

ference was used as the leaf cost.

Two Search Representations

There are two popular ways of representing number partitioning as a tree search problem.

The first is a straightforward greedy encoding in which the numbers are sorted in descending

order and then each decision places the largest remaining number in a partition, preferring

the partition with the currently smaller sum.

A more sophisticated representation for number partitioning was suggested by Korf

(1995), based on the heuristic of Karmarkar and Karp (1982). The essential idea is to

postpone the assignment of numbers to particular partitions and merely constrain pairs

of number to lie in either different bins or the same bin. The decisions of the algorithm

build up a simple constraint graph specifying which numbers are in the same or different

44

L
og

10
(D

if
fe

re
nc

e)

-3

-4

-5

-6

Leaves Seen
10,0008,0006,0004,0002,000

Random
ILDS
DDS
DFS

Adaptive

Figure 3.7: Searching the greedy representation of number partitioning. Error bars indicate
95% confidence intervals around the mean over 20 instances, each with 128 44-digit numbers.

bins as other numbers. As with the greedy representation, a sorted list is maintained in

decreasing order, but instead of assigning numbers to particular partitions, each decision

merely commits to placing the largest two numbers in the same partition or in different

partitions. Different partitions are preferred, and the difference between the two numbers

is then inserted into the list to be dealt with as any other number. Otherwise, the sum is

inserted. When only one number is left, the constraint graph can be two-colored to yield a

partitioning. As we will see, this representation creates a very different search space from

the greedy heuristic.

45

L
og

10
(D

if
fe

re
nc

e)

-3

-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
Adaptive

ILDS
DFS

Figure 3.8: Performance on the greedy representation of number partitioning as a function
of nodes generated.

Results with the Greedy Representation

We will consider the plain greedy encoding first. Figure 3.7 compares the performance of

adaptive tree probing with DFS, ILDS, DDS, and completely random tree probing. To

provide a comparison of the algorithms’ search orders, the horizontal axis represents the

number of leaves seen.

The relative performance of the algorithms indicates that, in this search tree, taking

discrepancies in the middle of the tree does not seem to help. ILDS seems to have the

worst search order. Adaptive probing starts off poorly, like random sampling, but surpasses

all other algorithms after seeing about 1,000 leaves. It successfully learns an informative

model of the tree and explores the leaves in a more productive order than the systematic

algorithms.

46

However, recall that adaptive tree probing suffers the maximum possible overhead per

leaf, as it generates each probe from the root. (This implementation did not attempt to

reuse initial nodes from the previous probe.) The number of nodes (both internal and

leaves) generated by each algorithm should correlate well with running time in problems

in which the leaf cost is computed incrementally or in which the node-ordering heuristic is

expensive. Figure 3.8 compares the algorithms on the basis of generated search nodes. (To

clarify the plot, DFS and ILDS were permitted to visit many more leaves than the other

algorithms.) In a demonstration of the importance of overhead, DFS dominates all the other

algorithms in this view, and ILDS performs comparably to adaptive probing. DFS reuses

almost all of the internal nodes on each leaf’s path, generating only those just above the

leaves. Since ILDS needs to explore discrepancies at every level of the tree, it will usually

need to generate a significant fraction of the path down to each leaf. DDS, which limits

its discrepancies to the upper levels of the tree, incurs overhead similar to that of adaptive

probing because it never reuses internal nodes in the middle of the tree. ILDS finds better

solutions in sudden bursts, corresponding to its exploration of discrepancies at the bottom

of the tree. Its performance then plateaus as it takes discrepancies at other levels, until

another jump (for instance, around 300,000 nodes). The plateaus of ILDS are more evident

than in Figure 3.7 because the leaves with discrepancies at lower levels can be visited using

fewer new internal nodes.

On instances using 64 numbers, adaptive probing again dominated DDS, but was clearly

surpassed by ILDS. (It performed on par with a version of ILDS that visited discrepancies

at the top of the tree before those at the bottom.) This suggests that, in these search trees,

the advantage of adaptive probing over ILDS and DDS increases with problem size.

47

L
og

10
(D

if
fe

re
nc

e)

-6

-7

-8

-9

Leaves Seen
10,0008,0006,0004,0002,000

DFS
Adaptive

DDS
ILDS

Figure 3.9: Searching the CKK representation of number partitioning. Each instance had
64 25-digit numbers.

Results with the CKK Representation

Figure 3.9 shows the performance of the algorithms in the alternative CKK encoding of

the partitioning problem. Performance is shown as a function of leaves seen. DDS has

a slight advantage over ILDS, although adaptive probing is eventually able to learn an

equally effective search order. DFS and random sampling too often go against the powerful

heuristic. As in the greedy representation, however, interior node overhead is an important

consideration. Figure 3.10 shows that DDS and adaptive probing are not able to make up

their overhead, and results using 128 numbers suggest that these difficulties increase on

larger problems. Bedrax-Weiss (1999) argues that the CKK heuristic is extraordinarily

effective at capturing relevant information and that little structure remains in the space.

These results are consistent with that conclusion, as the uniform and limited discrepancies

48

L
og

10
(D

if
fe

re
nc

e)

-6

-7

-8

-9

-10

Nodes Generated
400,000300,000200,000100,000

Adaptive
DDS
DFS

ILDS

Figure 3.10: Performance on the CKK representation of number partitioning as a function
of nodes generated.

of ILDS appear best.

3.3.4 Summary of Results

We have now seen that an adaptive approach to tree search has substantial promise. In

each search space we examined, the systematic search algorithms ranked differently in per-

formance. A simple adaptive probing technique used with a straightforward action cost

model can adapt its searching behavior to search spaces with different characteristics. It

is therefore more robust across different domains than algorithms with fixed assumptions.

Experiments in an abstract tree model derived from constraint satisfaction problems showed

that adaptive probing could even outperform DDS in the search spaces it was designed for.

On boolean satisfiability problems, adaptive probing surpassed all other methods. Results

49

on greedy number partitioning showed that adaptive probing exhibited an excellent search

order, although its overhead made its performance only competitive instead of superior. The

only disappointment was the method’s performance on the CKK representation of number

partitioning, on which it exhibited very slow improvement. In the following sections, we

will remedy this flaw.

3.4 Using Previous Experience

We have now seen that adaptive probing can successfully adapt to a wide variety of trees

and that it is competitive with systematic algorithms except when the heuristic is very

accurate. When the heuristic is very often correct, adaptive probing suffers the overhead

of having to discover that fact from scratch. In this section, we investigate two methods

for remedying this liability. Both are based on the idea of adding our prior knowledge as

an element of the search. The first approach is simply to re-use a model that was built

during a previous run on a similar problem. This avoids having to specify an initial bias

manually, although it requires identifying classes of similar problems. The second is to

use a pre-specified probing policy initially, but slowly discount its influence in favor of the

learned model. We will empirically evaluate the effectiveness of these approaches on both

representations of the number partitioning problem. We will see that the simpler method

is more robust, while the combination of policies provides a less reliable advantage.

3.4.1 Reusing Learned Models

With db parameters and a single observed leaf cost per probe, adaptive probing will take at

least db probes to estimate the costs of choosing each child. While the ability to adjust to

any possible configurations of costs is admirable, it is unlikely that the heuristically preferred

50

child is actually significantly worse than the others. We would like to avoid having to spend

the time to learn this, while still maintaining the flexibility to change the model if evidence

suggests we have encountered one of these rare situations. Perhaps the simplest way of

avoiding a prolonged initial learning period is to begin with an estimated model. More

specifically, we can use the costs estimated from a previous run on a similar problem, while

resetting the variance to ∞ and the recorded number of counts for each action to 0. This

should improve the accuracy of our estimated costs, starting the gradient descent learning

procedure in a good part of weight-space and improving our identification of the preferred

child as useful, while still allowing the algorithm plenty of latitude to explore and revise the

costs as it gradually becomes confident in its estimates and focuses the search.

Number Partitioning: Greedy Space

We will first consider the plain greedy formulation of number partitioning. Figure 3.11

compares the performance of adaptive tree probing with DFS, ILDS, DDS, and completely

random tree probing. Adaptive probing was run twice–the first time with its model’s costs

initialized to zero and the second time with the costs that were estimated by a previous run

on a different problem instance. To provide a comparison of the algorithms’ search orders,

the horizontal axis represents the number of leaves seen.

The figure shows that adaptive probing, in addition to learning to explore a profitable

part of the search space, benefits from the prior knowledge. While tabula rasa adaptive

probing needs to see approximately 1,500 leaves before overtaking the systematic algorithms,

the estimates transferred from the previous problem lead the algorithm directly to good

solutions.

Although Figure 3.11 shows that adaptive probing with transferred knowledge quickly

51

L
og

10
(D

if
fe

re
nc

e)

-3

-4

-5

-6

Leaves Seen
10,0008,0006,0004,0002,000

Random
ILDS
DDS
DFS

Adaptive
Adaptive w/ Prior

Figure 3.11: Searching the greedy representation of number partitioning. Error bars indicate
95% confidence intervals around the mean over 20 instances, each with 128 44-digit numbers.

L
og

10
(D

if
fe

re
nc

e)

-3

-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

Random
DDS

Adaptive
Adaptive w/ Prior

ILDS
DFS

Figure 3.12: Performance on the greedy representation as a function of nodes generated.

52

L
og

10
(D

if
fe

re
nc

e)

-6

-8

-10

-12

Nodes Generated
1,000,000800,000600,000400,000200,000

Random
Adaptive

Adaptive w/ Prior
DDS
DFS

ILDS

Figure 3.13: Searching the CKK representation of number partitioning problems.

learns a good search order, it ignores the overhead that is inherent in restarting at the root

with each probe. Figure 3.12 corrects for this factor, showing performance as a function

of the number of nodes (both internal and leaves). Recall that both adaptive probing and

DDS suffer the maximum possible overhead compared to DFS, which generates roughly one

internal node per leaf. This is reflected in the figure, as DFS finds superior solutions when

given the same number of node generations. Although prior knowledge provides a benefit,

it is not enough to overcome the inherent overhead of adaptive probing.

Number Partitioning: CKK Space

Now we will see if these general trends hold up when moving to the CKK search space.

Figure 3.13 presents the performance of the search algorithms as a function of the number

of nodes generated. Random probing would appear off the top of the plot. Ordinary

53

adaptive probing takes a long time to learn that the heuristic is usually accurate everywhere,

although it looks as if it may eventually approach the systematic algorithms’ performance.

When imbued with prior knowledge, adaptive probing quickly approaches DDS (which

suffers similar node generation overhead). The benefit of using prior knowledge seems to

be greater in this search space than in the greedy one, even though it is the harder one for

plain adaptive probing. When the knowledge is harder to acquire, receiving it in advance

represents a greater savings.

3.4.2 Blending Search Policies

While reusing an old model is easy and seems remarkably effective, it is only possible if one

has the luxury of previous experience with a similar problem. If the previous problem has a

very different distribution of leaf costs, the initial bias can be counter-productive. Another

method for taking advantage of our a priori expectation that the heuristic is beneficial is to

behave at first according to that belief, while continuing to learn a fresh model of the tree.

We can then gradually reduce the frequency with which we make our decisions according

to the prejudiced policy and begin to rely more heavily on our experience in the tree at

hand. While this method applies even in the absence of experience with similar problems,

it requires a prior judgment on how quickly to make the switch. This is essentially the same

problem as deciding how much to trust the initial bias.

In the experiments reported below, we used a multiplicative discounting policy. At the

first probe, we use the prior bias with probability 1. After every probe, this probability

is multiplied by a constant less than one. In effect, this creates a changing blend of the

initial policy and the current model. For an initial policy, we use an algorithm which selects

the preferred child with the maximum probability that would be allowed under adaptive

54

L
og

10
(D

if
fe

re
nc

e)

-3

-4

-5

-6

-7

Nodes Generated
500,000400,000300,000200,000100,000

DDS
Biased

Blended Adaptive
Adaptive

ILDS

Figure 3.14: Searching the greedy representation of number partitioning instances, each
with 64 25-digit numbers.

probing (recall that we clamped the probability of any child as a safeguard against complete

convergence of the algorithm). We used a multiplicative constant such that, in a tree of

depth d, we are as likely after 15d iterations to use the current estimated model as we are

to use the prior bias. This constant is 0.51/(15d) .

Evaluation

The empirical performance of blending policies was mediocre. Figure 3.14 shows algorithm

performance using the greedy representation of number partitioning instances with 64 num-

bers. Besides plain adaptive probing and the blended policy, we also show the performance

of a biased probing algorithm that just uses the initial policy of the blended algorithm.

This biased probing algorithm performs on par with DDS in the greedy search space, but

55

L
og

10
(D

if
fe

re
nc

e)

-6

-7

-8

-9

Nodes Generated
500,000400,000300,000200,000100,000

Adaptive
Blended Adaptive

biased
DDS

Figure 3.15: Searching the CKK representation of number partitioning instances, each with
64 numbers.

seems to be a little worse than plain adaptive probing. The blended adaptive probing algo-

rithm seems equivalent to the plain. On larger problems, however, the blended policy was

eventually surpassed by plain adaptive probing.

In the CKK search space, policy blending seemed to work reasonably well. Figure 3.15

shows the performance of the algorithms on 64-number problems. The blended algorithm

follows the biased probing algorithm at first, then switches over to mimic the adaptive

one. Unfortunately, the good performance of the initial biased policy seems to provide little

benefit to the model learned by the adaptive component. Figure 3.16 shows performance on

larger problems. Here, the model learned by the blended algorithm seems to have benefitted

from its initial experience, although the algorithm still suffers a significant stagnant period

during the transition in which little improvement is seen. Use of a shorter or longer blending

56

L
og

10
(D

if
fe

re
nc

e)

-6

-8

-10

-12

Nodes Generated
1,000,000800,000600,000400,000200,000

Adaptive
Blended Adaptive

Biased
DDS
ILDS

Figure 3.16: Searching the CKK representation of instances with 128 numbers.

time seemed to result in worse performance in preliminary experiments on small problems.

Using an abrupt changeover rather than a gradual blending also led to the learning of a poor

model. In short, blending policies seems to function more to temporarily override learning

than to assist it.

3.4.3 Summary of Results

We investigated two methods for using prior knowledge with an adaptive probing algorithm.

The simplest one, merely reusing the action costs estimated on a similar problem, seemed

to perform the best. An attempt to blend an a priori policy with the learning algorithm

gave some improvement, but seems prone to leading to ineffective learning. We conclude

that it is better to directly aid the learning process rather than temporarily override it.

57

3.5 Parametric Action Cost Models

We have seen that aiding learning by using prior experience is effective for improving the

performance of adaptive probing. Another way of making learning easier is to simplify

and restrict the underlying cost model. Our model has so far allowed action costs to vary

arbitrarily much from one depth to another and from one child to another. This seems

unlikely to be necessary. We will now try a more restricted model, forcing all action costs

for the same child rank to be related by a smooth quadratic function of depth. This

restriction means that there will be fewer parameters to learn and that the kinds of trees

that can be modeled will be more limited.

We will model the cost of a leaf as the sum of the costs of the actions taken to reach it,

as before. If costk,d is the cost of action k at level d, then

leaf = α +
∑

d

costk,d

as before (except for the new parameter α, which will be explained below). But now we

also have the restriction that

costk,d = ak + bkd + ckd
2

where ak, bk, and ck are the coefficients of the quadratic function, indexed by the child

rank k. Note that the leaf cost will be linear in the quadratic’s parameters. It is these

parameters that we now estimate from the leaf costs, using the same on-line technique as

before. Instead of db parameters for a tree of depth d with branching factor b, we have

3b + 1 parameters.

58

Es
ti

m
at

ed
 a

ct
io

n
co

st

2

1

0

Depth
129630

Figure 3.17: The action costs learned for an 18-number partitioning problem using the CKK
representation. Filled circles represent the non-preferred actions.

The α in the leaf cost model above is a new additional parameter of the model. This

new parameter helps ensure that the other costs are smooth. When leaves lie at different

levels of the tree due to pruning, the action costs higher in the tree must be quite a bit larger

than those at the bottom, in order that the predicted leaf cost approach the correct order

of magnitude quickly, using only levels above the pruning. This can be seen in Figure 3.17.

These differences in absolute magnitude between levels do not affect the decisions of adaptive

probing because only the actions available at the same level are ever compared. The α

parameter can be thought of as the mean solution cost or the cost of the root node and it

removes any need for the parameters to be very different to accommodate pruning.

To help keep the values of the parameters to be learned roughly similar in terms of their

expected orders of magnitude, the quadratics were expressed not in terms of the usual depth

levels, but in terms of the percentage of the maximum depth. This kept the parameter for

59

L
og

10
(D

if
fe

re
nc

e)

-6

-8

-10

-12

Nodes Generated
1,000,000800,000600,000400,000200,000

Adaptive
Adaptive w/ Prior

Constrained Adaptive
DDS
ILDS

Figure 3.18: Adaptive probing in the CKK space using 128 numbers and a model which
constrains action costs to be a quadratic function of depth.

the d term from having to be adjusted very much more finely than that for the d2 term.

3.5.1 Evaluation

Figure 3.18 shows results of adaptive probing using the quadratic model on the number

partitioning problem. As the figure shows, the model is learned very quickly, and is effective

in guiding search. The knowledge conveyed by the restricted form of the model gives a

performance improvement comparable to reusing a model from a previous run on similar

problem, although the quadratic model does seem to suffer for its inflexibility as the run

becomes longer. Figure 3.19 shows a model that was learned.

One could also imagine requiring action cost estimates at a particular depth to have a

smooth relationship. In the TSP for example, there are O(n) children at each level (one for

60

Es
ti

m
at

ed
 c

os
t

0.6

0.4

0.2

0.0

Percentage in depth
0.80.60.40.20.0

Non-preferred action
Preferred action

Figure 3.19: A quadratic action cost model learned by adaptive probing for searching the
CKK representation.

each unvisited city). Instead of maintaining O(n) costs at each depth, one might maintain

a quadratic curve at each depth.

We explored one way to parameterize the action cost model: forcing the costs for each

child rank to be quadratic in depth. Different domains might benefit from different param-

eterizations, however. In the traveling salesman problem, for example, both the depth and

the branching factor are O(n) (one child for each unvisited city at each level). It may be

useful to constrain the action costs at a particular level to lie in a quadratic relation to each

other, when ordered by child rank. (And if the action costs at a particular depth have a

known relation to each other, it may be possible to choose among them in less than O(n)

time.) One might even imagine constraining the parameters of the quadratics at each level

to vary smoothly with depth, perhaps according to an additional quadratic function. In

this way, the O(n2) parameters for the traveling salesman problem could be represented

61

with nine parameters.

3.6 Summary of Results

The adaptive approach to tree search is promising. Using an explicit model of the search

space, an algorithm can learn which actions lead to better solutions in the current tree. As

expected, we found this approach to be robust both within and across problem domains.

As an added bonus, it was easy to incorporate prior experience on similar problems. Even

when taking its overhead into account, adaptive probing seemed to perform respectably in

every search space. The only space in which it was not the best or near the best was the

CKK space for number partitioning, in which the node-ordering heuristic is very accurate.

Of course, further work is needed to assess its performance in very different domains, such

as those with a high branching factor, and against additional methods, such as interleaved

depth-first search (Meseguer, 1997).

3.7 Related Work

Stochastic tree sampling and using learning to improve search performance have each been

studied before, although never together in the context of combinatorial optimization. We

will briefly review some of the recent work in these areas.

3.7.1 Tree Probing

Crawford and Baker (1994) investigated random tree probing on scheduling problems and

found it remarkably effective when compared against both tree-based and iterative improve-

ment satisfiability procedures.

62

Abramson (1991) used random sampling in two-player game trees to estimate the ex-

pected outcome of selecting a given move. He also discussed learning a model off-line to

predict outcome from static features of a node. In an optimization context, Juillé and

Pollack (1998) used random tree probing as a value choice heuristic during beam search,

although no learning was used.

Bresina (1996) used stochastic probing for scheduling, introducing a fixed ad hoc bias

favoring children preferred by the node-ordering heuristic. One can view adaptive probing as

providing a way to estimate that bias on-line, rather than having to specify it beforehand,

presumably using trial and error. (However, note that adaptive probing will eventually

converge to sampling around a single privileged path once it has enough data.) By making

explicit the dependence of the search on the information observed, an adaptive approach

makes clear what the search depends on, easing design and debugging. Relieving the user

from having to specify parameters also allows the use of a more complex and flexible model.

The Greedy Random Adaptive Search Procedure (GRASP) of Feo and Resende (1995)

is, in essence, heuristic-biased stochastic probing with improvement search on each leaf.

Adaptive probing provides a principled, relatively parameter-free, way to perform the prob-

ing step. By using the cost of the local minimum found by the improvement search as the

leaf cost to learn from, adaptive probing would be learning where to disregard the node

ordering heuristic in order to produce solutions that were the most useful starting points

for the improvement search. (See also the STAGE algorithm, below.)

Finally, one could also interpret aspects of Ant Colony Optimization (ACO) algorithms

(Dorigo and Gambardella, 1997), in which ‘pheromone’ accumulates to represent the in-

formation gathered by multiple search trials, as serving as an approximation of adaptive

probing. In ACO, each search trial can be viewed as a stochastic probe into a tree that

63

uses a different variable ordering. Much work on ACO has focused on the traveling sales-

man problem, so this corresponds to starting at a different city in each trial. Statistics are

recorded for each edge in the graph on how often it is taken, corresponding to an estimation

of the cost of each child at a decision node. By viewing this as adaptive probing, one might

be able to avoid the laborious parameter tuning required in current ACO formulations.

3.7.2 Learning to Search

Squeaky-wheel optimization (Joslin and Clements, 1998) adapts during tree search, al-

though it learns a variable ordering for use with a greedy constructive algorithm, rather

than learning about the single tree that results from using an ordinary variable choice

heuristic. The relative benefits of adapting the variable ordering as opposed to the value

ordering seem unclear at present. Adaptive probing is slightly more general, as the squeaky-

wheel method requires the user to specify a domain-specific analysis function for identifying

variables that should receive increased priority during the next probe.

In the context of short-path algorithms, Korf (1990) introduced the learning real-time

A* algorithm (LRTA*), which updates stored heuristic values to improve subsequent search.

Nilsson (1998) discusses the use of reinforcement learning techniques such as temporal dif-

ference learning to adjusting weights for the components of a heuristic function for shortest-

path search, although empirical results are not mentioned.

Adaptive tree probing is similar in spirit to iterative improvement algorithms such as

adaptive multi-start (Boese, Kahng, and Muddu, 1994), PBIL (Baluja, 1997), and COMIT

(Baluja and Davies, 1998) which explicitly try to represent promising regions in the search

space and generate new solutions from that representation. For some problems, however,

tree search is more natural and heuristic guidance is more easily expressed over extensions

64

of a partial solution in a constructive algorithm than over changes to a complete solution.

Adaptive probing gives one the freedom to pursue incomplete heuristic search in whichever

space is most suitable for the problem. It is a promising area of future research to see how

the two types of heuristic information might be combined.

Adaptive probing is also related to STAGE (Boyan and Moore, 1998), which attempts to

predict promising starting points for hill-climbing given the values of user-specified problem-

specific features. The discrepancy cost model requires less of the user, however, since the

usual node-ordering function is used as the only problem-specific feature. The tree structure

itself can be used to give the geometry for the search space model.

In the previous work on learning for improvement search, there has been some investi-

gation of integrating prior knowledge for transferring problem-solving experience between

problems. The X-STAGE algorithm (Boyan and Moore, 2000) is one example. The STAGE

algorithm learns a model during search that predicts when an initial solution will yield

good results with hill-climbing (or a similar algorithm). This model is used to intelligently

restart after the hill-climbing has reached a local maximum by switching temporarily to

hill-climbing according to the model’s prediction of a solution’s potential as a starting place

(which might be different from its quality). In X-STAGE, several initial training problems

are run and a separate model is learned on each using STAGE. These models are then used

to solve a new problem by having each model vote on whether or not to accept a proposed

modification to the starting solution. This avoids worrying about having to scale a model

to appropriate values for use on a new problem, but does not allow any adaptation to the

new problem instance. Zhang and Dietterich (1995) have also done work on learning to

control an iterative improvement algorithm, although their method is significantly more

complicated.

65

3.7.3 Decision-theoretic Search

The DTS system of Othar and Hansson (1994) uses learning during search to help allocate

effort. Their method learns a function from the value of a heuristic function at a node

to the node’s probability of being a goal and the expected effort required to explore the

node’s subtree. It then explores nodes with the greatest expected payoff per unit of effort.

In a similar vein, Bedrax-Weiss (1999) proposed weighted discrepancy search, which uses a

training set of similar problems to estimate the probability that a node has a goal beneath

it, and uses the distribution of these values to derive an optimal searching policy. Adaptive

probing is less ambitious and merely estimates action costs rather than goal probability.

Horvitz et al. (2001) use runs on training data to learn a model of running time,

and then use this model to derive a restart policy for a randomized backtracking search.

This metareasoning approach focuses on the utility of search when trying to solve as many

problems as possible from a set under time pressure. It could be used on top of the approach

we pursue here, which focuses more on modeling the structure of the search space and using

the model to guide search.

3.7.4 Reinforcement Learning

Although adaptive tree probing seems superficially like traditional reinforcement learning,

since we are trying to find good actions to yield the best reward, important details differ.

Here, we always start in the same state, choose several actions at once, and transition de-

terministically to a state we have probably never seen before to receive a reward. Rather

than learning about sequences of actions through multiple states, our emphasis is on repre-

senting the possible action sets compactly to facilitate generalization about the reward of

various sets of actions. We assume independence of actions, which collapses the breadth of

66

the tree, and additivity of action costs, which allows learning from leaves. Since each state

corresponds to a sequence of actions, we are generalizing over both actions and states.

3.8 Limitations

Adaptive probing is incomplete—even for a small tree, there is no guarantee that all leaves

will be visited within a bounded amount of time. And if the entire tree happens to be

explored by sheer good luck, there is no way to recognize that happy event. Its stochas-

tic, unsystematic probing means that there is no compact representation for recording the

portion of the search space that has been visited—we would have to store all paths ex-

plored. Even if we collapse identical prefixes, this could mean storing most of the search

tree, thereby using space exponential in the problem size.1 More generally, it seems as if

the ability to immediately alter the search in reaction to new information must preclude

an efficient way to completely enumerate the space, as each new piece of information might

suggest a new and unrelated direction for subsequent exploration. We will explore this issue

further in the next chapter.

Not only is adaptive probing incomplete, but it has no mechanism to promote exploration

of the search space. The emphasis of adaptive probing is on narrowing the sampling to the

region predicted to contain the best solution. Only the ad hoc limit on the probability that

the best action will be selected prevents the algorithm from converging onto the single path

that it believes is best. By exclusive emphasis on narrowing the search, complete coverage

of the search space is neglected. The algorithm never really tries to explore, but rather

merely tries to avoid premature exploitation.

1The worst case occurs when, for all nodes whose children are leaves, all but one of the children has been
expanded. If all children of a node were expanded, we could mark that node as completely explored.

67

It should be possible to mitigate this convergence problem by adding a second phase to

the algorithm. During the first phase, the algorithm attempts to narrow the search down

to a single path. Then, after the probability of the predicted best path reaches a certain

threshold, the maximum probability of selecting the best action could be gradually lowered,

causing the algorithm to explore paths similar to the predicted best path. Although the

algorithm would still be incomplete, its focus of attention would gradually become more

diffuse and it would eventually explore the entire search space with high probability.

3.9 Other Possible Extensions

It may be worthwhile to distribute variance unequally among depths. Because the effects

of variance sum across levels, it may be possible to simply use a second on-line regression

to divide up the mean error. Additional features besides depth might be helpful, perhaps

characterizing the path taken so far. This might take the form of conditioning on the

previous action.

Adaptive probing can be used for goal search, as we saw with boolean satisfiability, as

long as a maximum depth and a measure of progress are available. If a measure of leaf

quality is not available, it may be possible to fit the model using many small instances of

similar problems (or small versions of the current problem) that can be quickly solved and

then to scale up the model to guide probing on the original problem.

In this thesis, we are focusing on searching a tree whose structure has been assumed.

In other words, we have been learning when to disregard the heuristic that choose the

value for the current variable at each decision node. But the adaptive search paradigm is

quite general and could equally well apply to the variable-choice heuristic. In fact, some

68

preliminary experiments on number partitioning have shown that for incomplete search it

can sometimes be more useful to search over the choice of variable than the choice of value

(Ruml, 2001b). One can even conceive of doubling the depth of the tree, first branching on

which variable to choose and then branching on the value to give it. Although this makes

the tree very large, an adaptive search algorithm that can quickly discover where it is most

useful to branch might be able to take advantage of the additional flexibility to find better

solutions.

For some domains, multiple value-ordering heuristics are available and the best one

to use depends on the problem. Lagoudakis and Littman (2001) have done work on using

training experience to generate a policy off-line for selecting the heuristic based on features of

the problem or subproblem under consideration. By using the same techniques as employed

in adaptive probing, one could avoid the training phase and learn to select the appropriate

heuristic on-line. The cost of a leaf would be its depth and the algorithm would try to learn

which heuristics resulted in small subtrees. This on-line approach would also eliminate the

need to characterize a suitable class of training instances

3.10 Conclusions

It is a widely held intuition that tree search is only appropriate for complete searches, while

local improvement search dominates in hard or poorly understood domains. We have seen

how a simple adaptive probing technique can overcome the strong assumptions that are built

into traditional systematic tree search procedures. By learning a model of the tree on-line

and simultaneously using it to guide search, we have seen how incomplete heuristic search

can be effective in a tree-structured search space. When the node-ordering heuristic is very

69

accurate, a suitable learning bias is necessary for acceptable performance in practice. But for

problems with unknown character or domains that are less well-understood, the robustness

of an adaptive approach makes it superior. Its flexibility raises the possibility that, for

difficult and messy problems, incomplete tree search may even be a viable alternative to

local improvement algorithms.

In the next chapter, we will extend this initial exploration of adaptive tree search by

investigating a remedy to adaptive probing’s main limitation: its incompleteness.

70

Chapter 4

Best-Leaf-First Search

We introduce the best-leaf-first search framework for complete adaptive tree

search. The framework relies on a model of leaf costs and it structures the

search to visit leaves in order of increasing predicted cost. Later chapters will

instantiate the framework using different tree models to derive specialized search

algorithms.

In the previous chapter, we saw that an effective model of the distribution of leaf costs

could be learned and exploited for search. However, adaptive probing was incomplete.

Although this is often not an issue for very large problems, for smaller problems it can

be important to guarantee that the best possible solution has been found. In the case of

constraint satisfaction problems, for instance, it is often helpful to know that no feasible

solution exists. Furthermore, as we will see, structuring the search to achieve completeness

can simultaneously provide a principled way to order exploration of the search space.

In this chapter, we will see how a simple and only mildly restrictive framework can be

used to structure an adaptive search while achieving completeness. As with adaptive prob-

ing, we will encapsulate the algorithm’s information about the search tree into a predictive

model of leaf costs. The key idea is to visit leaves in a rational order according to the

71

model. Thus we visit first those leaves that, based on the currently available information,

are predicted to have lower cost. For this reason, the framework is called best-leaf-first

search (BLFS). The general BLFS scheme depends crucially on the model that is used.

After discussing the framework itself in this chapter, the following two chapters will explore

two particular instantiations of the framework using two different tree models.

4.1 The BLFS Framework

Recall that our goal is to visit the best leaf in the tree. When armed with only heuristic

information, the best we can do is to visit leaves in increasing order of their predicted

cost. Even if we assume that an accurate model of leaf costs is provided before the search,

this search order is difficult to accomplish exactly. Given an expressive model, such as the

separate action cost model used in Chapter 3, it is very difficult to enumerate leaf paths in

increasing order.1 Any practical strategy must avoid maintaining a potentially enormous

list of backtrack points. We must also be careful to limit the time we spend regenerating

portions of the tree we have already seen.

A straightforward solution to all of these difficulties is to merely approximate increasing

order by adopting a progressively expanding search horizon. At each iteration, we will visit

all leaves whose cost is predicted to fall below some upper bound. At first, we will set the

bound very low, so that only leaves that are predicted to have very low cost will be visited.

By successively raising the bound, we will visit more and more leaves of progressively

increasing predicted cost. Unlike discrepancy search, we cannot increment to the next

1Given a set A of n positive integers, create a separate cost model with n levels and two children per level
in which all preferred children cost 0 and the other children are assigned unique values from A. If we can
answer the question of which path leads to the cheapest leaf whose cost is greater than some positive integer
B, then we can solve the subset sum problem, which is NP-complete (Garey and Johnson, 1991, problem
SP13), by setting B to be one less than the sum we seek.

72

BLFS(root)
1 Visit a few leaves
2 Nodes-desired ← number of nodes visited so far
3 Loop until time runs out:
4 Double nodes-desired
5 Estimate cost bound that visits nodes-desired nodes
6 Call BLFS-expand(root, bound)
7 If entire tree was searched, return

BLFS-expand(node, bound)
8 If is-leaf(node)
9 Visit(node)
10 else
11 For each child of node:
12 If best-completion(child) ≤ bound
13 BLFS-expand(child, bound)

Figure 4.1: Simplified pseudo-code for best-leaf-first search.

integer because child costs may vary widely. If the bound is too small to afford many new

children, we risk visiting few new leaves while incurring the overhead of regenerating all

nodes visited during the previous pass. But as the increment grows, we lose the desired

search order. During a pass, we will visit all affordable leaves in depth-first order, even

though we would prefer to visit the most expensive of the affordable leaves last.

Zilberstein, Charpillet, and Chassaing (1999) have shown that doubling the length of

successive iterations is the optimal schedule when no information is available about the

deadline. If we can arrange the bound such that we visit twice as many nodes at each

iteration as were visited during the previous iteration, then the overall overhead of the

algorithm will be bounded by 3 and we will visit leaves in an approximation of the optimal

order.2 So we will tracking the number of nodes expanded on every iteration and then

2Let the number of nodes visited in the last iteration be n. By definition, this is equal to the number
of nodes in the entire tree. In the worst case, the number of nodes visited on the previous iteration of the
doubling scheme will be n − 1. The number of nodes visited in all prior iterations will be (n − 1)/2 + (n −

1)/4 + ... which sums to about n − 1. The number of nodes visited by the doubling scheme is the number

73

estimate the bound needed to visit twice as many during the next. Pseudo-code for the

BLFS framework is shown in Figure 4.1.

Because each iteration of BLFS is a depth-first search, BLFS is compatible with all of the

sophisticated backtracking enhancements developed to improve depth-first search. These

include not only branch-and-bound for combinatorial optimization, but also techniques for

constraint satisfaction problems such as backjumping and dynamic backtracking. The cost

model just enforces additional pruning.

The predictive model of leaf costs is used in two places: to decide whether to descend

into a subtree in step 12, and to estimate the next cost bound in step 5. In the next section,

we will explore the role of the model in more detail.

4.2 The Tree Model

BLFS requires that its model of leaf costs support the following two operations:

compute f(n): In order to visit only subtrees containing leaves whose costs fall under the

current iteration’s bound, we need an estimate of the cost of the best leaf under a

given branching node. In other words, we need an estimate of the cost of the best

completion of the partial solution represented by that node. We will notate this

estimate as f(n) in analogy to terminology used in shortest-path algorithms, as will

be explained later in Section 4.4.

estimate cost bound that yields a given number of nodes: In order to limit the over-

head of BLFS, the number of nodes must grow exponentially across iterations. The

visited on the last iteration, n, plus the number visited on the previous iteration, n − 1, plus the number
visited on all prior iterations, about n − 1. So the total number of nodes visited in the worst case is about
3n.

74

computation of the cost bound need not be exact, but should preserve the general

exponential growth of the search.

In later chapters, we will see how these estimates can be efficiently computed using particular

cost models, such as the separate action cost model used by adaptive probing in the previous

chapter. But first we will delineate some desirable properties these two computations should

have.

4.2.1 Properties of f(n)

The function f(n) controls the expansion of nodes during the search (step 12 in Figure 4.1).

It can be computed using any information available at n or along its path to the root. (Nodes

below n may not have been generated yet so information from the subtree is inaccessible to

f .) For every leaf node l, we will define f(l) to be the predicted cost of the solution at that

leaf. The most basic property that f(n) should have for the rest of the tree is that it be

non-decreasing: its value can become larger as we descend into a tree but not smaller. This

is crucial for BLFS to be able to visit all leaves whose predicted cost is within the current

cost bound. If the f(n) value were to decrease along a path, then BLFS might prune away

that path high in the tree even though deeper down it would have become clear that the

subtree does contain a leaf whose cost is within the bound.

While a decreasing f(n) gives incorrect behavior, an increasing f(n) can result in inef-

ficiency. If f(n) increases along a path, then that path might be pruned away at a deeper

level in the tree than necessary, possibly wasting time. However, the algorithm will still

visit the correct leaves. In fact, no work will have been wasted as long as at least one of the

siblings of the pruned node does lead to a leaf that is within the bound.

Putting these two desiderata together, we see that consistency is a fundamental property

75

we would like f(n) to obey. That is, every branching node should have at least one child

whose f value is equal to that of the parent.3 This ensures that a node is expanded if

and only if it leads to a leaf whose predicted cost is within the cost bound. In other

words, f(n) should return the predicted cost of the best leaf below the given node n. Note

that consistency is different from accuracy in the sense that the predicted leaf costs might

not match the actual solution costs at all. BLFS explores in a manner that makes sense

according to its model and the question of how well the model predicts solution quality in

a specific tree is a separate issue. But given particular values for the leaves of the tree,

consistency tells us what values f(n) should return at the internal nodes.

One easy way to ensure that the estimate is consistent is to represent f as a linear

function of separate costs for each action at each level. This is the type of action cost model

we saw in Section 3.2 with adaptive probing. The estimated cost from the root to a given

node is easy to compute as the sum of the costs of the actions taken, and the estimated

best completion is just the sum of the best actions at the remaining levels.

4.2.2 Estimating the Cost Bound

The second operation that the tree model must support, in addition to f(n), is the esti-

mation of a cost bound that will yield a search generating the desired number of nodes.

This estimate need only be accurate enough to yield the desired doubling behavior across

iterations of search–it can be incorrect by any constant factor.

Even for a relatively simple cost model, this is not a simple task. For the implementa-

tions whose results are reported in this thesis, we will avoid this problem by reversing the

estimation problem: instead of estimating the bound for a given number of nodes, we will

3This is stronger than Pearl’s (1984) use of the term, which is equivalent to mere nondecreasing
monotonicity.

76

use the model to estimate the number of nodes that would be visited for a given bound.

We will then use a simple one-dimensional bisection-style search over bounds until we find

an appropriate one.

This is likely to be more accurate than using analytic approximations to derive a cost

bound. We are most interested in extremely small cost bounds, in the tail of the distri-

bution of possible leaf costs. These extreme values are the least likely to be approximated

accurately. For the cost models we will be considering, it is relatively straightforward to es-

timate the number of nodes for a given bound. And if we happen to know the approximate

value of the desired bound, that value can be used as the starting point of the bisection

search.

We have now seen the two operations that a tree model must support for use with the

BLFS framework. First, a model should supply consistent f(n) values representing the

predicted cost of the best leaf below a given node. Second, it should supply a function for

estimating the number of search nodes that would be generated when using a given cost

bound. This estimation should efficiently mimic the BLFS search procedure, anticipating

the f values that will be encountered and the pruning that will be done.

4.2.3 On-line Learning

BLFS separates the search framework from the tree model used to guide the search. One

advantage of this decoupling is that the model need not be fixed in advance—it can be

learned during the search. This interacts well with the iterative behavior of BLFS. The

initial model at the beginning of the search process will not be very accurate. But because

the early iterations are very short and because each iteration visits strictly more nodes than

the previous one, the effects of the poor initial model are limited. As long as we visit enough

77

new nodes to gather new information and refine the model, it will improve and the search

will take advantage of these improvements.

One important implementation detail should be noted here: we can increase our chances

of visiting exactly the desired number of nodes by based the pruning decisions during each

iteration on a separate, static copy of the model that reflects the state it was in when it

was used to estimate an appropriate cost bound to use, at the start of the iteration. This

concession to efficiency means that the search will take advantage of new information only

after the next iteration begins.

4.3 Rational Search

The term ‘rationality’ has been used in so many different ways and in so many different

contexts that it is worth taking a moment to clarify in what respects BLFS is rational.

BLFS is rational in the sense that, by visiting leaves in order of increasing predicted cost, it

is maximizing the expected solution quality. Visiting any leaf other than the predicted best

would, on the basis of the algorithm’s current information, result in finding a worse solution.

One of our assumptions here is that the error of the tree model is the same for all leaves.

More precisely, we assume that the expected bias in the tree model’s predictions is zero for all

leaves. This is a benign assumption because if the model were systematically biased, it could

be systematically corrected, leaving the resulting corrected model with only unsystematic

unbiased errors. So we can say that BLFS is rational because it maximizes quality given

its beliefs. More precisely, it is approximately rational, because it must approximate the

optimal search order to maintain computational efficiency.

Of course, DFS is also rational in the sense of maximizing quality given current beliefs,

78

because it could be viewed as maximizing quality in the context of fixed beliefs that happen

to be implausible. But BLFS is rational in the additional sense that it can react to new

information. Depending on the tree model in use, information observed during the search

can change the current model in an arbitrarily large way, leading to adaptive behavior. No

previous complete search algorithm has this property. We should note that BLFS itself only

approximates the ideal of instant adaptation. Because the search is structured in iterations,

each of which is guided with a static copy of the model from the previous iteration, there

will usually be a lag between changes in the model and changes in the algorithm’s behavior.

BLFS is not informed of its time deadline. If one knew that plenty of time remained,

and if an estimate of the uncertainty of the cost model were available, one could implement

a more sophisticated approach that might select seemingly poor actions in order to best

reduce the uncertainty in the model and increase the chance of ultimately selecting the

optimal leaf in the future. Such methods have been explored in the context of game tree

search (Russell and Wefald, 1991) and reinforcement learning (Dearden, Friedman, and

Russell, 1998) and would be an interesting avenue for future extensions of BLFS.

The idea of viewing a search algorithm as a rational agent has been proposed before.

Russell and Wefald (1991) discuss work on metareasoning and search, that is to say, rea-

soning about which search actions (or other work) to perform. Metareasoning applies to

situations in which time is a valuable resource, such as real-time applications with time

penalties. When time can be valued on the same scale as solution quality, further search

may not always be beneficial. Russell and Wefald, as well as Mayer (1994), use past expe-

rience to compute preferences for expanding nodes in a shortest-path algorithm. Hansson

(1998) conducted a preliminary investigation into similar techniques for optimization trees.

This work relies on information already gathered on a corpus of similar problems, rather

79

than learned from the current tree.

In this thesis, we assume that further search is always beneficial, and we merely consider

which searching actions might be most profitable to take. Deciding where to search and

when to stop searching can be regarded as orthogonal issues. Decision-theoretic metarea-

soning methods could certainly be applied on top of BLFS to halt the search when the

expected improvement is not worth additional time. The tree model should prove helpful

in estimating the expected improvement. If even the smallest algorithmic actions, such as

node expansion, are expensive, then it may become necessary to weight the benefit to be

gained from visiting the leaf with the lowest predicted cost against the time that would be

necessary to reach it. But in most domains, one has time to visit thousands of leaves, so

we will leave aside issues of node expansion utility and focus on directing the search toward

the most promising leaves.

4.4 Relations to Shortest-path Algorithms

The topic of adapting a search order in light of heuristic information uncovered during the

search has been explored extensively in artificial intelligence in the context of shortest-path

problems. As we recall from Section 1.1.2 (p. 6), the goal in a shortest-path problem is to

find the shortest (or cheapest) path from a given initial state to any state that satisfies a

given goal test function. These desired destination states are also called goal nodes. Tasks

such as planning, puzzle-solving, and navigation can be cast as shortest-path problems in

which one wishes to find a cheapest sequence of actions that transforms an initial situation

into some desired goal situation.

Often, the general term “heuristic search” is equated with the specific framework of

80

IDA*-expand(node, bound)
1 If is-goal(node)
2 Exit, returning node
3 else
4 For each child of node:
5 If f(child) ≤ bound
6 IDA*-expand(child, bound)

Figure 4.2: Pseudo-code for the inner loop of iterative-deepening A* search (IDA*).

best-first search developed for shortest-path problems (Luger and Stubblefield, 1998, p. 124;

Nilsson, 1998, p. 139; Poole, Mackworth, and Goebel, 1998, p. 132). The quintessential

example of best-first search in every AI textbook is the exponential-space A* shortest-path

algorithm (Hart, Nilsson, and Raphael, 1968). A related algorithm, iterative deepening

A* (IDA*), approximates the behavior of A* while taking only linear space (Korf, 1985).

As we will discuss below, these shortest-path algorithms are generally not appropriate for

searching the bounded-depth trees arising in combinatorial optimization and constant satis-

faction (Zhang and Korf, 1993). In many modern AI textbooks, techniques for optimization

such as iterative broadening and node ordering for depth-first search are mentioned in the

same chapter as heuristic shortest-path algorithms, but they appear together as a grab-bag

of techniques for tree search, rather than as cousins related at a fundamental level. A

comparison with BLFS exposes these similarities.

Pseudo-code for IDA* is shown in Figure 4.2. There are obvious similarities with BLFS,

which was shown in Figure 4.1 on page 73. As in BLFS, IDA* proceeds in passes, each of

which is a depth-first search that visits all nodes within a cost bound.4 Table 4.1 summarizes

a comparison of the two algorithms. Both control node expansion according to an evaluation

4Because iterative deepening proceeds by increasing a depth bound and BLFS proceeds by increasing a
cost bound, a better name for BLFS might have been iterative worsening!

81

Table 4.1: A comparison of BLFS and IDA*.

BLFS IDA*

f(n) semantics best leaf below n best path through n
desired f(n) property consistent non-overestimating

f(n) non-overestimating correctness optimality
f(n) non-underestimating efficiency efficiency

f(n) source from user or learned = g(n) + h(n)
g(n) source not necessary from problem
h(n) source not necessary from user

additive model convenient required
updating bound estimation add ε

rational optimal

function, notated f(n). In BLFS, the f(n) value of a node is computed as the predicted

cost of the best leaf below it (i.e., the node’s best completion). In IDA*, the f(n) value is

a prediction of the cost of the shortest path to the nearest goal that passes through that

node. In this way, BLFS can be seen as an extension of IDA* to finding good leafs, rather

than good paths.

This difference in the f function’s semantics is reflected in how it is computed. In

IDA*, the f(n) prediction is decomposed into the path cost, notated g(n), which measures

the cost of the shortest path from the root to n, and a heuristic value, notated h(n),

which (under)estimates the cost of the shortest path from n to the goal. The h function

is supplied by the user. This is a natural decomposition for shortest-path problems, but it

does not apply directly to combinatorial optimization problems. BLFS considers f(n) as

the predicted cost of the best leaf in the subtree below n. BLFS uses its leaf cost model to

estimate the entire f(n) function directly. If one considers that model to be the heuristic

information supplied by the user, then BLFS is using the user’s heuristic information to

estimate f , rather than just h, as is done in shortest-path heuristic search.

IDA* can be used for combinatorial optimization—in many domains, it is possible to

82

construct an f function that yields a lower bound on the quality of any leaf below a given

node. However, IDA* is a poor choice for two reasons. First, it visits too many internal

nodes. Because most of the f values will be underestimates, many internal nodes will have f

values lower than the value of the best leaf. IDA* visits all of these nodes before generating

its first leaf. When solving a large problem or when operating under time constraints, this

delay is unacceptable. The second problem with IDA* has to do with updating the cost

bound. The algorithm updates its bound to the smallest f value that was seen on the

previous iteration but that is greater than the current bound. When many nodes have the

same f values, this can work well. But in an optimization problem, it is not uncommon

for every node to have a slightly different f . This leads IDA* to increase its bound too

cautiously, expanding only one new node on each iteration.

BLFS does not suffer those problems. BLFS uses an explicit representation of its predic-

tive model, rather than relying on a black-box function suppled by the user. Being able to

choose a simple explicit model leads to two important advantages over IDA*. First, we can

choose a model that will give consistent predictions. (As we mentioned in Section 4.2.1, this

means that we can ensure that for every node there exists a child whose best descendant

will have the same evaluation.) This implies that BLFS is certain to reach leaves on every

iteration. It will never expand a node unnecessarily and never overlook a node that has a

descendant within the cost bound. To enforce the consistency of f , one can use leaf cost

models which are represented as a linear function of action costs. This makes it fast and

easy to accurately asses the best descendant’s cost. One can view this model in terms of a

prefix cost and the cost of the best completion, but unlike with IDA*, this separation into

two components is just for convenience.

The second advantage that BLFS enjoys over IDA* is that the cost bound can be

83

updated optimally. Because the predicted costs are generated by a known model, we can

choose cost bounds that can be expected to cause twice as many nodes to be visited as

on the previous iteration. By approximately doubling the number of nodes visited on each

iteration, BLFS limits its overhead to a factor of less than three in the worst-case situation

in which the entire tree must be searched. There is no reason that this technique could

not also be used with conventional IDA*, although it might be more difficult to achieve

acceptable accuracy than in BLFS because one might not have as much information about

the internal structure of g(n) and h(n), as they are computed from the problem domain

and black-box function supplied by the user rather than from a known model. Wah and

Shang (1995) have explored the case in which the parametric form of the relation between

cost bound and nodes generated is known beforehand.

These differences between BLFS and IDA* ultimately stem from the fact that BLFS can

assume a bound on the depth of the tree. This allows the algorithm to pursue a single line

of inquiry into the tree, easily reach a leaf, and potentially update its model. Shortest-path

algorithms must be more conservative, pushing uniformly into the tree across its entire

breadth. If one probed along a single path into a shortest-path tree, perhaps searching

according to h, there is no guarantee that a goal or even a leaf would ever be reached. The

problem would be worse if h were consistent, because it would be impossible to use a rise

in h to terminate exploration. Using BLFS directly for shortest-path search would likely

fail. Examining combinations of BLFS and IDA* or RBFS (Korf, 1993) for approximate

shortest-path search would be an interesting direction for future work, however.

84

4.5 Conclusions

We have now seen a general framework for using heuristic information to search bounded-

depth trees. BLFS can be seen as an extension of IDA* that uses an explicit model to ensure

efficient search by both guaranteeing consistent node evaluations and allowing appropriate

cost bound updating. By separating the search mechanism from the cost model, BLFS

can learn on-line while suffering worst-case overhead of a factor of three when the entire

tree must be enumerated. In the next two chapters, we will see two different tree models

that illustrate how BLFS can be used in practice to solve combinatorial optimization and

constraint satisfaction problems.

85

Chapter 5

BLFS with a Fixed Model:

Indecision Search

We present an instantiation of the best-leaf-first search framework called indeci-

sion search. It uses a cost model based on preference information computed at

branching nodes and it backtracks first to those nodes where the choice of best

child was least clear. Empirical results show that it provides the best results

known for several types of constraint satisfaction problems.

We will now instantiate the general BLFS framework introduced in the previous chapter

with a particular cost model. The tree model that is used with BLFS determines how the

cost estimates are calculated and how quickly BLFS will find the good leaves in the search

tree. As a first test of the BLFS framework, we will investigate a simple model of leaf cost

whose parameters do not need to be learned during the search. To adapt the search to the

particular tree being explored, we will instead take advantage of the same heuristic scoring

information that is used to rank children at each decision node. In the following chapter,

we will investigate a tree model whose parameters are estimated on-line.

86

5.1 Two Tree Models

We will test two very similar tree models. As in the separate action model from Section 3.2,

the cost of a leaf will be predicted to be a linear sum of costs for each child rank at each

depth, but instead of learning the costs of these actions from the leaf costs, we will assume

that the action costs are equal to scores that we will calculate for each child as we go, using

a user-supplied node scoring function. Although this may seem odd, the motivation for this

set-up derives directly from the idea of heuristic child ordering that we discussed briefly in

Section 2.2.

Most heuristic node-ordering functions rank the children of a node based on a numerical

score. For example, when solving a traveling salesman problem, one might order the children

by the nearest city heuristic, which computes the distance to each unvisited city from the

current location. When selecting which nodes to revisit during backtracking, any nodes

at which the children all had the same score and were therefore ranked arbitrarily would

seem to be much better candidates than those nodes at which the best child had a score

that was much better than the score of the second-ranked child. Similarly, we might want

to explore several similarly-valued children at one node before ever considering a relatively

poor-scoring second child at another node. The spread of heuristic scores can be seen as

giving us an indication of the degree of certainty or decisiveness of the heuristic. We can

normalize the scores of siblings by subtracting the score of the best child, so that each child

is given a value according to how much worse it is than the top-ranked child, according to

this node-ordering heuristic.

If we model the cost of a leaf as the sum of these normalized scores, then leaves with

low cost are those whose paths involved choices that were either exactly the preferred ones,

87

or else closely ranked by the heuristic. The cost reflects the total amount of ‘discrepancy’

used at each branching node, and two paths that both have very low cost will differ only

at branches where the children were very similarly scored. When using this cost function,

BLFS will attempt to backtrack first to those nodes whose children were least differentiated

by their heuristic values. In other words, we backtrack by revisiting nodes according to

how decisive the heuristic function was in its ranking. Decisions about which the heuristic

was less certain are revisited sooner than those involving a large difference in child score.

In light of this, we can call this particular specialization of BLFS indecision search. It is

an adaptive tree search because the backtracking points will be chosen based on the node

scores encountered during the search. Unlike traditional systematic tree search algorithms,

indecision search does not assume fixed child costs.

We will also test a second, simpler version of indecision search in which the leaf costs

are predicted to be the maximum child cost along the path from the root, rather than the

sum of all the costs. As we will see, this model turns out to be faster to estimate and, for

the benchmarks we investigate, equally effective.

5.2 The Algorithm

Indecision search can be seen as a generalization of discrepancy search in which different

non-preferred children have different costs, rather than all counting as one discrepancy. The

preferred child costs nothing and the cost of any other child is its difference in heuristic

score from the preferred child. If the child scores are c0, c1, . . ., then a child i has cost ci−c0.

We want to visit leaves in increasing order according to the sum of the cost along their path

to the root. As in general with BLFS, it is difficult to know where these leaves are without

88

Indecision-expand (node, allowance)
1 If is-leaf(node)
2 Visit(node)
3 else
4 Update model of child costs
5 Indecision-expand(child(node, 0), allowance)
6 For i from 1 to number-of-children(node)−1
7 c← child(node, i)
8 If cost(c) ≤ allowance
9 Indecision-expand(c, allowance − cost(c))

Figure 5.1: Indecision search treats the BLFS cost bound as an allowance that is spent to
visit non-preferred children.

exploring the entire tree, so we will use an iteratively increasing cost bound. Since the cost

is just the sum of the scores at each level, we can visit only those nodes that are within

the bound by considering the bound as a kind of allowance that is spent when we visit a

node. Since the preferred child always costs nothing, we can be assured that an affordable

child lies below any internal node that we can afford to reach. Pseudo-code for a pass of

indecision search is presented in Figure 5.1.

Using the BLFS framework lets us avoid maintaining a potentially enormous list of

backtrack points, and limits the time we spend regenerating portions of the tree we have

already seen. In order to predict how many nodes will be visited within a certain cost

bound, we will need to maintain a learned estimate of the expected distribution of child

costs in the tree. After discussing these and other implementation issues, we will evaluate the

performance of the resulting algorithm on two constraint satisfaction problems: latin square

completion and binary CSPs. The results suggest that indecision search is more efficient

than previous search algorithms and that it also avoids the poor worst-case performance of

depth-first search. Indecision search is able to successfully exploit the information provided

by the heuristic function that is ignored by previous algorithms.

89

PSfrag replacements

nodesk−2

nodesk−1

nodesk−1 × leaf-probk−1

nodesk = nodesk−1 × (1− leaf-probk−1)× bk−1

Figure 5.2: The process of estimating the number of nodes at the next level of the tree.

5.3 Estimating the Allowance

Estimating the proper value for the allowance is the most challenging part of the algorithm.

Recall that we are finding a good allowance by a reverse process: predicting the number

of nodes that will be generated using a given allowance and then searching over possible

allowance values.

To predict the number of nodes for a given allowance, we will need to estimate the

number of children we will be able to afford at each level, as well as the probability that a

node at that level will be a leaf. Figure 5.2 illustrates this computation. If we can afford

bk children on average at level k with the given allowance and a node at that level is a leaf

with probability leaf-probk, then the number of nodes at a level, nodesk, can be computed

from the percentage of the nodes that are not leaves, times their fertility:

nodes0 = 1

nodesk = nodesk−1 × (1− leaf-probk−1)× bk−1

90

The total number of nodes that we will visit can just be summed over the levels:

nodes =
max-depth

∑

k=0

nodesk

The leaf-probk parameters can be easily estimated during the previous iteration. All that

remains is to estimate the bk for a given initial allowance. To do this, we will statistically

model the flow and transformation of the allowance that would take place as the search

procedure explored the tree. This requires that we have a model of the costs we would

encounter in the tree. Happily, the information needed to construct this model is easy to

acquire: we will have seen many of the relevant costs already. During the previous pass, we

will note the costs of all the children of the nodes we visit, including the costs of the children

we do not expand further. (The scores underlying these costs will have been computed by

the heuristic already, in order to find the best child.) We use these costs to construct

probability distributions, pc,i(x), over the possible costs x for the c-th ranked child at level

i. (These distribution models will be implemented using histograms, as we discuss below.)

For a tree of depth d and maximum branching factor b, we will need to form at most d(b−1)

distributions, one for each rank at each level, ignoring the preferred child which is always

free. This cost model assumes that, for example, the fifth child of a node at level 23 will

have the same cost distribution no matter how we reached that node, which is similar to

the modeling assumptions that worked so well in Chapter 3.

We will use this cost model to decide how many children we can expect to afford at a

given level and, at the same time, to compute a probability distribution over the possible

amounts of allowance that will remain for use at the next level. This process is illustrated

schematically in Figure 5.3. Starting with a spike distribution pold(x) that has all its mass

91

allowance
for next level

after first child after second child after third child ...

weighted sum

previous level
allowance after

first child
is free

subtract cost
of third child

subtract cost
of second child

Figure 5.3: The process of estimating the allowance available at the next level.

92

at the given initial allowance value, we compute the distribution of allowance that is likely

to be left after we visit a particular child. The probability of each possible new amount of

allowance is just a sum over all the possible ways we could have arrived at that amount by

spending allowance on that child, weighting each way by its probability of occurring:

pnew(x) =

∫

(pold(x + y)× pchild(y))dy if x ≥ 0

0 if x < 0

We call this operation truncating subtractive convolution, since it computes the convolution

of the two distributions while subtracting the cost from the allowance and squashing the

probability of any negative allowance resulting from unaffordable children. The mass of

probability that survives the convolution equals the probability that we can afford that

child. The sum of the truncated distributions from all the children, plus a copy of the

original allowance distribution to represent the free preferred child, forms the distribution

of the allowance we can expect to have at the next level. (The sum can be performed

over the raw truncated distributions, since we want to weight each one by the probability

we can afford the corresponding child, but the resulting allowance distribution should be

normalized to sum to one.)

We can now compute the expected number of children we can afford for each level, the

bk, from our estimated allowance distribution and our estimated child cost distributions.

The expected number of children hinges on the probability that each possible number of

children is the most we can afford, which we write as p(max is i):

p(max is i) = p(can afford i)× (1− p(can afford i + 1))

93

bk =
max-num-childrenk

∑

i=1

i× p(max is i)

For a given allowance value and child cost distribution, p(can afford i) is simply the amount

of probability in the child cost distribution that is less than or equal to the allowance. By

taking the expectation over the full allowance distribution, we can compute the overall

expected bk. With the bk in hand, we have everything we need to compute an estimate of

the number of leaves we would visit for the given starting allowance.1

Unfortunately, the clever trick introduced by Korf (1996) to improve limited discrepancy

search does not apply to indecision search. Noting that every leaf from the previous pass was

revisited during next pass of discrepancy search, Korf modified the algorithm to prune the

preferred child when the discrepancy allowance is equal to the number of levels remaining

in the tree. This forces the algorithm to only visit leaves with the desired number of

discrepancies. In the case of indecision search, we cannot be sure of the costs of leaves

below a given node because we only have a summary distribution. In applications with

heuristic child scores whose range varies widely with depth, it might occasionally be possible

to predict that all leaves beneath a given node are sufficiently good that they have been

visited already. By using conservative estimates in such cases, it may be possible to allow

some pruning. This could reduce the overhead of the algorithm, although the maximum

benefit is a factor of two speed-up. In general, however, we cannot prune reliably and thus

1When recording child costs, we assumed they were independent and recorded them in separate dis-
tributions. But when calculating the number of children we can afford, we want to know the conditional
probability that we can afford a child given that we could afford the previous children. To calculate this
properly, we should instead have stored the difference in cost between each child and the previous one, and
then derived the allowance remaining after each child using successive subtractive convolutions. Empirically,
the two strategies seem to perform similarly (normalizing the non-conditional probabilities of affording each
number of children to sum to one). However, the correct incremental approach does not allow a fast imple-
mentation of the simplified search strategy described later, so we have presented the version that assumes
independence instead.

94

we must revisit previously seen leaves.

The most complicated part of indecision search is the estimation of the allowance per-

colating down the levels of the tree. This can be completely avoided if we use the second,

simpler indecision search cost model. Instead of modeling a leaf’s cost as the sum of the

child costs along its path, we can assume that the cost will just be proportional to the

maximum child cost along the path. This means that we can modify the search algorithm

to visit all children within the same allowance at every level, passing the allowance down

unmodified. The same amount of allowance will be available at every level and subtractive

convolution is unnecessary. This simple indecision search variant can be viewed as a gen-

eralization of iterative broadening, just as indecision search is a generalization of limited

discrepancy search. Simple indecision search only needs to estimate the distributions of the

child scores and then, when estimating the bk, find the mass in each distribution lying at

or below a given allowance threshold.

5.4 Implementation

Although the basic ideas of indecision search are straightforward, any implementation must

confront details such as data structures for probability distributions and search algorithms

for cost bounds. We briefly sketch the methods used in the implementation whose results

are reported below.

5.4.1 Manipulating Distributions

To implement indecision search, we must learn and convolve distributions. Rather than

assuming that they follow a particular parametric form (such as a truncated normal distri-

bution) and attempting to derive closed-form solutions for subtractive convolution, we just

95

use histograms. The bin locations are determined adaptively by the data. As new samples

are added to an empty histogram, we record them individually until a fixed size limit is

reached (100 in the experiments reported below). At this point, each sample expands to

become a bin, reaching halfway to its nearest neighbors. Samples on the ends are expanded

symmetrically. When further samples are added, the weights of the appropriate bins are

increased. Because we must locate the appropriate bin, the time to add a sample is loga-

rithmic in the size limit of the histogram. We track the largest weight in any bin and when

this becomes greater than twice the sum of the weights in any adjacent pair of bins, we split

the heaviest bin and merge the smallest adjacent pair. We only need to find the sum of the

weights in the smallest adjacent pair when a bin’s weight becomes larger than the weight

of the heaviest bin.

Subtractive convolution is straightforward, although four cases must be considered de-

pending on whether the distributions involved are represented as individual points or have

expanded into bins. When both are points, we can just construct a new histogram and

add the appropriately weighted samples to it. This is done in a random order to preserve

accuracy if the new histogram converts to bins. When both are bins, we reduce to the points

case by treating the bin centers as samples. When one is bins and the other is points, we

construct a new truncated bins histogram for each point, incrementally accumulating them

into the result. When bin boundaries do not coincide, bins are split. As this may result

in too many bins in the result, we then collapse the smallest adjacent pairs as necessary.

(This can be made efficient by storing adjacent pair weights in a heap and updating after

every merge.) The cost of convolution is bounded by the square of the histogram size limit.

Similarly, four cases must be considered when adding distributions together to comput-

ing a new allowance distribution. Adding points to points and bins to bins works as for

96

convolution. When adding bins and points, the points are treated as new samples for the

binned distribution unless the total weight of the points is greater than the weight of the

bins, in which case the bins are converted to points at their centers and the two point col-

lections are added. This preserves the accuracy of the distribution with the greatest mass.

When adding points to bins, we also check to be sure that the histogram has the maximum

number of bins, as truncating convolution may have reduced the number of bins. If there

is room for an extra bin, we split the bin to which the point is added.

5.4.2 Finding an Appropriate Allowance

Now that we can manipulate cost distributions, we can use them to predict the number

of leaves we would see for a given allowance. To find an appropriate allowance given our

model of the tree, we use a simple binary search. The allowance for the first pass is always

zero. This causes the search to explore all ties after visiting the greedy child. For later

iterations, we choose a starting point by increasing the previously used allowance by 20%

(or arbitrarily using 1 if the previous iteration was the first). The allowance is increased

until more leaves are predicted than we desire to visit. The resulting interval around the

correct allowance is then reduced by half until the prediction is sufficiently close (or until

seven splits have occurred). Any prediction within 5% of the desired value or greater by less

than 50% is deemed sufficient. If we attempt to predict the number of leaves that would

be seen with an allowance that is greater than the sum of the largest costs at every level,

we recognize that the desired number of nodes may be larger than the size of the current

tree and we simply return the attempted allowance immediately. To cope with inaccurate

estimates that result in few new leaves being seen, the number of desired leaves is twice

the number of leaves seen on the previous pass or twice the number we had wanted to see,

97

whichever is greater.

Since finding the next allowance forms most of the overhead of indecision search, an

optimized implementation would retain information across iterations and use interpolation

and extrapolation to guess good allowance values and make maximum use of the expensive

estimates. Estimates need only be accurate within a constant factor, since the desired

number of leaves increases multiplicatively. During early iterations, many histograms will

contain exact samples and convolution will be quite accurate.

5.5 Evaluation

We have seen how the underlying idea of backtracking to points of indecision can be turned

into a practical algorithm using the BLFS framework. Now we must verify that it is effective

in practice and test whether it provides any advantage over discrepancy search algorithms

that simply assume fixed child costs. The most obvious candidates for indecision search are

constraint satisfaction problems (CSPs), as they are commonly solved using quantitative

heuristic node scoring functions. We will evaluate the algorithm’s performance on two

types of problems: latin squares and binary CSPs. (Additional results on the combinatorial

optimization problem of number partitioning will be discussed in Section 6.3.)

5.5.1 Latin Squares

A latin square is an n by n array in which each cell has one of n colors. Each row and

each column must contain each color exactly once. Although constructing a latin square

from scratch is not difficult, completing a partially-filled latin square can be difficult or

impossible. Gomes and Selman (1997) proposed latin square completion as a challenging

benchmark problem for constraint satisfaction techniques. They note that, like many real-

98

Fr
ac

ti
on

 o
f P

ro
bl

em
s

So
lv

ed
0.8

0.6

0.4

0.2

Log10(Nodes Generated)
3.93.63.33.02.7

Indecision
ILDS (bottom)

ILDS (top)
DDS
DFS

Figure 5.4: Performance on completing 21× 21 latin squares that already have 30% of the
cells assigned.

world problems, it exhibits both regular structure, due to the row and column constraints,

and random elements, due to the preassigned cells.

We used a forward-checking algorithm, choosing variables to assign according to the

classic most-constrained variable heuristic of Brélaz (1979). Values were ordered according

to the promise heuristic of Geelen (1992), which estimates the number of solutions below

each child. For indecision search, the logarithm of the promise was used as the heuristic

score of a node. Following Meseguer and Walsh (1998), we used a test set of 1,000 latin

squares, each with 30% of the cells assigned, filtering out any unsatisfiable problems. We

tested depth-first search (DFS), two version of Korf’s improved limited discrepancy search

(ILDS), one taking discrepancies at the top first and the other taking them at the bottom

first, depth-bounded discrepancy search (DDS), and the plain and simplified versions of

indecision search.

99

The performance of the algorithms is shown in Figure 5.4 in terms of the fraction of

problems solved within a given number of node generations. Small horizontal error bars

mark 95% confidence intervals around the means. Depth-first search was limited to 10,000

nodes per problem, hence its mean is a lower bound. (In fact, Gomes et al. (2000) have

noted that the cost distribution of depth-first search on this problem is heavy-tailed and

seems to have essentially infinite mean!)

From the figure, we see that 25% of the problems were solved by visiting a single leaf (the

greedy solution). Depth-first search enumerates leaves very efficiently, but soon becomes

mired at the bottom of the tree. The discrepancy search algorithms immediately retreat

to the root and must visit many nodes before reaching another leaf. Indecision search first

explores all ties, which may occur at intermediate levels of tree. As the search progresses,

the algorithms biased toward discrepancies at the top seem to be paying a price, as their

progress comes in spurts. Indecision search makes more efficient use of its time, exhibiting a

smooth performance profile, and it solves all the problems within 4,000 nodes. The simple

variant seemed to perform identically to the plain version shown in the figure. Variants

that took the most expensive affordable child first (thus branching at the top first) also

performed similarly.

To test how important the later stages of indecision search are, we tested a hybrid

algorithm that first visits all leaves of cost zero (as in indecision search) and then carries

out the same ordering as ILDS, oblivious to the heuristic function. This hybrid algorithm

exhibits behavior similar to indecision search for the easiest 70% of problems, but then

exhibits the same longer tail as ILDS, taking over 20,000 nodes to solve the last problem.

This demonstrates that the later stages of indecision search are an important component

of its robustness and that it is not simply exploiting the leaves tied for zero cost.

100

Table 5.1: The number of nodes generated to solve latin square completion problems,
represented by the 95th percentile of the distribution across random instances.

n DFS Indec. ILDS DDS Indec. / ILDS

11 7,225 173 183 206 .945
13 888,909 284 303 357 .937
15 ∞ 427 621 642 .688
17 ∞ 621 1,047 1,176 .593
19 ∞ 871 1,609 1,852 .541
21 ∞ 1,339 2,812 3,077 .476

Similar behavior was observed on smaller instances, although the advantage of indecision

search over the discrepancy methods seemed to increase as problems grew larger. Table 5.1

summarizes these experiments by listing the 95th percentile of the distribution of nodes

generated by each algorithm. The rightmost column compares the performance of indecision

search and its nearest competitor, ILDS. (The superior variant of ILDS, that takes its

discrepancies at the bottom of tree first, is the one shown here.)

5.5.2 Binary CSPs

Binary CSPs are those in which all constraints refer to only two variables. This is a canonical

form for constraint satisfaction problems, as any problem can be made binary by introducing

additional variables. Binary CSPs have received much attention in the literature because it

is relatively easy to generate synthetic instances with known properties, allowing researchers

to test how algorithmic performance varies with different features of the problems.

Meseguer and Walsh (1998) used binary CSPs to evaluate depth-bounded discrepancy

search and interleaved depth-first search, testing on satisfiable problems of the 〈n,m, p1, p2〉

type. These problems have n variables, each with m possible values. Exactly p1n(n− 1)/2

of the possible pairs of variables are constrained and exactly p2m
2 of the possible value

101

Table 5.2: The number of nodes generated to solve 100 instances of binary CSPs in the
〈30, 15, .4, p2〉 class.

p2 quantile DFS S. Indec. Indec. ILDS DDS

.307 50% 40 99 102 60 96
95% 241 391 396 456 424

.320 50% 100 258 272 288 282
95% 1,119 884 1,094 1,122 1,115

.333 50% 520 878 912 933 2,044
95% 4,881 4,501 4,991 5,862 8,014

.347 50% 3,187 4,705 5,511 6,191 16,305
95% 42,025 28,294 33,155 30,996 100,387

.360 50% 24,214 49,672 33,324 38,108 141,290
95% 103,878 536,716 612,628 309,848 1,642,806

Table 5.3: The number of nodes generated to solve 100 instances of binary CSPs in the
〈50, 12, .2, p2〉 class.

p2 quantile DFS S. Indec. Indec. ILDS DDS

.306 50% 52 108 118 90 137
95% 164 320 296 358 408

.319 50% 63 188 204 237 373
95% 1,450 984 1,098 1,271 1,301

.333 50% 250 785 900 1,277 2,478
95% 3,156 3,410 3,942 6,389 12,790

.347 50% 1,646 4,173 5,099 4,663 26,277
95% 22,852 28,630 49,051 52,491 187,856

.361 50% 27,953 40,454 52,994 83,980 372,064
95% 352,788 387,432 463,774 554,036 3,546,588

combinations are disallowed for each of those pairs. As p2 increases from 0.25 toward 0.36,

the constraints become tighter and the problems become more difficult to solve, exposing

differences in performance between the algorithms. We will use the same heuristics we

employed above with latin squares.

As with latin squares, there is enormous variance in the number of nodes generated by

each algorithm within each set of 100 similar instances. We focus on the upper tail of the

distribution because it essentially controls the expected value. We avoid the maximum,

102

Table 5.4: The number of nodes generated to solve 100 instances of binary CSPs in the
〈100, 6, .06, p2〉 class.

p2 quantile DFS S. Indec. Indec. ILDS DDS

.306 50% 102 146 158 147 152
95% 110 676 858 646 826

.333 50% 110 336 514 770 1,490
95% 31,910 3,344 3,527 4,012 11,845

.361 50% 3,432 5,896 9,810 19,454 125,488
95% 208,112 70,664 62,118 127,712 2,048,320

as it is subject to sampling error. Tables 5.2 through 5.4 show both the median and the

95th percentile of each distribution. The results obtained for DFS, ILDS, and DDS were

consistent with those reported by Meseguer and Walsh, although the algorithms seem to

visit slightly more nodes, presumably because our heuristic is less accurate than the one

they use (Larrosa and Meseguer, 1995). At very low tightness, problems are easy and DFS

is sufficient. DFS always exhibits the best median performance, but as tightness increases

the tail of its distribution grows rapidly. Indecision search is either the best or within

25% of the best in every instance class except 〈30, 14, .4, .360〉.2 DDS seems to fare poorly.

Indecision search performs better on these problems than the discrepancy search algorithms.

Although its median is not as low as DFS’s, it is more robust and tends to have a lower

maximum search cost. Overall, the simpler variant seems to perform better than the plain.

This is presumably due to its different modeling assumption, in which the cost of a leaf is

the maximum cost of any child along its path rather than the sum of all children along the

path.

2This single poor performance seems to be due to inaccuracies when updating the cost bound—rather
than visiting twice as many nodes with each iteration, indecision search visits only a constant number more.
In practice, a simple mechanism to detect and correct such systematic mispredictions should be easy to
implement.

103

5.5.3 Time Overhead

Asymptotically, indecision search does not increase the complexity of a search. The ad-

ditional computation comes in two places: during the search and when updating the cost

bound. During the search, two computations must be done. The first is to calculate the

f(n) values for a node’s children. This is only a small constant number of additional in-

structions per child. The second operation at each node is to store the observed cost values.

For each observed value, this takes time logarithmic in the histogram size (for locating the

correct bucket to increment) and so is also constant as problem size increases.

Estimating the next cost bound is more difficult. Although histogram computations are

bounded by the square of the histogram size, the remaining allowance must be estimated

at each level of the tree, introducing a dependence on problem size. However, this is only

a linear dependence (in each of the maximum branching factor and number of variables),

and starting the search for a cost bound at a good initial value can reduce the number of

estimations required. The search among cost bounds can also be limited to a small constant

number of iterations.

An empirical analysis of an optimized implementation in terms of running time would

be useful. The main overhead seems to be convolution during leaf estimation, in particular

the adding together of the many slightly modified copies of the allowance distribution. On

the problem sizes investigated here, plain indecision search currently seems to take longer

than limited discrepancy search, although simple indecision search has almost no overhead

and runs very quickly.

In addition to optimizing the implementation, it would also be interesting to investigate

the sensitivity of the algorithms to accuracy parameters such as the maximum histogram

104

size. Informal experiments on small generic trees indicate that 50 bins give performance

equal to 100, which should allow a factor of four speed-up during bound estimation.

5.6 Related Work

Bedrax-Weiss (1999) has proposed an algorithm called weighted discrepancy search, based

on similar motivations. Her method is more ambitious and involves estimating the proba-

bility that a child’s subtree contains an optimal solution. (This requires training data from

previous similar problems.) Rather than using the raw heuristic scores, weighted discrep-

ancy search uses probabilities, which can presumably be combined more rationally across

levels. The algorithm assumes lognormal distributions of probabilities and attempts to pre-

compute a schedule of probability thresholds that will maximize the probability of finding

a goal given a particular time limit (and certain assumptions). Indecision search just uses

the difference in heuristic scores, assuming that they are comparable across levels, and at-

tempts to find good allowance values on-line. It would be very interesting to combine the

probabilistic framework of weighted discrepancy search with the on-line and non-parametric

modeling approach of indecision search. The work of Hansson and Mayer (1994) on learning

relations between heuristic scores and search costs may also be applicable. Accumulating

enough training data to support accurate probability estimates would appear to be the main

hurdle.

Along a similar vein, Ruml, Ginsburg, and Shieber (1999) used training examples to

estimate the probability that a subtree (characterized by real-valued features) contains a

solution, and then used that data to prune a tree search. In indecision search, the heuristic

directly provides the information necessary for backtracking, so no training problems are

105

needed.

Gomes, Selman, and Kautz (1998) and Gomes et al. (2000) have suggested a random-

ized restarting policy to avoid the poor performance of depth-first search. By randomly

reordering children that have very similar heuristic scores, they produce different search

trees on different runs. By frequently restarting the search from the beginning, they ex-

plore the closely ranked children. (A similar strategy is used in the GRASP procedure (Feo

and Resende, 1995).) One can view this technique as an ad hoc approximation to indecision

search. One would expect indecision search to perform better, as it does not throw away

information regarding close-scoring children. It also does not require manual tuning to set

a threshold value.

5.7 Possible Extensions

This work can be extended in a number of ways. While we have demonstrated indecision

search on constraint satisfaction problems, it should apply naturally to any tree-structured

search space that uses a quantitative heuristic. Many combinatorial optimization applica-

tions meet these criteria.

More generally, if the number of nodes one will have time to see is given ahead of time, it

might be possible to set the allowance early on in the search to yield exactly the number of

nodes we have time for. This would avoid regenerating portions of the tree, for an expected

speed-up of a factor of two.

106

5.8 Conclusions

We have introduced a new backtracking algorithm, indecision search, that attempts to

revisit first those nodes where the child-ordering heuristic function was least certain of its

ranking. The algorithm can be seen as a generalization of limited discrepancy search and

a simpler variant of it generalizes iterative broadening. Empirical results on the standard

benchmark problems of latin square completion and binary CSPs suggest that indecision

search visits fewer nodes than limited discrepancy search and depth-bounded discrepancy

search and has more robust worst-case performance than depth-first search. It successfully

adapts its behavior to the tree it finds itself in, taking advantage of information in the

heuristic values that other algorithms ignore.

Indecision search, while it will repeatedly regenerate nodes, is guaranteed to eventually

traverse the entire tree if necessary. (This is because the allowance must increase on every

pass.) However, the adaptive probing technique discussed in Chapter 3 was able to learn

its costs directly from an objective function on the leaves and did not require a quantitative

heuristic function. Although it was incomplete, it could be applied to any bounded-depth

tree search problem. In the next chapter, we will see how BLFS can combine the best

features of these two methods in a single algorithm.

107

Chapter 6

BLFS with On-line Learning

We present an instantiation of the best-leaf-first search framework in which

the cost model is learned on-line during the search. Using the separate action

cost model, this provides a complete and deterministic analogue of the adaptive

probing algorithm of Chapter 3. Empirical results show that this algorithm

is the best method yet devised for the combinatorial optimization problem of

number partitioning.

Adaptive probing buys its flexibility at the price of completeness. But the action cost

model that it learns can be considered a form of child preference information, of the kind

used by indecision search. The learning of actions costs performed by additive probing can

be done during each pass of an indecision search and these costs can be used to guide the

search instead of child scores. The result is a version of BLFS that represents a deterministic

and complete analogue of adaptive probing. This is a more complex realization of BLFS

than indecision search was, because we are now learning the parameters of the leaf cost

estimating function during the search itself. (In indecision search, we merely stipulated a

priori that the cost of a leaf was proportional to the sum of the normalized child scores,

rather than grounding the estimates in actual observed leaf values.)

108

BLFS(root)
1 Visit a few leaves
2 Initialize the model
3 Nodes-desired ← number of nodes visited so far
4 Loop until time runs out:
5 Double nodes-desired
6 Estimate cost bound that visits nodes-desired nodes
7 Make static copy of model
8 BLFS-expand(root, bound)
9 If entire tree was searched, return

BLFS-expand(node, bound)
10 If is-leaf(node)
11 Visit(node), updating model with leaf cost
12 else
13 For each child of node:
14 If best-completion(child) ≤ bound
15 BLFS-expand(child, bound)

Figure 6.1: Simplified pseudo-code for best-leaf-first search using on-line learning.

6.1 The Tree Model

We will first consider the same type of separate action cost model that we used with adaptive

probing, in which each child rank at a particular depth is assumed to correspond to the

same cost, and we learn the cost of each rank at each depth, for db parameters overall.

(Figure 3.2 on page 30 showed an example.)

Figure 6.1 sketches the pseudo code of BLFS, with additional steps in lines 2, 7, and 11

to account for on-line learning. Recall from our previous discussion of BLFS (Section 4.1)

that there are two main operations that must be supported by the tree model:

compute f(n): Given estimated action costs, predict the cost of the best leaf below a node.

This is straightforward for the separate action cost model. As the search descends the

tree, one can accumulate the cost of the actions chosen so far. A table of the costs of

the best possible completions from each level can be precomputed before each BLFS

109

iteration. Starting from the bottom of the tree, one selects the lowest cost action at

each level, accumulating the cost while working back up the tree. This yields, for a

node at any depth, the cost of the best possible subsequent sequence of actions. The

f value of a child node is then just the sum of the actions taken to the parent plus

the cost of the action associated with the child’s rank plus the best completion from

the next level of the tree.

estimate number of nodes within a cost bound: This estimation is easier than in in-

decision search because the costs of the children at each level do not depend on

observed heuristic scores but are instead fully known and given by the model. To

estimate the number of children we will take at nodes at each level, we need to know

the various possible sums of action costs we will have experienced up to that level.

We can then combine those with the action costs at this level and the cost of the

best completion from the following level to determine how many children will be ex-

panded and to derive the cost sums for the next level. We will maintain a histogram

of the action costs experienced so far. This is analogous to the allowance distribu-

tion used with indecision search, but progressing additively rather than subtractively

(recall Figure 5.3). We can initialize it at the root to a spike at zero. To compute

the distribution at the next level, we just create several shifted copies of the current

distribution, one for each child cost, to represent the path costs at the following level.

Each of these distributions is then truncated at a value corresponding to the given cost

bound, minus the best possible completion cost. Any child values that, when added

to the best completion cost, go over the bound will be pruned by the search and

should be discarded during estimation. The probability mass that survives this shift-

110

ing and truncation represents the expected number of children that will be expanded

at this level. To prepare for the next level, the distributions are added together and

renormalized to sum to one.

Given these estimates of the expected number of children at each level, we can use

the straightforward equations from Section 5.3 to compute the total number of nodes

in the resulting search tree.

Given a model which can estimate the number of nodes that will be visited for a given

cost bound, we will search over possible values of the bound until we find one which yields

the desired number of nodes. In the experiments reported below, we use a simple ‘bracket

and bisection’ approach (Press et al., 1992), although one could certainly imagine using

more sophisticated interpolation and learning schemes. To bracket the desired bound,

one can either use numerical approximations to ∞ and −∞ or, if the model can easily

compute them, the largest and smallest possible predicted costs. Since it is not important

to generate exactly the desired number of nodes, the search was terminated when a bound

yielded within 10% of the desired number, or more than desired but fewer than 150% more,

or after 10 bisections were carried out. The number of nodes in the entire search tree was

also estimated, and the largest possible bound was returned if more than the maximum

number of nodes was desired.

6.2 Evaluation

Two additional implementation details should be mentioned. The first concerns pruning.

As discussed in Section 5.3, the percentage of time that nodes at a given level were leaves

and thus did not give rise to children was recorded for each depth individually, and that

111

information was used to refine the estimated tree size for each given cost bound. This

information was not taken into account when computing the best completions, however—

it was assumed that actions must be chosen until the deepest tree level ever visited was

achieved. The alternative, weighting action costs by the probability that a level would be

reached, resulted in dramatic failures to reach leaves during early iterations, as the search

could not afford to progress beyond the middle of the tree. As an additional measure to

alleviate this problem, the search always expanded the best child of every internal node,

ensuring that an internal node would never be visited in vain but would always contribute

to updating the model.

The other detail concerns the learning rule. In adaptive probing, we used the basic

Widrow-Hoff update rule to learn the parameters of the model from the observed leaf costs.

In the experiments reported below, we use a slightly more sophisticated algorithm due to

Murata et al. (1997), which attempts to adjust the learning rate automatically. Standard

parameter settings were used, with no attempt to optimize them for each problem: initial

learning rate 0.2, meta-learning rate (α) 0.002, normalization factor (β) 20/(max ||r||),

leakiness (δ) 0.05, learning rate clamped between 0.001 and 1.9. (In informal tests using

random probing, this procedure seemed to give slightly better learning than plain Widrow-

Hoff or the K1 method proposed by Sutton (1992), although it is not clear if it made a

difference in the search results reported below.) To aid learning, we forced the learned costs

at each level of the tree to be very mildly increasing with child rank. In other words, we

assumed that the heuristic ordering function, while not necessarily very helpful, was not

deceptive. This was implemented by performing isotonic regression at each level in the

model before the start of each iteration.

We tested this BLFS version of adaptive probing on the number partitioning problem.

112

L
og

10
(D

if
fe

re
nc

e)

-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
Probing

ILDS
BLFS

DFS

Figure 6.2: Greedy partitioning of 128 numbers

In the experiments reported below, the model was initialized by probing into the tree 10

times, choosing a random child at every decision node.

6.2.1 Greedy Number Partitioning

The number partitioning problem was introduced in Section 3.3.3 (page 43). There are

two popular formulations of the problem as a tree search. The first is the straightforward

greedy encoding. Figures 6.2 and 6.3 compare the performance of BLFS with DFS, ILDS,

DDS, and the adaptive probing algorithm of Chapter 3, which guides search using a similar

learned cost model but is stochastic and incomplete. As usual, error bars in the figures

indicate 95% confidence intervals around the mean. Although BLFS does not surpass DFS

in this search space, it does seem to consistently track DFS as the problem size increases,

unlike ILDS and DDS, whose solution quality actually decreases on the larger problems.

113

L
og

10
(D

if
fe

re
nc

e)

-2

-4

-6

-8

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

DDS
ILDS

Probing
BLFS

DFS

Figure 6.3: Greedy partitioning of 256 numbers

6.2.2 CKK Number Partitioning

The second search space for number partitioning is the CKK representation, due to Korf

(1995). Figure 6.4 and 6.5 compare the performance of BLFS with DFS, ILDS, and DDS.

(Adaptive probing takes too long to learn to follow the powerful heuristic in this space

and would be off the top of both plots.) As in the greedy search space, BLFS successfully

adapts and tracks the performance of the best non-adaptive algorithm. In the greedy space,

this was DFS, while in the CKK space ILDS outperforms DFS. In fact, BLFS surpasses the

performance of ILDS as the problems get larger (Figure 6.5). For larger number partitioning

problems, BLFS in the CKK representation yields the best performance known.

114

L
og

10
(D

if
fe

re
nc

e)
-10.4

-10.8

-11.2

-11.6

-12.0

Nodes Generated
1,000,000800,000600,000400,000200,000

DDS
DFS

BLFS
ILDS

Figure 6.4: CKK representation for partitioning 128 numbers

L
og

10
(D

if
fe

re
nc

e)

-12.8

-13.2

-13.6

-14.0

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

DDS
DFS

ILDS
BLFS

Figure 6.5: CKK representation for partitioning 256 numbers

115

6.2.3 Time Overhead

Using BLFS with on-line learning does not change the time complexity of the search pro-

cess. Guiding the search requires only a constant-time table look-up to assess action costs.

Updating the model at a leaf is linear in the number of parameters, which is linear in the

number of problem variables. This is comparable to recording the best solution seen so far.

Empirically, the largest source of overhead is in updating the cost bound, just as it was

with indecision search. Propagating the distribution of allowance values down the tree is

linear in the number of parameters, because the histograms are bounded by a constant, but

can take significant time. The cost bound is updated a logarithmic number of times, so for

long runs this overhead will be negligible, but for the prototype implementation and run

lengths reported here the overhead consumed 20–30% of the total search time.

6.3 Integrating Multiple Sources of Information

So far, our models have exploited either heuristic child scores or leaf costs, but not both.

Child scores provide local information, as they are usually computed using information

pertaining only to the part of the problem under immediate consideration. For instance,

in a constraint satisfaction problem, the value that is involved in the fewest active con-

straints might be chosen without regard for its influence in later stages of the problem. In

the traveling salesman problem, the next city to visit might be selected according to the

nearest-neighbor heuristic. Leaf costs provide global information, as they depend on all of

the problem variables. They are the only source of guidance in many improvement-based

algorithms such as hill-climbing and simulated annealing. In this section, we will show how

the cost model of BLFS provides a convenient way to combine the two forms of information.

116

We will use a simple extension of the model used in indecision search in Chapter 5. In

that model, the heuristic scores for each child were normalized by subtracting the score of

the best child to produce a cost for choosing that child. If the child scores were c0, c1, . . .,

then child i had cost ci− c0. The cost of a leaf was either the sum of the costs of the nodes

along its path from the root or the maximum of these costs. We now extend the sum model

to include a separate weighting coefficient at each level of the tree. These weights will be

estimated during the search using the observed leaf costs, using the same on-line regression

method we used earlier in this chapter. The weights allow us to relax the assumption that

heuristic score differences are strictly comparable across levels of the tree. We will also

include an additional parameter into the model to serve as a constant term in the weighted

sum.

We can compare the performance of BLFS using the new weighted sum cost model with

its performance using the plain unweighted sum of normalized costs to see how helpful the

leaf cost information is in improving the model. We will also see BLFS with the cost model

explored earlier in this chapter, using only the leaf cost information to learn costs for each

child rank at each depth. This is different than the new model that uses heuristic scores

for two reasons: 1. the preferred child is not always free, and 2. the cost of a child at a

particular level is constant and does not depend on its heuristic score.

6.3.1 Evaluation

To allow easy comparison with the methods we discussed earlier in this chapter, we will

evaluate the new model on the problem of number partitioning. In particular, we will use

the greedy search space formulation in which each decision places the largest remaining

number into one of the partitions. The partition with the currently smaller sum is preferred

117

L
og

10
(D

if
fe

re
nc

e)
-5

-6

-7

Nodes Generated
500,000400,000300,000200,000100,000

BLFS: scores
BLFS: leaf costs
BLFS: wt. scores

DFS
ILDS

Figure 6.6: Performance on 64-number problems.

and the logarithm of the absolute difference between the partitions is used as the normalized

heuristic score of the second child. Clearly, it seems less sensible to place a number in the

currently larger partition the greater its sum is than that of its competitor. One might

reasonably expect a correlation between the current difference and the cost of the final

solution obtained.

Figures 6.6 through 6.8 present the performance of DFS, ILDS, and BLFS using the

three cost models we have discussed. ‘Scores’ refers to the original indecision search model

that only uses the heuristic child scores, ‘leaf costs’ refers to the model that only uses leaf

costs, and ‘wt. scores’ refers to the new model that uses both sources of information in a

weighted scores model. The performance of DDS is not shown, as it failed to surpass the

performance of random sampling on the 256-number problems. Random sampling is also

not shown, as it always performed worse than the remaining algorithms.

118

L
og

10
(D

if
fe

re
nc

e)
-4

-5

-6

-7

Nodes Generated
1,000,000800,000600,000400,000200,000

BLFS: scores
BLFS: leaf costs
BLFS: wt. scores

ILDS
DFS

Figure 6.7: Performance on 128-number problems.

L
og

10
(D

if
fe

re
nc

e)

-4

-5

-6

-7

-8

Nodes Generated
2,000,0001,600,0001,200,000800,000400,000

BLFS: scores
ILDS

BLFS: leaf costs
BLFS: wt. scores

DFS

Figure 6.8: Performance on 256-number problems.

119

The figures show that using the leaf cost information to learn weights for the heuristic

scores leads to a large improvement in performance over the unweighted use of the same

scores. However, the combined model does not seem to perform significantly better than

using leaf costs alone to estimate child costs.

The particular model we examined is just a simple example of the ease with which BLFS

allows multiple sources of information to be combined. Other models may lead to improved

performance. One obvious avenue for future work would be a model closer to the one that

only uses leaf costs. For instance, leaf cost could be predicted as the sum of child costs, each

of which is the sum of a weighted heuristic score (with the weight depending quadratically

on depth) and a constant (depending on depth and child rank).

6.4 Summary of Results

We have seen in this chapter that BLFS can successfully adapt to different search spaces,

even given only observed leaf costs. Different forms of heuristic information can be combined

in a principled way in the tree cost model and exploited for search. BLFS is more robust

than any other known algorithm, always performing competitively with or better than the

best previously known strategy for each of our benchmark domains. For cases in which

ILDS was the best method known, BLFS exhibited superior performance. For cases in

which DFS is the best method known, BLFS tracked its performance. Unlike DFS, BLFS

never exhibited pathological behavior such as taking orders of magnitude more time than

other algorithms.

The main drawback of BLFS seems to be its time overhead for bound estimation during

short runs. For domains in which many short runs will be performed, each on a similar prob-

120

lem, one way around this problem would be to reuse the cost model and its corresponding

bound estimates across problems.

6.5 Possible Extensions

We investigated five different tree models for use with BLFS:

plain indecision: the cost of a leaf is assumed proportional to the sum of the normalized

child scores along its path from the root.

simple indecision: the cost of a leaf is assumed proportional to the maximum of the

normalized child scores along its path from the root.

separate action costs: as in adaptive probing, each child rank at each depth is a separate

cost and the cost of a leaf is predicted as the sum of the costs along its path

quadratic action costs: all the children of a particular rank (e.g., all children ranked

second) have action costs which are a quadratic function of depth

weighted heuristic scores: the cost of a leaf is predicted as the weighted sum of the

heuristic scores of the nodes along its path, with a separate weight for each level in

the tree.

There is no reason why other models could not be tried. For instance, one might suppose

that the cost of an action at a given level was a linear function of two variables: the depth

and the score of that child. The coefficients on this linear function might be restricted to

being a quadratic function of depth. In this way, the quadratic action cost model could be

supplemented by child score information. Other possibilities include a multiplicative model,

121

which could easily be implemented by maintaining logarithms, or a model based on taking

the maximum cost along a path, as in the simpler variant of indecision search.1

By analyzing models that prove successful over multiple domains, it may be possible

to design useful new search algorithms. In domains where the on-line costs of adaptation

are too high, BLFS may still be useful to help select, diagnose, and tune a non-adaptive

method.

Child preferences and leaf costs are the two fundamental types of information available

during a tree search. A different type of information that is often exploited in optimization

problems is improvement advice, which suggests changes to complete solutions. The process

of evaluating and executing such changes amounts to a search in the graph of complete

solutions, a process known variously as improvement search, heuristic repair, or local search

(recall Section 1.1.4). These search spaces are sufficiently distinct from search trees that

we do not consider them in this thesis. It would certainly be interesting to explore how

improvement information might be used in conjunction with a tree search. One might

view the work on ‘squeaky wheel optimization’ of Joslin and Clements (1998) as pointing

in this direction. In that method, gradient information is used to influence a variable

choice heuristic. Neither of these forms of heuristic information is considered in the models

presented here.

It should also be straightforward to train multiple models, each of which is slightly

more complex than the one before, and guide the search using the simplest model until the

next most complex exhibits lower average prediction error across an entire iteration. The

simpler model can then be discarded, and the process could continue with the next more

complicated model.

1It may well be possible to modify Widrow-Hoff to learn a max model.

122

As we discussed in Section 4.3, it would also be interesting to extend the tree model

to explicitly include estimates of its uncertainty. When used with a known deadline, this

would allow active learning to reduce model uncertainty, even when the necessary actions

are not those that lead to the best solution in the near term.

123

Chapter 7

Conclusions

Adaptive tree search has enormous potential. This thesis has shown that adaptive methods

can be general, requiring no problem-specific information that is not already available;

efficient, adding no more than a constant factor to the complexity of a tree search; and

effective, solving problems as well or better than current methods and exhibiting much

more robust performance.

A simple adaptive probing algorithm demonstrated that it was possible to efficiently

learn a model of the distribution of leaf costs in the tree and, at the same time, exploit it

for search. Performance on several constraint satisfaction and combinatorial optimization

problems showed the algorithm to be exceptionally robust across both different types of

problems and different instances of the same type.

Best-leaf-first search (BLFS), a framework for complete adaptive search, uses an explicit

model of leaf costs and visits leaves in an efficient approximation of increasing predicted

cost. The cost model can be learned on-line during the search, enabling the algorithm to

approximate rational exploitation of heuristic information. All previous proposals for com-

plete tree search—including depth-first search, limited discrepancy search, depth-bounded

124

discrepancy search, and iterative broadening—are special cases of BLFS.

We investigated several different cost models for BLFS. The first two were based on the

scores assigned by a heuristic node ordering function. They led to excellent performance on

latin square completion and all but one class of binary constraint satisfaction problems. The

later models were based on on-line learning of action costs or score weights from leaf costs.

This approach led to the best results known for the combinatorial optimization problem of

number partitioning. BLFS often approached or surpassed the best previous method for

each problem class and it never exhibited the pathologically brittle behavior of DFS.

The explicit cost model of BLFS makes it clear that the assumptions made by iterative

broadening and the various discrepancy search algorithms are actually very rough approxi-

mations of f(n). Similarly, the use of child ordering in traditional depth-first branch-and-

bound search is a attempt to exploit the child score as a predictor of the leaf cost. BLFS

unites all of these techniques under the same conceptual umbrella, and makes it clearer how

one might go about designing more effective ways to leverage problem specific information

to improve search order. Adaptive probing and its BLFS analogue demonstrate how feature

weights for the f function can be learned on-line, allowing one to toss features into the pot

and see if they are actually found to be predictive.

This thesis shows how the application of core ideas from artificial intelligence about

exploiting heuristic information can make a significant contribution to problems at the core

of operations research. BLFS clarifies the relationship between combinatorial optimization

and shortest-path problems. The two problems are not fundamentally different—they can

both be solved by the same general approach of single-agent rationality. Only adversarial

search is a fundamentally different type of tree search, due to the introduction of a second

agent and the need for strategic reasoning.

125

7.1 Future Directions

Tree search using heuristic information remains a fundamental algorithmic problem in arti-

ficial intelligence and other areas of computer science and operations research. The adaptive

tree search methods that we have investigated are very general and should be applicable

to a wide variety of problems. The robustness of BLFS, as demonstrated on latin square

completion for example, may also allow reconsideration of problems previously thought in-

tractable. One interesting direction for future work is dynamic problem domains, in which

the underlying optimization problem changes during the search. An adaptive approach

should be able to adjust its search order on the fly to handle such disruptions.

This thesis emphasizes the central role that learning can play in a search process. The

flexibility of an adaptive approach reduces the chance that the algorithm’s assumptions will

lead to poor performance. This robustness raises the possibility that a tree search could be

reliably used to quickly find near-optimal solutions, a task that has traditionally been left to

improvement search algorithms. However, improvement search cannot take advantage of the

kinds of heuristic information that are often available during tree search. If robust tree-based

and improvement-based methods were both available, researchers would have the freedom to

use whichever search paradigm allowed the fullest exploitation of available heuristic domain

knowledge. This work takes an important step toward this goal. It remains to be seen,

however, if it might be possible to integrate the information that is typically provided to

these two types of algorithms. The view we have taken of tree search has emphasized

rational inference on the basis of acquired information. By making the assumptions of the

search explicit in a model of the tree, it becomes clear how to use the available information

to guide search. A similar approach may be helpful for improvement-based algorithms.

126

References

Abramson, Bruce. 1991. The Expected-Outcome Model of Two-Player Games. Pitman.

Baluja, Shumeet. 1997. Genetic algorithms and explicit search statistics. In Michael C.
Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in Neural Information
Processing Systems 9.

Baluja, Shumeet and Scott Davies. 1998. Fast probabilistic modeling for combinatorial
optimization. In Proceedings of AAAI-98.

Bedrax-Weiss, Tania. 1999. Optimal Search Protocols. Ph.D. thesis, University of Oregon,
Eugene, August.

Bishop, Christopher M. 1995. Neural Networks for Pattern Recognition. Oxford University
Press.

Boese, Kenneth D., Andrew B. Kahng, and Sudhakar Muddu. 1994. A new adaptive multi-
start technique for combinatorial global optimizations. Operations Research Letters,
16:101–113.

Boyan, Justin A. and Andrew W. Moore. 1998. Learning evaluation functions for global
optimization and boolean satisfiability. In Proceedings of AAAI-98.

Boyan, Justin A. and Andrew W. Moore. 2000. Learning evaluation functions to improve
optimization by local search. Journal of Machine Learning Research, 1:77–112.

Brélaz, Daniel. 1979. New methods to color the vertices of a graph. Communications of
the ACM, 22(4):251–256, April.

Bresina, John L. 1996. Heuristic-biased stochastic sampling. In Proceedings of AAAI-96,
pages 271–278. AAAI Press/MIT Press.

Cesa-Bianchi, Nicolò, Philip M. Long, and Manfred K. Warmuth. 1996. Worst-case
quadratic loss bounds for on-line prediction of linear functions by gradient descent.
IEEE Transactions on Neural Networks, 7(2):604–619.

Chu, Lon-Chan and Benjamin W. Wah. 1992. Band search: An efficient alternative to
guided depth-first search. In Proceedings of the Fourth International Conference on
Tools with Artificial Intelligence.

Crawford, James M. and Andrew B. Baker. 1994. Experimental results on the application
of satisfiability algorithms to scheduling problems. In Proceedings of AAAI-94, pages
1092–1097.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson. 1954. Solution of a large-scale
traveling-salesman problem. Operations Research, 2:393–410.

Dearden, Richard, Nir Friedman, and Stuart Russell. 1998. Bayesian q-learning. In Pro-
ceedings of AAAI-98, pages 761–768.

Dorigo, Marco and Luca Maria Gambardella. 1997. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66.

127

Euler, Leonhard. 1759. Solution d’une question curieuse qui ne paroit soumise à aucune
analyse. Mem. Acad. Sci. Berlin, 15:310–337.

Feo, T. A. and M. G. C. Resende. 1995. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133.

Garey, Michael R. and David S. Johnson. 1991. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York.

Geelen, P. A. 1992. Dual viewpoint heuristics for binary constraint satisfaction problems.
In B. Neumann, editor, Proceedings of ECAI-92, pages 31–35.

Gent, Ian P. and Toby Walsh. 1996. Phase transitions and annealed theories: Number
partitioning as a case study. In Proceedings of ECAI-96.

Ginsberg, Matthew L. and William D. Harvey. 1992. Iterative broadening. Artificial
Intelligence, 55:367–383.

Gomes, Carla P. and Bart Selman. 1997. Problem structure in the presence of perturba-
tions. In Proceedings of AAAI-97, pages 221–226.

Gomes, Carla P., Bart Selman, Nuno Crato, and Henry Kautz. 2000. Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems. Journal of Automated
Reasoning, 24:67–100.

Gomes, Carla P., Bart Selman, and Henry Kautz. 1998. Boosting combinatorial search
through randomization. In Proceedings of AAAI-98.

Hansson, Othar. 1998. Bayesian Problem-Solving Applied to Scheduling. Ph.D. thesis,
University of California, Berkeley.

Hansson, Othar and Andrew Mayer. 1994. DTS: A decision-theoretic scheduler for space
telescope applications. In Monte Zweben and Mark S. Fox, editors, Intelligent Schedul-
ing. Morgan Kaufmann, San Francisco, chapter 13, pages 371–388.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions of Systems Science and
Cybernetics, SSC-4(2):100–107, July.

Harvey, William D. and Matthew L. Ginsberg. 1995. Limited discrepancy search. In
Proceedings of IJCAI-95, pages 607–613. Morgan Kaufmann.

Herodotus. 440 BC. Histories. Book II.

Horvitz, Eric, Yongshao Ruan, Carla Gomes, Henry Kautz, Bart Selman, and Max Chicker-
ing. 2001. A bayesian approach to tackling hard computational problems. In Proceedings
of UAI-01.

Johnson, David S., Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. 1991. Op-
timization by simulated annealing: An experimental evaluation; Part II, graph coloring
and number partitioning. Operations Research, 39(3):378–406, May-June.

128

Joslin, David E. and David P. Clements. 1998. “Squeaky wheel” optimization. In Proceed-
ings of AAAI-98, pages 340–346. MIT Press.

Juillé, Hughes and Jordan B. Pollack. 1998. A sampling-based heuristic for tree search
applied to grammar induction. In Proceedings of AAAI-98, pages 776–783. MIT Press.

Karmarkar, Narenda and Richard M. Karp. 1982. The differencing method of set parti-
tioning. Technical Report UCB/CSD 82/113, Computer Science Division, University of
California, Berkeley.

Karmarkar, Narenda, Richard M. Karp, George S. Lueker, and Andrew M. Odlyzko. 1986.
Probabilistic analysis of optimum partitioning. Journal of Applied Probability, 23:626–
645.

Korf, Richard E. 1985. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109.

Korf, Richard E. 1990. Real-time heuristic search. Artificial Intelligence, 42:189–211.

Korf, Richard E. 1993. Linear-space best-first search. Artificial Intelligence, 62:41–78.

Korf, Richard E. 1995. From approximate to optimal solutions: A case study of number
partitioning. In Proceedings of IJCAI-95.

Korf, Richard E. 1996. Improved limited discrepancy search. In Proceedings of AAAI-96,
pages 286–291. MIT Press.

Lagoudakis, Michail G. and Michael L. Littman. 2001. Learning to select branching rules
in the DPLL procedure for satisfiability. Electronic Notes in Discrete Mathematics, 9,
June. LICS 2001 Workshop on Theory and Applications of Satisfiability Testing (SAT
2001).

Larrosa, Javier and Pedro Meseguer. 1995. Optimization-based heuristics for maximal
constraint satisfaction. In Proceedings of CP-95, pages 103–120.

Luger, George F. and William A. Stubblefield. 1998. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving. Addison Wesley Longman, third edition.

Mayer, Andrew Eric. 1994. Rational Search. Ph.D. thesis, University of California, Berke-
ley, December.

Meseguer, Pedro. 1997. Interleaved depth-first search. In Proceedings of IJCAI-97, pages
1382–1387.

Meseguer, Pedro and Toby Walsh. 1998. Interleaved and discrepancy based search. In
Proceedings of ECAI-98.

Murata, Noboru, Klaus-Robert Müller, Andreas Ziehe, and Shun-ichi Amari. 1997. Adap-
tive on-line learning in changing environments. In Michael Mozer, Michael Jordan,
and Thomas Petsche, editors, Advances in Neural Information Processing Systems 9
(NIPS-96), pages 599–605. MIT Press.

129

Nilsson, Nils J. 1998. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San
Francisco, CA.

Pearl, Judea. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Poole, David, Alan Mackworth, and Randy Goebel. 1998. Computational Intelligence: A
Logical Approach. Oxford University Press.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 1992.
Numerical Recipes in C. Cambridge University Press, second edition.

Ruml, Wheeler. 2001a. Incomplete tree search using adaptive probing. In Proceedings of
IJCAI-01, pages 235–241.

Ruml, Wheeler. 2001b. Stochastic tree search: Where to put the randomness? In Hol-
ger H. Hoos and Thomas G. Stützle, editors, Proceedings of the IJCAI-01 Workshop on
Stochastic Search, pages 43–47.

Ruml, Wheeler. 2001c. Using prior knowledge with adaptive probing. In Carla Gomes and
Toby Walsh, editors, Proceedings of the 2001 AAAI Fall Symposium on Using Uncer-
tainity Within Computation, pages 116–120. AAAI Technical Report FS-01-04.

Ruml, Wheeler, Adam Ginsburg, and Stuart M. Shieber. 1999. Speculative pruning for
boolean satisfiability. Technical Report 99-02, Harvard University.

Russell, Stuart and Eric Wefald. 1991. Do the Right Thing: Studies in Limited Rationality.
MIT Press.

Sutton, Richard S. 1992. Gain adaptation beats least squares? In Proceedings of the
Seventh Yale Workshop on Adaptive and Learning Systems, pages 161–166.

Wah, Benjamin W. and Yi Shang. 1995. Comparison and evaluation of a class of IDA* al-
gorithms. International Journal on Artificial Intelligence Tools, 3(4):493–523, October.

Walsh, Toby. 1997. Depth-bounded discrepancy search. In Proceedings of IJCAI-97.

Wyatt, Jeremy. 1997. Exploration and Inference in Learning from Reinforcement. Ph.D.
thesis, University of Edinburgh.

Zhang, Wei and Thomas G. Dietterich. 1995. A reinforcement learning approach to job-
shop scheduling. In Proceedings IJCAI-95.

Zhang, Weixiong and Richard E. Korf. 1993. Depth-first vs. best-first search: New results.
In Proceedings of AAAI-93, pages 769–775.

Zilberstein, Shlomo, François Charpillet, and Phillippe Chassaing. 1999. Real-time
problem-solving with contract algorithms. In Proceedings of IJCAI-99, pages 1008–
1013.

130

This appended page exists solely as a result of formatting bugs. It is not part of the

thesis.

131

