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ABSTRACT

HEURISTIC SEARCH UNDER TIME AND QUALITY BOUNDS

by

Jordan Tyler Thayer
University of New Hampshire, May, 2012

Intelligence is difficult to formally define, but one of its hallmarks is the ability find

a solution to a novel problem. Therefor it makes good sense that heuristic search is a

foundational topic in artificial intelligence. In this context “search” refers to the process of

finding a solution to the problem by considering a large, possibly infinite, set of potential

plans of action. “Heuristic” refers to a rule of thumb or a guiding, if not always accurate,

principle. Heuristic search describes a family of techniques which consider members of the

set of potential plans of action in turn, as determined by the heuristic, until a suitable

solution to the problem is discovered.

This work is concerned primarily with suboptimal heuristic search algorithms. These

algorithms are not inherently flawed, but they are suboptimal in the sense that the plans

that they return may be more expensive than a least cost, or optimal, plan for the problem.

While suboptimal heuristic search algorithms may not return least cost solutions to the

problem, they are often far faster than their optimal counterparts, making them more

attractive for many applications.

The thesis of this dissertation is that the performance of suboptimal search

algorithms can be improved by taking advantage of information that, while

widely available, has been overlooked. In particular, we will see how estimates of

the length of a plan, estimates of plan cost that do not err on the side of caution, and

measurements of the accuracy of our estimators can be used to improve the performance of

suboptimal heuristic search algorithms.

xxi



CHAPTER 1

INTRODUCTION

The focus of this dissertation is heuristic search, so we begin with a description of the tech-

nique aided by a simple example. Then we discuss some of the most basic techniques for

systematic heuristic search before providing an outline of the dissertation and its contribu-

tions.

1.1 A Simple Example

Search is a technique used to automatically find solutions to a wide variety of problems

ranging from finding high quality alignments for sequences [82] of DNA to automatically

driving an automobile [38]. The following example is most like finding a path for a character

in a video game, another popular use of heuristic search algorithms [7].

Although the kinds of problems that can be solved by heuristic search are very different

from one another, they do share several important features. Typically, the problems can

be described by some initial configuration, or state, some goal state, or set of goal states,

and a set of actions which can convert one state into another. Heuristic search algorithms

then systematically consider plans until they find one which converts the initial state into

the goal state.

Figure 1-1 shows a simple problem that can be solved with heuristic search: pathfinding

in a four-connected grid. We have an agent in the starting state, the lower left hand corner

of the grid labeled “Start”, and they would like to be in the upper right hand cell of the

grid labeled “Goal”.
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Figure 1-1: Starting State

Figure 1-1 is filling several roles. It shows us an entire problem, it shows us a possible

configuration of the world, the initial configuration or starting state, and it shows an in-

complete solution to the problem. In particular, it shows the partial solution in which we

take no action. We will be referring to a partial solution under consideration by a search

algorithm as a node.

It is important to differentiate between a state and a node. A state is simply a config-

uration of the world, for example the stick figure in the upper right hand cell. A node is

both a configuration of the world and the path by which it was reached. This will become

important later on, especially in Chapter 5, when we discuss how to handle the situation in

which a search algorithm reaches the same state by multiple paths, resulting in two nodes

representing the same configuration of the world.

Figure 1-2 shows the actions available to us in the initial state shown in Figure 1-1.

From this state, we might move to the north, or we might move to the east. Taking either

of these actions would result in a new state, one in which the agent was one cell north of

the start and one where the agent was one cell east respectively.

2



Figure 1-2: Actions

Figure 1-3: Search Tree
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Figure 1-4: Search Tree

When a search algorithm selects a node and considers adding actions to the partial

solution it represents, we say that the search has expanded that node. A single expansion is

shown in Figure 1-3. We see the initial search node, often called the root, generating two

successor, or child, nodes. The search state is shown, and the path by which the state was

achieved is drawn in red. As we’ve shown here, an expansion considers applying all legal

actions to the end of the current plan represented by the parent node. There are techniques

which consider only applying a subset of the available actions [81] and those which consider

inserting actions at places other than the end of a partial solution [40], however in this

dissertation we will focus on algorithms that consider adding all legal actions to the end of

a partial plan.

Figure 1-4 shows another pair of expansions on the nodes generated by the expansion of

the root, shown in Figure 1-3. It shows a couple of interesting features of heuristic search.

We should first note that two of the grand-children of the root are plans which take us from

the starting state back to the starting state. Paying attention to such duplicate states in

search is important for performance.
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Figure 1-5: Solved Problem

We can also see that the search basically creates a tree of possible plans for solving the

problem in question. We can think about a heuristic search algorithm as inducing a tree

over the problem, where each branch of the tree represents an action and each element of

the tree is a state of the problem. A path from the root of the tree to a goal state represents

a solution to the problem, shown in Figure 1-5.

1.2 Basic Search Strategies

It is important to note that trees like the one shown in Figure 1-4 get very large very quickly.

The study of heuristic search is in part concerned with techniques for efficiently constructing

and navigating these large trees. We now discuss three of the most basic methods for

heuristic search. The first two are optimal search algorithms. They are optimal in the sense

that they return cost-optimal solutions to the problem should one exist. The last algorithm

we will discuss in this section is a suboptimal search algorithm which provides no guarantee

on solution cost relative to optimal.
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UniformCostSearch(root)

1. open← {root}

2. while open 6= {}

3. let n = argminn∈open g(n) in

4. if goalp(n)

5. then return n

6. else open← open− {n}

7. for each child c of n, open← open ∪ {c}

8. return no solution

Figure 1-6: Uniform Cost Search Pseudo Code

1.2.1 Uniform Cost Search

Uniform cost search is one of the simplest techniques for finding optimal cost solutions to

problems. It works by systematically considering potential solutions in order of increasing

cost until a goal is found. Pseudo code for the algorithm is presented in Figure 1-6.

On line 1, we initialize the open list of uniform cost search to contain the initial node,

the root.The open list is simply a collection of all nodes being considered by the search

currently. As we see in line 2 , search proceeds so long as there are plans that have yet to

be considered. Sometimes a node may have no children, that is there are no legal actions

to append to the partial plan. Other times, a node may only generate children with states

that the search has already encountered by a better path, in which case those children are

discarded1. If no nodes are left for consideration, the search algorithm has exhausted the

space, showing that there is no solution to the problem. The ability of a search algorithm

to always find a solution to a problem should one exist and correctly report that a problem

1The pseudo code in Figure 1-6 doesn’t include duplicate detection. It would be performed on line 7. We

will cover duplicate detection in detail in Chapter 5.
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Figure 1-7: Expansion Order of Uniform Cost Search on a Pathfinding Problem

has no solutions when it does not is called completeness.

On line 3 of Figure 1-6, we select the cheapest potential solution for consideration.

Specifically we select the node with the smallest g-value from the open list. g(n) simply

tells us what the cost of executing the partial, or complete in the case of a node with a goal

state, solution represented by a node is. There may actually be many nodes which share

the smallest g-value, so strictly speaking the pseudo code is wrong. Tie-breaking is actually

a very important part of a heuristic search algorithm, and can have a large impact on the

performance of search algorithms [44, 68]. In the case of uniform cost search, breaking ties

arbitrarily or in a first in first out order are both reasonable strategies.

Figure 1-7 shows the order in which uniform cost search considers nodes on a pathfinding

problem of the variety we considered in Figure 1-1, albeit on a slightly larger scale. In this

problem, the start state is in the middle of the left-hand side of the grid (near the yellow

cells) and the goal is on the right-hand side (near the red cells), also in the middle. If a

cell is black, it was an obstacle in the search, a place where the agent couldn’t move. If

the cell is white, the agent could have moved into it, but the agent never considered a plan

7



moving through there. If a state was part of a plan considered by the search, then it is

colored according to when the search considered it. If the state was considered early on, it

is colored in yellow. As time progresses, the color of the cell becomes redder.

We can see that uniform cost search considers the nodes in a circular pattern, radiating

outwards from the start state in the center left. Cells with approximately the same color

were reached at about the same time by the search, and therefore have about the same cost.

The reason that cost radiates almost evenly outward from the start state is that actions

in this domain all have identical cost. If the actions had different costs, the expansion

order would be quite different. Paying attention to action cost can be a determining factor

in getting good performance out of heuristic search algorithms and is a topic that this

dissertation will return to frequently.

1.2.2 A*

There is something particularly unsatisfying about the expansion order of uniform cost

search as seen in Figure 1-7. The search algorithm considers paths going through many

states which we can clearly see are not good choices. If the goal is to move through the

grid from center-left to center-right, it makes little sense to consider states in the upper or

lower left-hand corners. Certainly, we may need to consider them, what if the only solution

to the problem was through there, but it is unsatisfying to see them considered so early on.

Our intuition about which states should and shouldn’t be expanded by a search is more

formally called a heuristic. There are many sources of heuristic information that can be

brought to bare when solving a problem, this is the primary focus of Chapter I. One of the

simplest, and probably most widely used, techniques for constructing heuristics for search

is that of solving a relaxed version of the problem.

Relaxing a problem means that we ignore all of the interesting parts that made it difficult

to solve in the first place. In the case of a pathfinding problem, we make the unrealistic

assumption that no obstacles exist, and then we compute the cost of a path from the state

being considered to the goal. An example of this for the starting state shown in Figure 1-1
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Figure 1-8: An Example Heuristic

is shown in Figure 1-8. Often we don’t need search to construct the solution to a relaxed

problem. As we can see for these grid navigation problems, the sum of the horizontal

and vertical displacement of the current state from the goal state gives the exact cost of an

optimal path from the state to the goal assuming no obstacles. This is called the Manhattan

distance heuristic.

The pseudo code in Figure 1-9 shows a best-first search algorithm like uniform cost search

modified to take a heuristic evaluation function into account. In fact the pseudo code is

identical to that presented in Figure 1-6 but for a small change in line 3. Previously, nodes

were selected for having the smallest g-value, the smallest costing partial solution. This

algorithm augments that by considering not only the cost of the current partial solution,

but a heuristic estimate of the cost of completing that solution, h(n). This is the A∗ search

algorithm.

Figure 1-10 shows the expansion order of A∗ on the same problem as we saw in Figure 1-

7. We can clearly see the influence of the heuristic on the search algorithm. The heuristic

prevents us from exploring portions of the space that we recognize as unpromising which

9



A∗(root)

1. open← {root}

2. while open 6= {}

3. let n = argminn∈open f(n) = g(n) + h(n) in

4. if goalp(n)

5. then return n

6. else open← open− {n}

7. for each child c of n, open← open ∪ {c}

8. return no solution

Figure 1-9: A* Search Pseudo Code

Figure 1-10: Expansion Order of A* Search on a Pathfinding Problem
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produces the flame-like search order seen in the visualization.

A∗[45] search is a heuristic search algorithm that, like uniform cost search, produces

optimal cost solutions to a problem should one exist, provided the heuristic is admissible.

Admissible heuristics always underestimate the true cost-to-go from the state on which they

are computed to the goal. A formal proof of the cost-optimality of solutions returned by

A* can be found in either [45] or [43], but the core of the argument is as follows. If h(n)

is an underestimate of the cost-to-go, then f(n) = g(n) + h(n) must be an underestimate

of the total cost of a solution through n. If we evaluate nodes in order of increasing f(n),

then when we do encounter a solution it will have an estimated total cost no greater than

any other potential solution to the problem, and thus be cost-optimal.

While admissible heuristics are very useful for proving that a solution is cost-optimal,

or that it has cost within some bounded factor of the cost of an optimal solution as we will

see in Chapter 5, there is nothing inherently wrong with inadmissible heuristics, that is,

heuristics which may potentially overestimate the cost-to-go from a state to the goal. Part

of Chapter I focuses on constructing powerful inadmissible heuristics, and in Chapter 5

and on we will see that inadmissible heuristics can be used to improve search performance

substantially.

1.2.3 Pure Heuristic Search

We’ve been talking about optimal heuristic search algorithms, but the focus of this work is

suboptimal search algorithms. Greedy search [16], sometimes called pure heuristic search is

the simplest suboptimal heuristic search algorithm. Pseudo code is presented in Figure 1-

11. Again, the primary difference between greedy search and the previous two algorithms is

in line 3, where we determine the order in which nodes are considered by search. In greedy

search, we only consider the cost-to-go heuristic, hence the name “pure heuristic search”.

The order in which greedy search expands nodes is shown in Figure 1-12. In comparison

to the previous two algorithms, greedy search expands very few nodes, proceeding nearly

directly from the start to the goal. Unlike uniform cost search and A*, greedy search

11



A∗(root)

1. open← {root}

2. while open 6= {}

3. let n = argminn∈open h(n) in

4. if goalp(n)

5. then return n

6. else open← open− {n}

7. for each child c of n, open← open ∪ {c}

8. return no solution

Figure 1-11: Greedy Search Pseudo Code

Figure 1-12: Expansion Order of Greedy Search on a Pathfinding Problem
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provides no guarantee on the cost of the solution it returns relative to optimal. Since it

provides no guarantees, it does not spend any time considering solutions which may, in total

be cheaper. It simply pursues the cheapest-to-complete solution in an effort to be fast. As

we will later see in Chapters I and 5, pursuing solutions with low estimated cost-to-go is

not the best approach to solving problems quickly, we should instead pursue solutions with

few estimated actions-to-go.

1.3 Outline and Contributions of Dissertation

Optimal heuristic search is a well understood part of the artificial intelligence landscape.

There are many algorithms for the optimal search setting that are well understood. More

specifically, they are well understood both empirically, that is in terms of what the perfor-

mance trade offs between the algorithms are, and they are well understood theoretically. We

know what information the algorithms can rely, ie admissible heuristics, and we know how

to derive powerful forms of that information directly from the description of the problem.

Further, we know under what conditions which algorithms are guaranteed to be efficient

and under what conditions they are likely to be inefficient.

The theoretical understanding of optimal search is the motivation of this work. While

optimal search enjoys a well established theory, and the insight and improved algorithms

that such an understanding brings, there is still no theory of suboptimal search. We do

not have a listing of the sources of information that suboptimal search may find helpful,

nor do we have a solid understanding of how these sources of information may be derived

directly from the problem. Beyond reasoning backwards from empirical results, the field of

suboptimal search has very little to say about the reasons why our algorithms perform well

or poorly.

This dissertation is, hopefully, the beginning of such a foundation for the theory of

suboptimal heuristic search. The dissertation falls roughly into two parts. In the first, we

will discuss several kinds of information useful for suboptimal search algorithms and show
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how to construct these sources of information from the problem being solved. In the second,

we will discuss suboptimal search settings and algorithms. In particular, we will show how

relying on the sources of information constructed in the first portion of the dissertation lead

to improved performance for suboptimal search. We will discuss a variety of suboptimal

search settings: bounded suboptimal search, bounded cost search, and anytime search will

be discussed in great detail, while other settings such as pure heuristic search and beam

search will receive less attention.

The following provides a summary of the contents of each chapter, as well as its contri-

butions to the field.

1.3.1 Estimating Actions-to-go

In this chapter, we discuss the construction of heuristics estimating the number of actions-

to-go between a state and the goal. Actions-to-go estimates have appeared several times

throughout the history of suboptimal search [43, 20], however they are not as commonly

discussed as estimates of cost-to-go. The reasons for this are twofold. First, cost-to-go

heuristics are needed for any search algorithm that wants to provide guarantees about the

cost of a solution, either absolutely or relative to optimal cost. Secondly, many domains,

particularly the puzzle-like domains frequently used by the heuristic search community.

There, estimating cost-to-go is identical to estimating actions-to-go.

The chapter serves a second role, namely it provides a detailed description of the domains

used for evaluation throughout the rest of the dissertation. In addition to discussing the way

in which the actions-to-go estimates are computed, we will also discuss how the admissible

cost-to-go estimates are constructed, as well as other interesting aspects of the problems

such as average branching factor and the number of goal states. Such features play a large

role in determining the performance of the search strategies discussed in the latter half of

the dissertation.

14



1.3.2 Constructing Inadmissible Estimates by Hand

In this chapter, we will discuss the simplest technique for constructing inadmissible estimates

of cost-to-go, namely constructing them by hand using insight into the domain. We will

discuss three general techniques for building inadmissible heuristics: book keeping while

computing the admissible heuristic, taking the midpoint of an under-estimate and over-

estimate, and combining multiple heuristics in potentially inadmissible ways.

While we know very well how to construct admissible heuristics from the description

of a problem, the construction of effective inadmissible estimates is more of an art, having

no formulaic approach like those enjoyed by admissible heuristics. The contribution of

this chapter is to provide an outline for three general ways of constructing inadmissible

heuristics from the description of a problem. The approaches here are not as automatic

as those for constructing admissible heuristics, but they share many parallels with the

automated construction of admissible heuristics.

1.3.3 Learning Inadmissible Estimates

This chapter discusses three techniques for constructing inadmissible estimates of cost and

actions-to-go automatically using techniques from machine learning. We will look at three

times when learning could produce an improved inadmissible estimate: before any search

takes place, in between solving problems, and during the solving of a single instance. The

latter of these is a major contribution of this dissertation to the field. Specifically, the idea

that the search should inform the heuristic just as the heuristic informs the search is very

important.

While the inadmissible estimates computed in the previous chapter require some amount

of human ingenuity, those discussed in this chapter do not. Further, the heuristics con-

tributed by this dissertation, those learned online, during search, have several desirable

properties that their forerunners lacked. Namely, they do not require a large set of homo-

geneous instances to work, and they can learn corrections tailored to a specific instance of
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a problem without impacting performance on other instances from the same domain.

Further, the online heuristic learning could easily be used on top of the offline or in-

terleaved learning approaches to improve the quality of already strong heuristics. The

online correction techniques presented in this chapter make no strong assumptions about

the properties, so there is no reason that they can’t be used on top of previous techniques

for constructing powerful heuristics before or in between searches.

1.3.4 Bounded Suboptimal Search

This chapter begins the second half of the dissertation wherein we discuss suboptimal heuris-

tic search strategies. In this chapter, we will discuss bounded suboptimal heuristic search.

These algorithms return solutions that are guaranteed to have cost within a bounded fac-

tor of the optimal solution cost to the problem. The chapter contains a definition of the

problem of bounded suboptimal search and a lengthy discussion of many, if not all, of the

algorithms for this problem setting.

This chapter contains three major contributions to the field of heuristic search: a def-

inition of the goal of bounded suboptimal heuristic search, the explicit estimation search

algorithm, and a study of much of the previous work in the area of bounded suboptimal

search. The study of previous work is broken into two parts, an empirical evaluation of

the algorithms on a wide set of benchmark domains and a more theoretical evaluation of

the algorithms on a set of explicit graphs. The empirical evaluation shows that Explicit

Estimation Search is generally faster and more robust than previous approaches, and the

theoretical evaluation explains that this is the result of actually attempting to solve the

problem of search under a suboptimality bound directly.

The problem definition and the theoretical evaluation hopefully are the beginnings of

a theory of suboptimal search. Having a formal definition of the desired performance of

algorithms, a concept of optimal behavior for bounded suboptimal search, is necessary for

forming a theoretical foundation for the area.

16



1.3.5 Bounded Cost Search

This chapter investigates a relatively new setting for suboptimal heuristic search. Unlike

algorithms in the previous chapter, which return solutions within a bounded factor of the

optimal cost solution, these algorithms seek to find any solution beneath a user-supplied cost

bound C as quickly as possible. The main contribution of this chapter are a bounded-cost

variant of the Explicit Estimation Search algorithm unimaginatively called Bounded-cost

Explicit Estimation Search, or BEES. The construction of BEES shows that the approach

taken when constructing explicit estimation search can be applied effectively to a range of

other settings.

1.3.6 Anytime Search

This chapter investigates the anytime search setting, in which search algorithms must find

the best possible solution within an unknown time. In this chapter, we present a study

of many algorithms for the anytime search setting. In particular, we look at three general

frameworks for converting bounded suboptimal search algorithms into anytime algorithms.

We examine the bounded suboptimal search algorithms presented in the earlier chapter

within these frameworks.

When originally published, the study of frameworks and bounded suboptimal search

algorithms was the first of its kind. The d-Fenestration algorithm presented here was an

original contribution, although in the end it turned out the algorithm was not particularly

competitive with other previously proposed work. Anytime Explicit Estimation Search,

AEES, is another major contribution of this work. AEES is to anytime search what BEES

is to bounded cost search: an application of the ideas that gave rise to EES to the problem

of anytime heuristic search.
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1.3.7 Summary

This dissertation attempts to lay the groundwork for a theoretical understanding of the area

of suboptimal heuristic search algorithms. Such and understanding is important because

it allows us to predict when suboptimal search algorithms will work well and when they

will work poorly. A theory of bounded suboptimal search necessarily includes a formal

definition of the problems solved using suboptimal search methods. Further, it requires an

understanding of the kinds of information useful to suboptimal search and then techniques

for constructing this information. Finally, it needs a set of baseline algorithms designed to

solve the various problems that were previously laid out.
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As we previously noted, heuristic search is a widespread approach to automated planning

and problem solving. If time and memory permit, we can use algorithms such as A* [23] to

find solutions of minimal cost. These algorithms require an admissible heuristic evaluation

function, that is, a heuristic which never over-estimates the true cost-to-go from a node to

a goal. Under mild assumptions it can be shown that no similarly informed algorithm can

find provably optimal solutions while performing less work than A* [14]. Unfortunately,

problems are often too large and deadlines are often too short for finding provably optimal

solutions [25]. When optimally solving a problem is impractical, suboptimal search can

be a practical alternative. Suboptimal search algorithms sacrifice solution optimality in an

attempt to reduce the resources needed for solving problems.

In this dissertation, I will be talking about four varieties of suboptimal search: greedy

best-first search algorithms, bounded suboptimal search algorithms, bounded cost search

algorithms, and anytime search algorithms. While all four algorithms solve slightly different

problems and are tailored towards different applications of suboptimal heuristic search, they

do have at least one common point: they can consider inadmissible sources of heuristic

guidance without sacrificing whatever guarantees about the solution they already provide.

Greedy search provides no guarantees, so this is trivial, and we will discuss how to make

use of inadmissible cost-to-go estimates in bounded suboptimal, bounded cost, and anytime

search without losing guarantees of bounded suboptimality, bounded cost, and convergence

to an optimal solution in Chapters 5, 6, and 7.

The chapters in this section of the dissertation investigate ways of constructing poten-

tially inadmissible heuristics to guide search. We look at three sources of heuristic guidance:

estimates of actions-to-go, hand crafted inadmissible cost-to-go estimates, and estimates

constructed by automated learning techniques. These heuristics all have differing sources,

and even slightly different applications in the case of actions-to-go estimates and cost-to-go

estimates.

Estimates of actions-to-go may be inadmissible because there are many domains where

actions may have cost less than 1, one of example of this is a TSP problem laid out on a
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unit square. The distance between the towns is a number that must be larger than 0 but

less than
√
2. There are many values in that range with cost less than 1. In Section 2, we

will discuss ways of constructing distance-to-go estimates for all of the problems considered

in this dissertation. We will additionally be discussing the construction of the cost-to-go

heuristics of the domains as well as other interesting properties of these domains, such as

average branching factor and the number of potential solutions to a problem.

Anyone who has taught an introductory course in artificial intelligence can attest to the

ease of constructing an inadmissible estimate of cost-to-go by hand. Even when asked to

produce an admissible heuristic, many students will produce inadmissible heuristics because

they are more in line with the non-technical definition of a heuristic: a general rule that

may occasionally be violated. In Section 3, we will discuss techniques for constructing

inadmissible estimates of cost-to-go by hand.

Finally, we consider learning as way to construct these inadmissible estimates of cost-to-

go in Section 4. There are three possible settings where inadmissible estimates of cost-to-go

can be learned automatically from data: before any search begins, interleaved with the

solving of many instances, and during the solving of a single instance. We will discuss all

three approaches in Section 4, although the focus will be on the online learning of cost-

to-go estimates, as that is the primary contribution of this work to the area of learning

inadmissible heuristics.
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CHAPTER 2

Estimating Actions-to-go

2.1 Introduction

This chapter discusses the derivation of estimates of actions-to-go for use in suboptimal

heuristic search algorithms. Before we go too far along the path of finding out how to

compute estimates of the remaining actions, we should first consider why it is we want those

estimates. As we discuss in detail in Chapter 5, Chapter 6, and Chapter 7, in suboptimal

search settings, the time required to find a solution is often incredibly important. We will

argue in Chapter 5 that bounded suboptimal search algorithms should find a solution within

the user supplied bound as quickly as possible. A nearly identical argument will be made

for the bounded cost setting in Chapter 6, and a similar discussion will be part of Chapter 7.

Since suboptimal search algorithms are often quite concerned with the time consumed

while solving problems, we should have some way of estimating the difficulty of converting

the partial solution represented by a node into a complete solution. Estimating the actual

time required to solve a problem is an open problem in heuristic search, but the number of

actions remaining will provide a good proxy for the required effort to complete.

The difficulty of solving a problem using heuristic search is strongly tied to the size of

the tree induced by search. The size of this tree is determined by two things, the branching

factor and the depth. If the size of the tree is roughly bd, where b is the branching factor

and d is the estimated depth of the tree, then clearly d plays a very important role in

determining the difficulty of solving a problem.

What holds for the whole search tree is also true of the nodes in that tree. We can
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Figure 2-1: Inadmissible Estimates of Cost and Actions-to-go Improve Speed

roughly guess how difficult it will be to convert some node in our search tree into a complete

solution by estimating the number of actions between the state that node represents and

the goal. By ordering nodes on d(n), their estimated actions-to-go, we are able to order

nodes roughly on their cost of completion.

In Figure 2-1, we see that ordering nodes in terms of actions-to-go in greedy search

results in faster search for the heavy vacuum domain which we will discuss later in this

chapter. In this plot, we show the size of the instance on the x-axis, and the amount of time

required by greedy search to find a solution in seconds on the y-axis. Not only is greedy

search on actions-to-go, d in the plot, faster than search on either admissible cost-to-go

or inadmissible cost-to-go, admissible h and inadmissible h respectively, but it also scales

better than either of these on the heavy vacuum problem. The bulk of the dissertation will

be interested in how estimates of actions-to-go allow us to speed up search algorithms in a

variety of settings by allowing us to order nodes roughly by their cost of completion. The

scaling behavior is interesting as well, but will not be investigated thoroughly here.
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Now that we have motivated the need for actions-to-go estimates, we will discuss tech-

niques for constructing them directly from the description of a problem. This chapter will

also serve as a description of all of the domains used in the evaluations throughout the

dissertation, as we will have to discuss the domain in detail to understand how to construct

d(n) for a given domain.

2.2 N-Puzzle

The n-puzzle, sometimes the n2 − 1-puzzle, or the sliding tile puzzle is the fruit fly of the

heuristic search community. That is, it is probably the most commonly experimented upon

problem in heuristic search literature, and for good reason. The puzzle is simple to describe,

simple to represent, and while small versions of the puzzle are easy to solve, as n becomes

large, the problem becomes incredibly difficult to solve. Large, of course, depends on the

kind of solution we want to find, ie optimal, bounded suboptimal, and so on.

In general, the n-puzzle refers to a sliding tiles puzzle with n pieces and 1 blank. Initially

the tiles have some unknown configuration, and the goal is to, by sliding tiles from their

current position into the blank, to convert the initial configuration of the puzzle into the

goal configuration. Sometimes the tiles are simply numbered, sometimes they are pieces

of an image that must be reformed, sometimes parts of words appear on the tiles, but no

matter the goal, the problem is essentially equivalent. Although many configurations exist,

we will consider only square puzzles in this dissertation.

2.2.1 Eight Puzzle

The eight puzzle is the smallest variant of the sliding tiles puzzle we consider in this paper.

It is a 3x3 grid containing the numbers 1 through 8. The goal configuration is to put the

blank in the upper left-hand corner, and the numbers 1 through 8 following from left to

right behind the blank. If we think of the blank as having the number 0, then the idea is

to convert whatever original permutation of the numbers existed into the sequence 0..8.
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In any state of the puzzle, our available actions are dictated by the position of the blank.

All we can do in a given state is move one of the tiles adjacent to the blank into the blank.

Later, we will discuss a variant of the n-puzzle that more accurately reflects the physical

puzzle in that multiple tiles may be moved at once. In the tiles puzzle, generally actions all

have the same cost, 1. Such domains are referred to as unit-cost domains. In these domains,

estimating the cost-to-go is identical to estimating the actions-to-go.

In the following evaluations, we will predominantly rely on the Manhattan Distance

heuristic for estimating the cost-to-go in tiles puzzle. For each tile, we compute the hor-

izontal and vertical distance between it and its home location, ie x moves left or right, y

moves up or down, report a value for the tile of x + y, and we sum this value for all tiles

on the board. In practice, we do not compute these values anew for each state. Instead, we

construct a look-up table before search begins so that we can simply look-up the distance

of a tile from its home position, rather than going to the trouble of performing simple arith-

metic. This heuristic is a relaxation of the original problem in the sense that it assumes we

can simply slide one tile through another, which is obviously not true in the real puzzle.

2.2.2 Fifteen Puzzle

We will also examine the 100 instances of the 15-puzzle presented by Korf[34]. Again, we

will predominantly use the Manhattan distance heuristic for both h(n) and d(n). Other

more informed heuristics exist, for example we could add Manhattan distance and linear

conflicts [41] or use memory based heuristics like pattern databases [12], but these techniques

have drawbacks such as being more expensive to compute or requiring large amounts of pre-

computation to construct.

This implementation of the 15-puzzle is not as fast as others. Expansion rates upwards

of a million nodes a second have been reported in the literature, however the implementation

used here is capable of handling arbitrary sized puzzles, macro-actions, and interesting cost

functions. Each of these comes at the cost of increased per-node overhead. In relation to

the other domains in the study, this solver is the second “fastest” in the sense of nodes per
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second.

Another interesting feature of the n-puzzle is that it has incredibly long cycles, three

to four times as long as the other cycle-containing domains considered in the dissertation.

When we discuss the length of cycles in this dissertation, what we mean is cycles excluding

the trivial two-action cycle of making and immediately undoing an action, for example

moving a tile to the left and then immediately moving the same tile back into the blank it

created. Such actions are not helpful and can be safely pruned in almost all cases. When

computing the average branching factor of a domain, we will also use this optimization.

The importance of cycles and the duplicate nodes they create will be a recurring theme in

Chapter 5.

2.2.3 Macro Fifteen Puzzle

The macro fifteen puzzle is a more faithful representation of the sliding tile puzzle than the

previously discussed domains. In this variant, we might move one, two, or even three tiles

at a time. That is, we can slide a single tile, a portion of a row or column, or the entire row

or column one cell in the direction of the blank, much like we can move multiple tiles in the

real puzzle with a single slide of our finger. However, even when moving multiple tiles, we

only charge a single unit of cost for the action.

Being able to move multiple tiles at the same time does change the way in which we

compute the admissible estimates of cost-to-go. We still rely on the Manhattan distance of

all of the tiles from their home location, but this value may now over estimate the true cost-

to-go as a result of the macro actions. In order to keep the Manhattan distance estimates

admissible, we must account for the fact that we can now move up to three tiles one space

closer to their goal locations in a single action. That is, we can simply divide the Manhattan

distance by three in order to get an admissible heuristic estimate for the cost-to-go. The

resulting heuristic is admissible and still consistent, but it is no longer integer-valued, which

can be important in obtaining an efficient implementation of a search algorithm, something

we will discuss in greater detail in Chapter 5.
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Now that we have discussed how to compute the cost-to-go for this domain, we consider

how to compute the number of actions remaining between a given state and the goal state

1. The simplest way of computing the number of actions remaining is to have solutions that

always exist at a fixed depth, such as they do in the traveling salesman problem. When

solutions do not exist at a fixed depth, the simplest way of computing an estimate of the

number of actions between a state and the goal is to perform some book-keeping while

estimating cost-to-go in order to compute the number of actions-to-go simultaneously.

In the case of the macro fifteen puzzle we are considering moving each tile individually

one space at a time from its current position into its goal position. For each space moved

we charge it 1
3 because in the ideal case we could be moving up to three tiles at a time

at unit cost, and we can not allow a potential over-estimation of the cost. As we tally 1
3

for the cost of the action for each move, we can also tally 1 for the number of actions we

suspect we will have to take to solve the problem. In this case this ends up being exactly

the Manhattan distance heuristic that we used for the previous versions of the sliding tile

puzzle.

The macro fifteen puzzle is unique in the domains evaluated here in that it is the only

problem which has unit-cost actions and differing base estimates of cost and actions-to-go,

h and d respectively. Any action could move multiple tiles, so we must divide the costs of all

movement under the assumption that all tiles will be moved at the same time as two others

in order to maintain admissibility. However, having probably solved a number of these

problems ourselves as children, we recognize that many of the actions will not be to move

all tiles in a row or column simultaneously, and that such moves are often not beneficial.

Thus, the standard, undivided Manhattan distance provides a reasonable estimate of the

length of solutions for this domain.

Certainly we could construct different estimates of the length of the solution for the

standard 15 puzzle, without macro actions. We might consider using a more informed

1The goal state because the fifteen puzzle has a single canonical goal state.
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estimate of the length of the solution, one that could potentially over-estimate the number

of actions required. This is really more like an inadmissible estimate of cost-to-go, the

subject of the next two chapters. In the end, the distinction between inadmissible estimates

of cost-to-go and inadmissible estimates of actions-to-go on unit cost problems is really a

purely academic one. Still, it is a distinction that is important to make because it helps us

think about more complicated problem settings where the cost of individual actions differ.

2.2.4 Inverse Cost Fifteen Puzzle

We will examine the same 100 instances of the 15-puzzle used in the standard 15 puzzle and

the macro 15 puzzle discussed in the previous two sections, but with yet another function

used to determine the cost of actions. In the inverse tile puzzle, the cost of moving a tile

into the blank is 1
face

where face is the number on the tile. So moving the 15 tile costs

1
15 and moving the 8 tile costs 1

8 . The heuristic is simply a modified Manhattan distance.

For each tile we compute its displacement from its goal location, and then multiply this

distance by the action-cost for moving that particular tile. This is then summed up for all

tiles.

While it may seem ridiculous to study nearly identical problems with slightly differing

cost functions initially, it allows us to separate out the impact of action costs from basically

all other aspects of a domain when evaluating the impact of action-costs on heuristic search

algorithms. By holding the branching factor, number of goals, average solution depth, cycle

length, and other important domain features constant while only varying the cost-function

for actions, we can get a better idea of how exactly the cost of actions impacts heuristic

search.

The inverse tiles problem has a relatively wide spread of action costs, but what is

particularly interesting is that all of these costs are less than 1. This means that, strictly

speaking, the distance-to-go estimate for this domain frequently over estimates the cost of

the solution for this problem. In other domains with action costs, for example the heavy

vacuum domain we are about to discuss, estimates of actions-to-go are generally far lower
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than the cost-to-go.

As before, to compute the actions-to-go estimate for the inverse 15 puzzle, we must

simply keep track of the number of actions we estimate we will take while computing the

cost-to-go estimate h(n). In this case, as with the macro 15 puzzle, that ends up being the

Manhattan distance for all of the tiles, summed together.

2.2.5 Twenty-Four Puzzle

We also consider a 5x5 sliding tile puzzle with 24 tiles in our evaluation. These puzzles are

considered primarily in the context of learning heuristics for search in Chapter 4. Increasing

the size of the problem, even by such a small amount, increases the difficulty of solving

the problem dramatically. h and d are computed identically in the 24 puzzle using the

Manhattan distance.

2.3 Vacuum World

The vacuum world is domain motivated by the first search space described in [55]. In it, a

small vacuum must navigate a room, modeled as a grid, and vacuum up all of the piles of

dirt. Naturally the room is not completely free of furniture, so we model these obstructions

to the movement of the vacuum robot as blocked cells on the grid. The robot can turn on a

dime, but can only move in the cardinal directions. The problem is solved when no piles of

dirt remains. We consider two variants of the vacuum world problem, one with unit action

costs and one with actions of varying cost.

The vacuum world problem is much like a mixture of the traveling salesman problem

and grid world navigation. In fact, at least for the unit cost variant of the problem, we could

solve these problems by computing all pairs shortest paths for all points on the grid, or at

least the vacuum and all dirty cells, and then solving the resulting problem as if it were a

TSP with a number of cities equal tot he number of dirts plus the vacuum. For problems of

the size we consider in this paper, solving such a TSP problem is pretty simple, however the
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point isn’t to construct the fastest solver for an imagined problem, but rather to understand

the impact of domain features on solver performance and to have a wide variety of domain

features present in our evaluation. In the case of the vacuum problem, these features are

the inconsistency of the cost-to-go heuristic, the relatively low branching factor, the tight

cycles and large number of duplicates, and the fact that there exist multiple goal states.

2.3.1 Unit-Cost Vacuum

We consider two variants of the vacuum problem, one with unit-cost actions and one with-

out. We will discuss the variant with unit-cost actions first. We consider two sizes of

unit-cost vacuum worlds. For measuring the relative performance of bounded suboptimal

and anytime search algorithms, we used 100 instances that are 500 cells tall by 500 cells

wide, each cell having a 35% probability of being blocked. We place twenty piles of dirt and

the robot randomly in unblocked cells and ensure that the problem can be solved. When

measuring the accuracy of heuristics, we look at 100 instances that are 200 by 200 with 5

piles of dirt. These smaller instances can be exhaustively searched on our computers, while

the larger problems cannot be exhaustively enumerated.

2.3.2 Heavy Vacuum

We examine 150 instances of vacuum problems in our evaluations. Each instance is on a

200 by 200 grid. Each cell has a 35% chance of being occluded. Once the obstacles are laid

down, 10 piles of dirt and the vacuum are placed randomly on the board. We then check to

make sure the problem is solvable by making sure that the robot and dirt piles are in the

same connected component of the grid. The cost of taking an action is 1 plus the number

of dirt piles that the vacuum has already cleaned up. So initially all actions cost 1, then 2,

and so on up to a cost of 10.

The cost-to-go heuristic is computed as a minimum spanning tree of the robot and dirt

piles. Once the minimum spanning tree is computed, the edges in the tree are sorted in

order of length, longest first. We then weight the edges based on the current action cost.
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The longest edge is weighted by the current cost of acting, the next longest edge gets the

current cost plus one, and so on.

Estimates of actions-to-go are computed by assuming the problem contains no obstacles,

and then computing a greedy traversal of the dirt piles. That is, the vacuum moves to the

nearest pile, then the next nearest, and so on. We compute most of this information while

constructing the spanning tree, so computing this more informed action-to-go heuristic is

surprisingly cheap. While we could compute the actions to go simply by counting the length

of each arc in the spanning tree instead of the weighted arc length as we do for computing

h(n), this estimate of distance-to-go ends up being more informed for little additional cost.

One interesting thing about the heavy vacuum domain is that the heuristic for this

domain is inconsistent. That is, the heuristic between two states will often differ by more

than the cost of the transition between them. This is because the heuristic is based on a

spanning tree including the agent. Moving the agent can alter the cost of all edges in the

spanning tree, which is what gives rise to the inadmissibility. Pilot experiments showed

that less informed admissible heuristics lead to longer solving times.

2.4 Life Cost Grids

Life-cost grids were first proposed by Ruml and Do[54]. They are a standard 4-connected

grid with a slightly different cost function, moving out of a cell has cost equal to the y-

coordinate of the cell. The instances studied here are 2000 by 1200 cells, with the starting

location in the lower left hand corner of the grid and the goal location in the lower right.

As a result of the cost function, cheap paths involve moving up from the starting location

towards the top of the grid, cutting across, and coming back down to the goal. It is called

the “Life” cost function because cheap solutions incorporate many economizing steps, much

like many tasks in real life.

Computing cost-to-go for life cost grids is slightly more complicated than using simple

Manhattan distance. It is easiest to think of the heuristic as ignoring all obstacles on the
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board and computing the cost of the cheapest solution from the current state. In the case

of life cost grids, the cheapest solution will take one of two forms. Either an ’L’ shape is

produced where the agent makes a string of horizontal moves and a string of vertical moves,

horizontal followed by vertical if the agent is north of the goal, vertical then horizontal if

the agent is south of the goal or alternatively the agent moves in a ’n’ shape, straight up

for some number of moves, then across and down.

We compute the cost of both solutions and take the cheaper of the two. The choice

of which solution to take also impacts the actions-to-go estimate for the state. In the

case where we take the ’L’ shaped path, the actions-to-go can be estimated by Manhattan

distance. In the ’n’ shaped paths, we must count the up, down, and horizontal actions which

are usually much larger than the Manhattan distance between the agent and the goal.

The life cost grids have the largest spread of action costs, spreading over a range at least

an order of magnitude larger than other domains with action costs. Despite this, algorithms

which paid attention to the difference between solution length and solution cost did not fare

as well on this domain as they did in others, as we saw in the evaluation in Section 5. We

suspect that this is because the cost-to-go heuristic for this domain is particularly strong.

Paying attention to an additional source of information has several benefits, but one of

them is to shore up weaknesses in some of the heuristics [53].

2.5 Dynamic Robot Navigation

This domains follows that used by Likhachev, Gordon and Thrun [37]. The goal is to find

the fastest path from the starting location of the robot to some goal location and heading,

taking momentum into account. We perform this search in worlds that are 500 by 500

cells in size. We scatter 75 lines, up to 70 cells in length, with random orientations across

the domain and present results averaged over 100 instance. The cost-to-go heuristic is

constructed by computing the optimal distance of every location of the board to the goal

location, call this hstatic(n). h(n) =
hstatic(n)

maxvelocity
and d(n) = hstatic(n). That is, the admissible
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heuristic is simply the length of the shortest static path divided by the maximum speed of

the robot, and the estimated number of actions is the length of the static path.

Dynamic robot navigation has by far the larges branching factor of all of the domains

considered in this study, with a maximum branching factor two orders of magnitude larger

than other algorithms, and an average branching factor one order of magnitude larger than

other domains. This is because we are considering a large number of potential headings

and speeds for the robot, and any of these could change between two search nodes.

2.6 Dock Robot

We implemented a dock robot domain inspired by Ghallab et al[21] and the depots domain

from the International Planning Competition. Here, a robot must move containers to their

desired locations. Containers are stacked at a location using a crane, and only the topmost

container on a pile may be accessed at any time. The robot may drive between locations

and load or unload itself using the crane at the location. We tested on 150 randomly

configured problems having three locations laid out on a unit square and fifteen containers

with random start and goal configurations. Driving between the depots has a cost of the

distance between them, loading and unloading the robot costs 0.1, and the cost of using the

crane was 0.05 times the height of the stack of containers at the depot. h was computed as

the cost of driving between all depots with containers that did not belong to them in the

goal configuration plus the cost of moving the deepest out of place container in the stack

to the robot. d was computed similarly, but 1 is used rather than the actual costs.

The dock robot domain has a large number of legal goal states, far larger than most

of the problems here. While tiles, inverse tiles, life grids, and dynamic robots all have a

single canonical goal, dock robots only specifies in which pile the crates must be at the end

of search. It says nothing about the ordering of those crates in the goal pile, which is why

there are so many legal configurations. It is rare that all crates would need to be moved to

one pile, which has the largest number of legal configurations at 1,307,674,368,000, and it
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Tiles Inv. Tiles Life Grids Heavy Vacuum Dynamic Robot Dock Yard

Max Branching 4 4 4 5 150 4

Avg Branching 2.13 2.13 1.66 1.67 51.41 3.08

Action Costs 1 1
15–1 0–1200 1 – 10 1

20–1 0 – 15

Shortest Cycle 12 12 4 4 None 3

Consistent h Yes Yes Yes No Yes No

Number of Goals 1 1 1 10 1 3 · 5! ≤ i ≤ 15!

Nodes
sec 642577 52460 771680 20958 568859 108495

Table 2.1: Properties of the Domains Under Investigation

is also rare that each pile would contain five crates, which has the smallest number of legal

goal configurations at 360. This makes computing the heuristic particularly challenging for

this domain.

2.7 Summary

There are a wide variety of problems that can be solved using suboptimal search techniques

like the kind discussed in this dissertation. Table 2.1 gives a brief summary of many of

the important properties of the domains used in this dissertation. The domains themselves

span navigation problems for a vehicle with dynamics, organizing crates at a ship yard,

and finding the solution to a puzzle. This doesn’t even begin to cover the spectrum of

problems approachable with heuristic search techniques, but it does provide a decent range

of important domain properties.

The table presents the domains and columns, and attributes as rows. “Max Branching”

reports the maximum possible branching factor for the domain. “Avg Branching” reports

the average branching factor experienced by a uniform cost search run to completion or

until it exhausted memory on all of the instances. “Action Costs” reports the range of

action costs for the domain, from least cost action to most expensive action. “Shortest
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Cycle” reports the length of the shortest route by which the search may leave and return

to a give node, assuming that we disallow the trivial two-step cycle of doing and undoing

a move. “Consistent h” denotes whether the base cost-to-go heuristic was consistent for

the domain. “Number of Goals” reports the number of goals to a given problem from the

domain. “Nodessec ” reports the rate with which search can, on average, generate states. We

computed this by examining the number of nodes per second generated by greedy search, as

this is the algorithm with the least overhead that also computes the heuristic of all states.

Nodes per second will obviously differ from algorithm to algorithm, but this provides a sort

of lower bound.
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CHAPTER 3

Constructing Inadmissible

Estimates by Hand

3.1 Introduction

In this chapter we consider several techniques for constructing inadmissible estimates of

cost-to-go, which we will refer to as ĥ, by hand. The techniques contained in this chapter

are not specific to any of the domains considered here, the domains for which we exhibit

the techniques are simply illustrative.

3.2 Book Keeping

The simplest technique by which we can compute an inadmissible estimate of the cost-

to-go from a state to the goal shares much in common with the technique by which we

computed the distance to go. When computing the admissible cost-to-go, we just need to

perform a small amount of book keeping in order to construct an inadmissible estimate as

well. Specifically, we will be looking at the relaxed solution constructed by the admissible

heuristic and charging it for any violation of the rules of the real problem that it is trying

to solve. We will use the Life-cost grid navigation problem as an example.

The idea that a heuristic is computing a solution to a relaxed version of the problem is

a common one, as we have already briefly discussed. In the example in the introduction, in

Figure 1-8, we showed that we could think of the Manhattan distance heuristic on a grid
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as the solution to a relaxed version of that problem, Similar ideas come up in all areas of

heuristic search. In the dynamic robot problem, we are ignoring the dynamics of the robot

and instead solving the simpler static version of the problem. In dock yard robots, we are

assuming that we only care about one crate on each pile, the deepest one. In tiles, we

assume the tiles can move through one another, even though they are physically unable to

do so. The same observations can be made of nearly any admissible heuristic.

In life cost grids, we estimate the cost-to-go by constructing one of two paths through

the grid, assuming that there are no obstacles. Either the path goes up and over, or up,

across, and back down. Let’s assume for the moment that the path goes up and over in an

’L’ shape. Now, normally we wouldn’t explicitly construct the path, we would simply use

Manhattan distance and the current y-value of the agent’s location to compute the cost,

but let’s assume that we construct the whole path.

If we were to look at every grid-cell traversed by the relaxed solution to the problem,

we would see that some of the cells are free and some of them are blocked. Every time

the relaxed solution passes through a blocked cell, it has violated the real constraints of

the problem. This is why the heuristic underestimates the true cost-to-go, it takes cheap

moves that are not actually legal. If we could charge the relaxed plan for each illegal move

it makes, we would likely get a more powerful heuristic.

The reason that such a technique is a by-hand construction of an inadmissible heuristic

and not an automated construction of the inadmissible heuristic, as we will be discussing

in the following chapter, is that it is not clear how we should charge the relaxed plan for

this violation. In the case of life cost grids, we might consider charging it twice the cost of

moving through a free cell in the same row. This assumes that we will have to make some

additional moves in a previous or subsequent row in order to avoid the occluded cell here.

There are, however, obvious problems with just charging twice the cost of the row.

Obviously, we will not be passing through this cell in the real solution, because we can’t,

and yet we have not altered the rest of the relaxed plan. When computing the remainder

of the heuristic, we may be adding on penalties that we will no longer experience because
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we will need to deviate from the relaxed plan early on. Similarly, it is unclear if twice the

cost is the best choice. Three of four times the cost could also perform well. The need to

do such tuning to the inadmissible heuristic computations is the reason that such heuristics

are constructed by-hand, and not truly automatically constructed.

3.3 Mean of Under and Over Estimates

Sometimes, a benchmark or problem where we would normally apply heuristic search is only

difficult to solve because we want optimal or near optimal solutions. In these situations, it is

often the case that a suboptimal solution to the problem can be constructed in polynomial

time. The traveling salesman problem and the sliding tile puzzle are excellent examples of

this. In the case of the traveling salesman problem, we can simply greedily go to the next

nearest city. This constructs a valid, often expensive, solution to the problem. Similarly,

there exists a recursive decomposition of the sliding tiles puzzle, where the right most

column and bottom row are solved, and then we recur inward to the n−1-puzzle, and so on

until the problem is solved[58]. The solutions computed this way are often quite expensive

but they are legal.

In these situations, we can compute an upper bound on the cost of an optimal solution

to the problem. Specifically, the cost of a solution to the problem must be at least as large

as the cost of the optimal solution to the problem, so it acts as a natural upper bound on

optimal solution cost. We also have a lower bound to the cost of the optimal solution in

the form of h(n), the admissible heuristic. Obviously the true cost-to-go, h∗(n) must be

somewhere between this upper and lower bound.

If we have no idea how far off the pre-computed solution is from optimal, a simple and

rational choice is to simply compute the mid point between the two values and use this as

the cost to go heuristic. If we have some notion of the cost of the suboptimal solution to the

problem relative to the optimal cost solution, then we could perform a weighted average of

the two values to get a more reasonable estimate of the true cost-to-go.
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It is interesting to note that we do not necessarily need a poly-time solution to the

problem to be able to employ an approach like this. Consider the dynamic robot navigation

problem, for which we do no know of a poly-time solution. We could substitute a solution

found with greedy search for the polynomial solution to the problem, if we’re relative certain

that such a solution can be found quickly. The greedy solution has all of the desirable

properties of the previously discussed constructions save for one: we do not have any bound

on the amount of time it can take to find a greedy solution to the problem. There are many

situations in which simply solving the problem greedily is quite challenging, for example

the 35-puzzle.

Now, we should not simply use the cost of solution computed from the root of the

problem when computing ĥ for all states in the problem. This would simply inflate the

cost-to-go estimate for all states evenly, and would have very little benefit in most search

algorithms. We also, realistically, can’t compute a complete solution from each state in the

space. Although we may be able to solve the problem in poly-time, we would like our search

algorithms to expand tens of thousands to millions of nodes per second, so constructing a

complete solution from each node is right out. Instead, we can subtract the cost of arriving

at a node, g(n), from the cost of the suboptimal solution computed at the root to get a

quick estimate of the cost of a suboptimal solution from this node. Of course, this assumes

that the search is moving towards, and not away from, the goal.

3.4 Weighted Sum of Features

The final approach for constructing an inadmissible estimate of the cost-to-go from a node

to the goal by hand is simply a more general version of the previous approach. Rather than

take a weighted sum of the admissible heuristic and an upper bound on the true cost to

solve a problem, we can take the weighted sum of a set of arbitrary features, include these

two elements or not as we see fit.

One of the first examples of inadmissible heuristics for search is of this variety. Nilsson[41]
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once suggested that we could use the Manhattan distance plus three times the number of

linear conflicts in a state of the eight puzzle to estimate the true cost-to-go rather accu-

rately. While the Manhattan distance heuristic and the linear conflicts summed together

is a powerful admissible heuristic, by weighting the linear conflicts component, Nilsson[41]

produced a powerful inadmissible heuristic to the problem. Finding the proper weighting

requires either expert insight into the domain, a fair amount of testing and revising, or large

amounts of data and machine learning.

This approach is really the foundation of much of the next chapter. We will see that

there are many ways of automatically finding a good set of weights for a given set of features

if we want to accurately estimate the true cost-to-go for search. Typically, we will find these

weight by writing down for many states the values of the features and the true cost-to-go,

and then performing machine learning to find a set of weights that most closely reproduces

the true-cost-to go from the features.

3.5 Summary

In this chapter we discussed three techniques for computing inadmissible estimates of the

cost-to-go from a description of the problem. While the techniques should be easy to apply

to any domain of interest, they must be carefully applied. When charging for violations

of the real problem in the relaxed solution computed by an admissible heuristic, we must

think carefully about how much we will charge. The idea of using the mid-point between

an admissible cost-to-go estimate and the cost of a suboptimal solution to a problem is

a powerful one, but we may not be able to easily construct a suboptimal solution to the

problem. Finally, the weights and the features in a weighted sum of features must be

carefully selected if we want the resulting heuristic to be an effective one. That is not to say

these techniques are not all useful for constructing inadmissible heuristics, they certainly

are, but they cannot be automatically derived in the same way that the heuristics discussed

in the next chapter can.
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CHAPTER 4

Learning Inadmissible Estimates of

Cost-to-Go

4.1 Introduction

Heuristic search is a widespread approach to automated planning and problem solving.

If time and memory permit, we can use algorithms such as A* [23] to find solutions of

minimal cost. These algorithms require an admissible heuristic evaluation function, that

is, a heuristic which never over-estimates the true cost-to-go from a node to a goal. Under

mild assumptions it can be shown that no similarly informed algorithm can find provably

optimal solutions while performing less work than A* [14]. Unfortunately, problems are

often too large and deadlines are often too short for finding provably optimal solutions [25].

When optimally solving a problem is impractical, suboptimal search can be a practical

alternative. Suboptimal search algorithms sacrifice solution optimality in an attempt to

reduce the resources needed for solving problems.

We will focus on two types of suboptimal search algorithms: greedy best-first search

algorithms that attempt to find solutions of high quality as quickly as possible while pro-

viding no guarantees on solution quality [16], and bounded suboptimal search algorithms

that return solutions whose cost is guaranteed to be within some user-provided factor of

optimal. Suboptimal search algorithms tend to be faster than their optimal counterparts

because they do not need to prove that the solutions they return are optimal. By not prov-

ing solution optimality, they avoid having to expand all nodes that could potentially lead
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to a solution of lower cost. Because suboptimal search algorithms do not prove solution

optimality, they can consider inadmissible sources of heuristic guidance.

This paper investigates learning as way to construct these inadmissible estimates of

cost-to-go. We are not the first to consider guiding search algorithms with inadmissible

learned heuristics. As we later discuss in detail, several authors have proposed learning

informed inadmissible heuristics by recording for many states the true cost-to-go, which we

call h∗, and a set of features. They then learn a function from the features to a potentially

inadmissible estimate of the cost-to-go, which we call ĥ. Such an approach makes the

limiting assumption that we either have access to a representative training set, or the

ability to generate one automatically and sufficient resources to find h∗ for many states.

It further assumes that the training instances and test instances are similar enough to one

another for the learning on the training instance to transfer effectively to the instances we

truly care about solving. This can be problematic in settings, such as STRIPS planning,

where instances can be very different from one another because of the expressivity of the

problem description language.

In this paper, we demonstrate that learning heuristics during search itself is a practi-

cal and effective alternative to learning before search or learning interleaved with search.

In Section 4.2, we present a new technique for improving heuristics during the execution

of search, called single-step correction. It improves a given initial heuristic based on ob-

serving its behavior over paths in the search tree. We prove that, assuming knowledge of

the heuristic’s behavior over the entire search space, our techniques will produce perfect

heuristic estimates. Although this assumption will rarely be met in a real problem, it does

demonstrate that the technique is theoretically sound. In Section 4.2.3, we demonstrate that

it works well in practice in an empirical study across eight benchmark domains. Heuris-

tics learned during search find solutions up to three orders of magnitude faster than the

base heuristic when used in greedy best-first search, and they also tend to improve solution

quality substantially. In Section 4.2.6, we show how inadmissible heuristics can be used in

bounded suboptimal search. We introduce a new algorithm, skeptical search, that is capable
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of using arbitrary inadmissible heuristics. Skeptical search improves upon the performance

of the state-of-the-art optimistic search algorithm [67] while removing the need for param-

eter tuning. In Section 4.3.2, we show that, although heuristics learned either offline or in

between search episodes are often substantially more accurate than those learned online,

they provide worse guidance, leading to slower solving of instances. To close, in Section 4.4

we compare against work aimed a learning heuristics using a set of instances. Other related

work is summarized in Section 4.6.

4.2 Learning During Search

Heuristic evaluation functions are the distinguishing component of heuristic search algo-

rithms. Notated h(n), these functions estimate the cost of the cheapest completion of a

given node n, that is, the cost of the cheapest sequence of actions transforming the state

represented by node n into a goal state. Our starting observation is that the optimal cost

of a solution beneath some node p is the cost of completing its best child plus the cost

of transition to that best child. More formally, let h∗(n) represents the perfect heuristic

function that exactly predicts the cost-to-go for all nodes. For any parent node p, if bc(p)

is the next node along an optimal path from p to a goal and c(p, bc(p)) is the cost of the

arc between p and bc(p), then:

h∗(p) = h∗(bc(p)) + c(p, bc(p)) (4.1)

This is a slight generalization of move invariance [10], which holds that the entire node

evaluation function f(n) = g(n) + h(n), where g(n) is the cost of arriving at node n,

should not vary between a parent and its best child. Here, rather than trying to hold f(n)

constant across nodes, we’re trying to force the heuristic to differ by exactly c(p, bc(p)). A
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little algebra shows us that these are equivalent:

f∗(p) = f∗(bc(p))

g(p) + h∗(p) = g(bc(p)) + h∗(bc(p))

h∗(p) = h∗(bc(p)) + (g(bc(p))− g(p))

h∗(p) = h∗(bc(p)) + c(p, bc(p))

Obviously, during the course of search, we do not have access to perfect heuristics. If

we did, search would be unnecessary. We would simply perform hill-climbing from the root,

expanding only those nodes along the solution. However, every time an imperfect heuristic

deviates from the relationships described above, we have observed a mistake. Every observed

mistake is an opportunity to learn an improvement to the underlying heuristic functions.

In this way, our perspective is that of temporal difference learning [65]. Using temporal

difference learning to improve heuristics has been suggested before [42, pages 172-175], but

to our knowledge never actually implemented and evaluated until this work. In the next

section, we present the details of our approach.

4.2.1 Single-Step Error Corrections

We can measure the error in a heuristic for a single step by comparing heuristic values

between the parent and the best child. With a measurement of the error across a single

step, we can attempt to correct for the error by estimating the number of steps to go

and adjusting the heuristic estimates accordingly. As shown in Equation 4.1, there is a

relationship between the cost-to-go estimates of a parent and its best child. This allows us

to define the single-step error in h at p as:

ǫhp
= (h(bc(p)) + c(p, bc(p)))− h(p) (4.2)

The sum of the cost-to-go heuristic and the single-step errors from a node p to the goal

equals the true cost-to-go:
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Theorem 1 For any node p with a goal beneath it:

h∗(p) = h(p) +
∑

n∈p goal

ǫhn
(4.3)

where p goal is the set of nodes along the path between the node p and the goal, including

p and excluding the goal. ǫhn
is the single-step error in h between a node n and its best

child.

Proof: The proof is by induction over the nodes in the path. For our base case, we show

that when bc(p) is the goal, Equation 4.3 holds:

h∗(p) = c(p, bc(p)) because bc(p) is the goal

= h(p) + c(p, bc(p))− h(p) by algebra

= h(p) + c(p, bc(p)) + h(bc(p))− h(p) because h(bc(p)) = 0

= h(p) + ǫhp
by Eq. 4.2

= h(p) +
∑

n∈p goal ǫhn
because p goal = {p}

As the best child of p was a goal, the optimal cost of completing p is exactly the arc cost

from p to its best child.

For the inductive case, assuming that Equation 4.3 holds for bc(p), we show that it holds

for its parent p as well:

h∗(p) = c(p, bc(p)) + h∗(bc(p)) by Eq. 4.1

= c(p, bc(p)) + h(bc(p)) +
∑

n∈bc(p) goal ǫhn
by inductive assumption

= h(p) + ǫhp
+
∑

n∈bc(p) goal ǫhn
by Eq. 4.2

= h(p) +
∑

n∈p goal ǫhn
by def. of  

which is exactly Equation 4.3, completing the proof. �

We define the mean one-step error ǭh along the path from p to the goal as:

ǭhp
=

∑
n∈p goal ǫhn

d∗(p)
(4.4)

where d∗(p) is the length of the cost-optimal path between p and a goal. It is important

to remember that the mean single-step error is defined in terms of the true length (number
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of arcs) of the remaining path, d∗(p), and not the cost (sum of weights) of the remaining

path, h∗(n). We will reconsider this decision in a future section, and while both approaches

can be shown to be technically correct, using path length provides the better performance

empirically. Solving Equation 4.4 for
∑

n∈p goal ǫhn yields:

∑

n∈p goal

ǫhn = d∗(p) · ǭhp
(4.5)

Thus, if we had the base heuristic, its average single-step error, and a perfect estimate of the

number of actions remaining, we could compute a perfect cost-to-go heuristic. Substituting

Equation 4.5 into Equation 4.3,

h∗(p) = h(p) + d∗(p) · ǭhp
(4.6)

In a realistic setting, we are not going to have access to the true distance-to-go d∗(n),

and so we can not use Equation 4.6 to produce an improved cost-to-go estimate directly.

Given the important role that distance plays in Equation 4.6, we will require that a heuristic

estimate of search distance-to-go, call it d(n), is available. In Section 4.3.1, we will consider

heuristic correction without d(n). In domains in which all actions have equal cost, d(n) =

h(n). In other domains, one can usually construct a distance-to-go heuristic using methods

very similar to those for the cost-to-go heuristic. For example, one can tracking the number

of actions required to solve a simplified version of the problem, rather than the cost of those

actions. Further examples are given by Pearl and Kim[44], Ghallab and Allard[20], and

Thayer et al[68].

Just as we correct a given h(n), we will want to correct d(n). We take a similar strategy

as before. In analogy to Equation 4.1, the perfect distance-to-go estimate d∗(n) obeys:

d∗(p) = 1 + d∗(bc(p)) (4.7)

Notice that c(p, bc(p)) has been replaced with 1 in the previous equation. That is because

while an arc between two nodes may have a wide range of weights assigned to it, the distance

estimates only care about the number of arcs traversed.
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A key feature of search distance-to-go for a particular node p is that, as noted in Equa-

tion 4.7, its best child should have a true distance-to-go d∗(bc(p)) of exactly one less than

the true distance to go of its parent. When we are not working with perfectly informed

heuristics, we must introduce a term that represents the error ǫdp present in the heuristic

when evaluated at a parent p and its best child:

d(p) = 1 + d(bc(p)) + ǫdp (4.8)

Solving for the one-step distance error of the parent ǫdp, we get:

ǫdp = (1 + d(bc(p)))− d(p) (4.9)

Note that the single-step error is specific to the node p. This is because several states, each

with different heuristic values, may share the same best child. Imagine a situation where

several nodes, each with a different distance-to-go estimate, all generate the same goal node

as their only child. All nodes share a best child, but each has a different single-step error. As

a result, the error is specific to the generating node. We require that the best child selected

for this calculation not represent the parent state of p. Thus, states with no children other

than the inverse action back to their parent have no associated ǫd. Goals also have no best

child. Using Equation 4.9, we prove the following analogue of Theorem 1:

Theorem 2 For any node p with a goal beneath it:

d∗(p) = d(p) +
∑

n∈p goal

ǫdn (4.10)

where p  goal is the set of nodes along an optimal path between the node p and a goal,

including p and excluding the goal.

Proof: The proof is by induction over the nodes in the path. For our base case, we show

that Equation 4.10 holds when bc(p) is the goal:
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d∗(p) = 1 because bc(p) is a goal

= d(p) + 1− d(p) by algebra

= d(p) + 1 + d(bc(p))− d(p) because d(bc(p)) = 0

= d(p) + ǫdp by Equation 4.9

= d(p) +
∑

n∈p goal ǫdn because p goal = {p}
As the best child of p was a goal, obviously p is a single step away from the goal and the

base case holds.

For the inductive case we show that by assuming that Equation 4.10 holds for bc(p), we

can show that it holds for its parent p as well:

d∗(p) = 1 + d∗(bc(p)) by Eq. 4.7

= 1 + d(bc(p)) +
∑

n∈bc(p) goal ǫdn by inductive assumption

= d(p) + ǫdp +
∑

n∈bc(p) goal ǫdn by Eq. 4.9

= d(p) +
∑

n∈p goal ǫdn by def. of  and bc

which is exactly Equation 4.10, completing the proof. �

We can define the mean one-step error ǭdp along the path from p to the goal as:

ǭdp =

∑
n∈p goal ǫdn

d∗(p)
(4.11)

Using Equations 4.10 and 4.11, we can define d∗(p) in terms of ǭd:

d∗(p) = d(p) + d∗(p) · ǭdp (4.12)

Solving Equation 4.12 for d∗(p) yields:

d∗(p) =
d(p)

1− ǭdp
(4.13)

Another way to think of Equation 4.13 is as the closed form of the following infinite

geometric series that recursively accounts for error in d(p):

d∗(p) = d(p) + d(p) · ǭdp + (d(p) · ǭdp) · ǭdp + . . . (4.14)

= d(p) ·∑∞
i=1(ǭdp)

i (4.15)
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This series takes the average single-step error, ǭd, and assumes that we will observe that

error during each step that d(n) is predicting. This results in some number of additional

steps. Unfortunately the mean single-step error will also be observed in the additional steps.

Naturally this results in more steps, during which the error will again be observed. This

process recurs, resulting in the infinite series.

Substituting our compact equation for d∗ (Equation 4.13) into our equation for h∗

(Equation 4.6), we have:

h∗(p) = h(p) +
d(p)

1− ǭdp
· ǭhp

(4.16)

Given Equations 4.13 and 4.16, if we had both ǭdn and ǭhn
, we could construct perfect

estimates of both the distance and cost-to-go beneath an arbitrary node n. The quantities

¯ǫdn and ¯ǫhn
are the mean one-step errors along an optimal path through n to a goal in

the distance and cost heuristics respectively. During a search, these values are unknown,

although they are bounded. The average error can never be less than 0, and can never

be larger the largest arc-cost in the case of ¯ǫhn
or 1 in the case of ¯ǫdn . The heart of our

proposed method for learning during search is to estimate ǭhn
and ǭdn using the observed

errors described in Equations 4.9 and 4.2. We then use these estimated values to improve

the performance of the cost and distance-to-go heuristics during the same search. We now

discuss two techniques for estimating ¯ǫdn and ¯ǫhn
online.

Global Error Model

The Global Error Model assumes that the distribution of one-step errors across the entire

search space is uniform and can be estimated by a global average of all observed single-

step errors. We need only keep a running global sum of observed error in h and d as

well as a running count of the number of observations taken. This is roughly equal to the

number of expanded nodes, although some nodes may have no children and thus generate no

observations. The one difficulty in employing the global error model is that we must estimate

which child of node p is bc(p). We assume it is the node with minimum f(n) = g(n) + h(n)
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among all of p’s children, breaking ties on f(n) in favor of low d(n). Pilot experiments

showed this to be just as effective as using f̂(n) = g(n) + ĥ(n), where ĥ is the current

corrected heuristic. We then calculate the corrected heuristics d̂ and ĥ using Equations 4.13

and 4.16 respectively:

d̂global(n) =
d(n)

1− ǭglobald

(4.17)

ĥglobal(n) = h(n) + d̂global(n) · ǭglobalh (4.18)

This approach has the benefit of gaining information on average single-step error very

quickly and the drawback of the values constantly fluctuating. Our estimates of single-step

error change every time we receive an observation, which is at nearly every expansion. If we

really want to expand nodes in the order dictated by the cost function, this would require

resorting our open list after every expansion. In most benchmark search domains, heuristic

computation and node expansion are cheap enough that the cost of the search would be

dominated by the cost of constantly resorting the open list. In preliminary experiments,

we investigated several approaches, including constantly resorting, a logarithmic resorting

schedule, and no resorting. We found that no resorting performed the best empirically and

those are the results presented in this work.

Path-based Error Model

The Path-based Error Model calculates the mean one-step errors, ǭpathd and ǭpathh , only along

the current search path. This model maintains a separate average for each partial solution

being considered by the search. This is done by passing the cumulative single-step error

experienced by a parent node down to all of its children. We can then use the depth of

the node to determine the average single-step error along this path. ĥpath is computed

analogously to Equation 4.18:

d̂path(n) =
d(n)

1− ǭpathd

(4.19)

ĥpath(n) = h(n) + d̂path(n) · ǭpathh (4.20)
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Figure 4-1: A worst-case domain for single-step corrections.

The path-based model has a distinct conceptual (and practical) advantage over the

global error model: we need not estimate which node is the best child at the time that a

parent node is expanded in order to compute average error. In the path-based model, we

can simply say that every child of a node is the best child, as this is what the search has

determined at the time of expansion. For when a node is expanded by best first search, the

search (and evaluation function) have decided that this particular node, among all other

nodes available for consideration, is best. If a node is best among all nodes, it must also

be best among its siblings. The practical effect of this is that we need not worry about

resorting the open list, because the heuristic corrections of nodes in the path-based model

never change.

In either model, if our estimate of ǭd is ever as large as one, we assume we have infinite

distance and cost-to-go. Because these are estimates, and not bounds, we don’t discard

nodes which we guess have infinite cost. This preserves the completeness of algorithms

using the corrected heuristics. An alternate approach that we do not explore would be to

put these nodes in a reserve list that is only considered when nodes with finite estimated

cost have been exhausted. The alternate list could then be sorted on another criteria, for

example, the base heuristic or g(n).
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Figure 4-2: A best-case domain for single-step corrections.
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4.2.2 Worst and Best Case Scenarios

The single-step correction techniques presented above do have limitations. Figure 4-1 shows

a grid pathfinding problem where single-step corrections perform poorly. The start state is

marked with ‘s’, and the goal is marked with ‘g’. The grid is 4-connected. The numbers

in the cells show the value of d(n), the distance-to-go estimate. In this instance we use the

Manhattan distance in a 4-connected grid for d(n).

In this example, each move that could take us out of the beginning section into the

half of the grid with the goal is a move that will increase the estimated distance-to-go.

For any search to escape the beginning of the problem, it must experience a single-step

error of two repeatedly. When we reach the state with a distance-to-go of eleven, the

estimated single-step error will be two for both the global and path-based methods. Until

the estimate is lowered below one by expanding many additional nodes with no single-step

error, ĥ(n) = d̂(n) = ∞, and our search will expand nodes in uniform cost order due to

tie breaking (in the search algorithms presented here, we break ties in favor of low g(n)).

Thus, if the cost-to-go estimates become infinitely large, we will perform a best-first-search

on g(n).

If we had just been doing a greedy search on the base heuristic in this example, we

would go straight to the goal from the state marked eleven rather than performing uniform-

cost-search. Therefore, greedy search on the corrected heuristic will perform much worse

than the uncorrected heuristic. In fact, we can make the example above arbitrarily large,

and so the performance gaps could be made arbitrarily large as well. Any heuristic with

large plateaus or local minima between the start and a goal can demonstrate this behavior.

If the plateaus and minima are larger than the areas where the heuristic performs well, we

would expect to see this pathology. It should be noted that this is arguably correct, albeit

undesirable, behavior. If the heuristic is woefully uninformed, or worse yet misleading, it

may be preferable to ignore it entirely and search according to cost incurred.

In contrast, the images in Figure 4-2 provide an example of structured error that works
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strongly in favor of the single-step corrections presented here. In this ladder-like navigation

problem, the error is, as before, highly structured and there are many nodes for which the

heuristic is very poorly informed (those in between the ‘rungs’) and nodes for which the

heuristic is perfectly informed (those on the outside of the ladder). Greedy search without

correction is much slower than even A* for this problem. However, when learning is added

to the solving process, as it is in the bottom panel of the figure, the performance is identical

in this case.

This example demonstrates two things. The first is that the corrections can work incred-

ibly well in some domains. The second is that in order to produce the poor behavior noted

in Figure 4-1 the heuristic must be incorrect early on for all nodes leading to a reasonable

goal. It is not enough for the heuristic to merely be very incorrect early.

In the eight benchmark domains considered in the evaluation below, we observed neither

of the behaviors present in these hand-crafted examples. This suggests that it is often the

case that the heuristic is neither consistently misinformed, nor is it perfectly informed. This

is to be expected, as heuristics are generally heavily engineered functions designed to work

well in practice.

4.2.3 Performance of Single-Step Corrections

We will consider two ways of evaluating the quality of our learned heuristics. First, we

look at how accurately they predict the true cost-to-go. We then consider their success in

guiding a heuristic search algorithm towards a goal.

Absolute Accuracy

For the accuracy study, we consider three small benchmark domains:

Sliding Tiles Puzzles We examined 100 random 8-puzzle instances. In our implementa-

tion, the goal state has the blank in the upper-left, with the numeric tiles laid out in

sequence left to right, top to bottom. All actions have unit cost. We do not consider
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moving back to the parent node’s state, so very few duplicate states are encountered

during search. Manhattan distance is used to estimate the cost and distance-to-go for

all states.

Grid-world Navigation We tested on grid pathfinding problems using the “life” cost

function. This cost function produces problems where actions have a large range of

costs, short solutions are more costly than longer ones, and the search space includes

several large g-value plateaus. These properties have recently seen significant interest

[2, 78]. We examined 200 by 200 grids with 35% of cells blocked randomly. The

cost function means that standard heuristics like Manhattan distance are no longer

an accurate (or even admissible) estimate of cost-to-go for these grid problems. To

compute a heuristic for these problems, we assume that there are no obstacles and

analytically compute the cheapest solution from a node to the goal.

Vacuum World In this domain, which follows the first state space presented by Russell

and Norvig[56], a robot is charged with cleaning up a grid world. Movement is in the

cardinal directions, and when the robot is on top of a pile of dirt, it may vacuum. The

cost of movement is one plus the number of dirt piles that have already been vacuumed

up. Cleaning has unit cost. We used 100 instances that are 200 by 200 with 5 piles

of dirt and 35% of cells blocked randomly. An admissible cost-to-go heuristic is found

by computing the spanning tree of all dirty cells and the robot. The edges in the

spanning tree are then weighted, with the longest edge receiving the current robot

weight, the next longest the robot weight plus one, and so on. The length of the

solution is estimated inadmissibly by making a free space assumption and computing

a greedy traversal of the dirty cells.

In each domain, we examined the following single-step correction techniques:

SS Path The path-based corrections based on single-step error computed as in Equa-

tion 4.20.
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Figure 4-3: Accuracy of single-step corrections on the Eight-puzzle, “Life” grids, and vac-

uum world.

SS Global The global corrections based on single-step error computed as in Equation 4.18.

The best child of a node is computed using f(n) rather than the improved estimate

f̂(n) as mentioned previously.

All algorithms were implemented in Objective Caml, compiled to 64-bit native code,

and run on Linux systems with 3.16 GHz Intel Core2 duo processors and 8 GB of RAM.

All of the algorithms share the same domain functions and data structures to help ensure

fair comparisons.
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Figure 4-3 shows the performance of the learned heuristics relative to truth on our

small benchmark domains. Error, the y-axis, was computed as h∗(n)− ĥ(n) where ĥ is the

heuristic labeled on the x-axis. We present the data in the form of a box-plot. The area

between the whiskers extend to the extremes. The box itself shows data between the first

and third quartile, and the line in the box shows the median value. The gray rectangle

shows 95% confidence intervals about the mean. The intervals are so tight for most of the

plots this rectangle will appear as a short line. Occasionally this line overlaps with the

median, and can not be seen.

In all three plots, we see that the baseline, the admissible heuristic has all of its error

above zero because it is required to underestimate the true cost-to-go. It is also relatively

accurate when compared to the two learned heuristics. The extreme values for the admissible

heuristic are always smaller than that of the learned heuristics. Further, the total range of

values is also always smaller than that for the learned heuristics. In the eight puzzle, the

base heuristic is the most accurate, it has a mean error closer to zero than any of the other

heuristics being considered.

The second column in the plots shows the error present in single step path based cor-

rections on our three small benchmark domains. In all three domains examined here, we

see that the path based correction has worse performance, in terms of error, than the base

heuristic it is attempting to correct. We see this in that the path based corrections have

median and mean values further away from 0 error and in that the path based corrections

result in more extreme error values.

The final columns in all plots of Figure 4-3 present corrections based on global averages

of single-step error. We see that the global estimator produces the most accurate estimations

of the three heuristics presented in the figures for two of our three domains: life grids and

vacuum world. The estimates are better in that the mean and median values are closer to

0.

Given the performance of these heuristics relative to truth, we might expect a search

algorithm guided by global corrections to perform best in life grids, while the base heuristic
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would perform best in the eight puzzle and in vacuum worlds. Surprisingly, this is not what

we observe in the following empirical evaluation. Single step corrections based on path

based error, despite being the least accurate in terms of absolute error, provide the best

guidance when used in search. It appears to be the case that accuracy is a poor predictor

of the performance of a heuristic in search.

Guidance

We now turn from the absolute accuracy and evaluate the performance of these heuristics

inside of search algorithms. While absolute accuracy may give us some indications as to

how a heuristic will perform inside of a search algorithm, it doesn’t tell the whole story, and

this is one of the most common misconceptions in heuristic search [27]. We will see that,

surprisingly, path-based corrections provide superior guidance despite being less accurate in

absolute terms. We delay our evaluation of heuristics in bounded suboptimal search until

Section 4.2.6 so that we can evaluate the guidance of the heuristics alone before examining

their interaction with admissible heuristics which are needed to provide guarantees on so-

lution quality. Greedy search [16] is a best-first heuristic search where best is determined

solely by a cost-to-go estimate. While this estimate may be admissible, greedy search can

provide no guarantees on the quality of the solutions it returns, so there is no need to limit

the heuristic by restricting it to be admissible. For the guidance study, we use four addi-

tional benchmark domains. They were omitted from the accuracy study because we cannot

measure accuracy for all states as the search spaces are too large to be enumerated on our

machines.

Fifteen Puzzle We examined the 100 instances of the 15-puzzle presented by Korf[34]. It

uses the Manhattan distance heuristic for both h(n) and d(n), just as we did in the

8-puzzle.

Dynamic Robot Following Likhachev, Gordon, and Thrun[37], the goal is to find the

fastest path from the initial state of the robot to some goal location and heading,
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taking momentum into account. We use worlds that are 200 by 200 cells in size. We

scatter 25 lines, up to 70 cells in length, with random orientations across the domain

and present results averaged over 100 instances. We precompute the shortest path

from the goal to all states, ignoring dynamics. To compute h, we take the length of

the shortest path from a node to a goal and divide it by the maximum velocity of the

robot. For d, we use the number of actions along that path.

Dock Robot We implemented a dock robot domain inspired by Ghallab, Nau, and Traverso[21]

and the depots domain from the International Planning Competition. Here, a robot

must move containers to their desired locations. Containers are stacked at a location

using a crane, and only the topmost container on a pile may be accessed at any time.

The robot may drive between locations and load or unload itself using the crane at the

location. We tested on 150 randomly configured problems having three locations laid

out on a unit square and ten containers with random start and goal configurations.

Driving between the depots has a cost of the distance between them, loading and un-

loading the robot costs 0.1, and the cost of using the crane was 0.05 times the height

of the stack of containers at the depot. h was computed as the cost of driving between

all depots with containers that did not belong to them in the goal configuration plus

the cost of moving the deepest out of place container in the stack to the robot. d was

computed similarly, but 1 is used rather than the actual costs.

Vacuums This differs from the accuracy study in that now there are 10 piles of dirt to

remove instead of 5. The size of the state space is exponential in the number of dirt

piles, so these problems are considerably more difficult than the previous ones. h and

d are computed as before.

Table 4.1 presents the results of using the learned heuristics within a greedy best-first

search for the domains in the accuracy study. Algorithms are run until a solution is found,

memory is exhausted, or 10 minutes have passed. We report the mean CPU time required

to find a solution (for the eight puzzle we report nodes generated because the times are
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Eight Puzzle Life Grids Small Vacuums

generated cost sec
1000

cost
1000 secs cost

Baseline 582 128 169 2993 0.990 2673

SS Global 763 43 74 3050 0.405 2457

SS Path 463 33 71 2795 0.260 2100

Table 4.1: Performance of single-step corrections in greedy search on domains from accuracy

study.

Fifteen Puzzle Dynamic Robot Dock Robot Large Vacuums

secs
1000 cost secs

1000 cost secs cost secs cost

Baseline 29 302 60 522 169 Failed 55 9.07 9635

SS Global 177 136 563 1321 77.2 Failed 24 3.56 6808

SS Path 15 90 14 47 0.38 29 1.22 6063

Table 4.2: Performance of single-step corrections when used in greedy search on larger

problems.

extremely small) and the mean cost of that solution. The worst entry in a column is

italicized, and the best value in each column is bolded. The table reveals that the more

accurate predictors do not always lead to improved performance within a search algorithm.

If they did, the global corrections, which were consistently more accurate than the path-

based single-step approach, would have the best performance. We see that, despite its

relatively poor accuracy, the path-based corrections produce the best performance in terms

of both solving time and solution cost in a greedy search on these three small benchmarks.

Further, the global correction, which was more accurate than the base heuristic in two

domains, provides worse performance across the board in terms of solving time.

We show results on more difficult problems in Table 4.2. These problems are difficult

enough that not all heuristics can guide greedy search to a solution using the machines we
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15 Puzzle

Heuristic secs
1000 cost

Manhattan Distance 29 302

7-8 PDB 44 85

Manhattan Distance SS Path 15 90

7-8 PDB SS Path 13 65

Table 4.3: Performance of Learned Heuristics Compared to that of Pattern Databases

had at our disposal. When an algorithm fails to find a solution within system memory or

within 10 minutes, we say that it failed. So, for more difficult instances, the cost column

either reports the mean solution cost or the number of instances the algorithm failed to

solve. Seconds is mean elapsed time for all instances, regardless of why the algorithm

halted (i.e. timeouts score 600 seconds, memory exhaustion as long as it takes to exhaust

memory, and so on). We see that the same trend in performance, that path-based single-

step corrections provide the best guidance, holds for larger problem sizes as well as for a

wider variety of problems than we examined in Table 4.1. The dockyard robot domain is

particularly interesting. Here, the single-step path corrections solve more instances than

either approach. By observing the performance of the heuristic on a single instance we can

solve problems that we could not solve with the base heuristic alone.

4.2.4 Impact of Base Heuristic Accuracy

One might wonder if these observed improvements are limited to relatively weak heuristics

like Manhattan Distance. In Table 3 we compare our best learning method with a modern

pattern database for the 15-puzzle, the 7-8 PDB [33]. The 7-8 pdb is actually the sum

of pdb heuristics that have been computed such that they can be added together without

becoming inadmissible. Rather than computing the distance of every tile from its goal

location, a PDB heuristic works by enumerating the state space for a relaxed version of the
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Vacuums Life Grids

Learning nodes
1000

cost
1000

nodes
1000

cost
1000

Base 206 10 115 2993

SS Global 62 7 42 3049

Same Instance 48 7 36 2992

Random Instance 64 7 36 2983

Table 4.4: The learning is instance specific.

problem, in this case one where all of the tiles other than 1 through 7 have no symbol on

them. The space is then enumerated using all of the actions available in the real problem,

and the distance of each state from the goal is recorded. During search, we then abstract

the state we are examining into the pattern used in the pattern database, that is we imagine

all of the tiles other than 1-7 have been wiped clean, and then ask the pdb how expensive

our current configuration is. In the case of the 7-8 pdb, this abstraction and look-up is done

twice, and then the values are summed up to provide an estimate of cost-to-go.

We see that using the pattern database heuristic substantially improves the performance

of greedy search when compared to the Manhattan distance heuristic. However, our path-

based heuristic finds solutions faster than the PDB heuristic and those solutions are not

much worse on average, and on some instances our heuristic can find better solutions.

This is accomplished without the benefit of the pre-computation needed to construct the

pattern databases. If we add our path-based correction to the PDB heuristic (the last line

of Table 4.3), it further improves performance, finding better solutions faster than ether the

PDB alone or path-based corrections on top of Manhattan distance. From this we conclude

that single-step correction can improve the performance of even strong heuristics.
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4.2.5 Instance Specific Heuristics

One advantage of online corrections is that they do not require the use of a set of training

instances. This means we can altogether avoid the problem of ensuring that our training

instances are similar enough to our test instances for the learning to generalize. Since all of

our learning is being performed online during the solving of a single instance, we needn’t

worry about generalization. However, we might wonder if the information being learned

during the search is specific to one instance, or if it can be used to seed the estimated error

values for searches on other instances in the same domain.

Table 4.4 shows the performance of our global single-step model used in greedy search

in two new ways. The first row of the table shows the performance of the base heuristic and

the second row of the table shows the performance of the global single-step model learned

on line. The third line, “Same Instance” shows the performance of the global single-step

model values for error learned by the global model on the same instance of the problem

being solved. “Random Instance” is similar, but as the name implies the learned values

come from a random instance. We use the global model because it is clear how to transfer

the information learned from one instance to another: we simply take the final values we

computed for ǭh and ǭd and use those as the average error in a new problem. In this table,

we present results in terms of nodes generated in order to focus on search guidance and

ignore the overhead of learning (Table 4.2 already demonstrated that using online learning

can improve the speed of search algorithms). We present two domains, the vacuum domain,

where learned heuristic errors are very different between instances, and life grids, where

learned error is similar between instances.

As we saw before in Table 4.2, the online corrections produce better results than the base

heuristic. Additionally, for both domains, using the errors learned previously for the same

instance improves performance substantially. This shows us that the improved performance

is not because of some fortuitous synergy between learning and search. If it were, the

online model would out-perform the same errors fed into a static model. As it does not, we

63



conclude that we are learning a meaningful ordering over the nodes.

We see that the heuristic learned from the same instance performs better than one from

a random instance in the vacuum domain. This indicates that the technique is learning

an instance-specific model online, and that instance-specific information is beneficial to

our searches. Interestingly, we see that error estimates taken from a random instance

produce strong performance on another instance for the life grid problem, but produce

worse performance for the vacuum problem. Recall that for life grids, the start and goal

state were always in the same location, and the obstacles were placed down uniformly at

random. This suggests that the error in the heuristic is likely to be similar between any

two random instances, and thus the learning should generalize well from one instance to

another.

The results presented in Table 4.4 suggest that the heuristic corrections we learn are truly

specific to the instance. In fact, all of the online learning seems to produce results tailored to

the instance, as we also observed the learned weights for other learning techniques (discussed

in Section 4.3.2) varied substantially across instances in several domains, most notably

vacuum problems and dock yard robot problems. We take both of these as indications that

the outcome of the learning, in all of the online cases presented here, is instance specific.

4.2.6 Bounded Suboptimal Search

Greedy best-first search attempts to find high quality solutions quickly without providing

bounds on either the quality of solutions or the time required to find them. There are

settings in which such a best-effort approach is inadequate and we need hard bounds on

solution quality. When we want to find solutions whose quality is within a fixed range of

optimal, we rely on bounded suboptimal search.

Bounded suboptimal search algorithms like weighted A∗ [46] rely on the admissibility

of their base heuristic to obtain their suboptimality bound. However, there are algorithms

that can use arbitrary heuristics for at least a portion of their search. Optimistic search

[67] is one such algorithm. As proposed, optimistic search works by running weighted A∗
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OptimisticSearch(root, b, w)

1. incumbent← null

2. open← {root}

3. while(incumbent = null and open 6= {})

4. remove n from open with minimum f ′(n) = g(n) + w · h(n)

5. if n is a goal

6. incumbent← n

7. otherwise, expand n and insert children into open

8. while(open 6= {})

9. fmin ← n ∈ open with minimum f(n) = g(n) + h(n)

10. f ′
min ← n ∈ open with minimum f ′(n) = g(n) + w · h(n)

11. if b · f(fmin) ≥ g(incumbent)

12. return incumbent

13. otherwise, if f ′(f ′
min) ≤ g(incumbent)

14. if f ′
min is a goal

15. incumbent← min(f ′
min, incumbent)

16. otherwise, remove f ′
min from open, expand it, and insert its children.

17. otherwise, remove fmin from open, expand it and insert children into open

18. return incumbent

Figure 4-4: Optimistic Search pseudo code with escape hatch.
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with a weight higher than the desired suboptimality bound. After finding an incumbent,

additional nodes are expanded in A* order until we can prove the solution found was within

the desired suboptimality bound.

We prove that the incumbent is within the bound by comparing its cost to the estimated

cost of the node with the smallest f -value. The f -value of a node acts as a lower bound on

the cost of a solution through that node, so the f -value of the node with the smallest f -value

acts as a lower bound on the cost of an optimal solution to a problem. Therefor, if f(fmin)

is within a factor b of the cost of the incumbent solution, we know that the incumbents

quality is within a bounded factor of the cost of an optimal solution. The “weight higher

than the desired suboptimality bound” can be hand tuned per problem or per domain,

although we found that a weight twice as large as the desired bound worked rather well in

the domains we’ve evaluated the algorithm in.

Pseudo code for the algorithm is provided in Figure 4-4. In lines 3 through 7, weighted

A* using a weight w higher than the bound b is used to find an initial solution. The remain-

der of the code is focused on proving that the incumbent is within the desired suboptimality

bound (lines 11, 12, and 17) or opportunistically improving the quality of the incumbent

solution. In lines 11 and 12, we test to see if the incumbent solution can be shown to be

within the bound currently, and we return the solution if it is know to be within the bound.

In line 17, we remove fmin from open and expand it. This may raise the lower bound on the

cost of an optimal solution to the problem, allowing us to return the current incumbent in

the next iteration. Lines 13–16 seek to improve the current incumbent solution. If it ever

appears that a node might lead to a better incumbent solution, it is pursued. In practice,

these rules are rarely, if ever, used. For a node to be expanded by these rules, it must

first be generated by an fmin expansion, otherwise it would have been expanded before an

incumbent was found in lines 1–7. In practice, we prove the quality of a solution long before

such a node becomes a candidate for expansion in line 13. If w and b are selected such that

the solution initially found is outside of the bound, these rules will be used.

The pseudo code makes no attempt to specially handle duplicate states, that is states
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re-encountered by a cheaper path. It is well known that specially handling duplicate states,

by not re-expanding them, often improves the performance of weighted A* [39, 74]. If the

heuristic being used is consistent, dropping duplicates has no impact on the suboptimality

bound. If the heuristic is inconsistent, the bound is incredibly relaxed, see “Weighted A∗

Search – Unifying View and Application”[17] for details. In skeptical search, we cannot

drop duplicates entirely. The must be retained because of the way we prove the quality

of solutions returned by the search algorithm. At best, we can choose to delay duplicates

during the first iteration of skeptical search, when we are looking for a potential solutions.

This leads us to find potential solutions faster, but they tend to be of lower quality. This

makes the step of proving solution quality take longer. Preliminary experiments showed

that delaying duplicate expansions until the cleanup phase provided better performance,

and this is the approach taken in the results reported here.

When searching for an incumbent solution, optimistic search can use any inadmissible

heuristic and still retain its guarantees of bounded suboptimality as long as an admissible

heuristic is available for proving that the incumbent was within the desired bound. While, at

first glance, it may not be obvious that optimistic search is using an inadmissible heuristic,

we can show that it is by closely examining line 4. Rather than writing f ′(n) = g(n)+w·h(n),

we could instead write f ′(n) = g(n)+b · w
b
·h(n). We can think of w

b
·h(n) as an inadmissible

heuristic which attempts to correct for the under-estimating nature of h(n) by scaling it

up uniformly (recall that w > b). We can replace the weighted admissible heuristic from

the first phase of optimistic search with any learned heuristic. We call this modification

of optimistic search skeptical search, and we provide pseudo code for it in Figure 4-5. It is

skeptical in that it does not place absolute trust in the base heuristic. Note that the ad hoc

additional weight parameter of optimistic search has been removed, and so skeptical only

accepts two parameters instead of three. As we will see in the following evaluation, skeptical

search offers two benefits over optimistic search. It removes the need for parameter tuning

and provides improved performance in several benchmark domains.

Figures 4-6, 4-7, 4-8, and 4-9 compare several parameter settings for the original opti-
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SkepticalSearch(root, w)

1. incumbent← null

2. open← {root}

3. while(incumbent = null and open 6= {})

4. remove n from open with minimum f̂ ′(n) = g(n) + w · ĥ(n)

5. if n is a goal

6. incumbent← n

7. otherwise, expand n and insert children into open

8. while(open 6= {})

9. fmin ← n ∈ open with minimum f(n) = g(n) + h(n)

10. f̂ ′
min ← n ∈ open with minimum f̂ ′(n) = g(n) + w · ĥ(n)

11. if w · f(fmin) ≥ g(incumbent)

12. return incumbent

13. otherwise, if f̂ ′(f̂ ′
min) ≤ g(incumbent)

14. if f̂ ′
min is a goal

15. incumbent← min(f̂ ′
min, incumbent)

16. otherwise, remove f̂ ′
min from open, expand it, and insert its children.

17. otherwise, remove fmin from open, expand it and insert children into open

18. return incumbent

Figure 4-5: Skeptical Search pseudo code
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Dynamic Robot Navigation
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mistic search [67], weighted A∗ and skeptical search. The x-axis of the plot is the subopti-

mality bound, the desired guarantee on solution quality. The y-axis represents the amount

of time needed to solve problems for the given bound. We show only the results for skeptical

with path-based correction, the solid line in all four plots as it produced the best results.

Although many of the algorithms are often difficult to distinguish in detail, what is

clear is that skeptical search is always at least competitive with optimistic search for any

of the optimism settings examined. On the fifteen puzzle (Figure 4-6) and dynamic robot

navigation (Figure 4-8) because the confidence intervals on the search time between skeptical

search and the best configuration for optimistic search overlap. For life cost grids (Figure 4-

7), we see that skeptical search takes between half and a third of the time needed by any

optimistic search and and it is substantially better in vacuum world (Figure 4-9).

In addition to out-performing optimistic search, skeptical search removes the need for

parameter tuning. Optimistic search requires two parameters, the desired suboptimality

bound and an optimism factor. The optimism factor tells optimistic search how aggressive

it should be in pursuing the initial solution. If it is set too high, the incumbent solution

will be outside of the desired bound, and the performance of the algorithm will suffer. If it

is set too low, finding the initial solution will take too long, pulling down overall algorithm

performance. Skeptical search has only the desired suboptimality bound as a parameter.

Rather than requiring an explicit optimism factor, skeptical search constructs ĥ using its

experience during problem solving. It’s best suited to domains where expanding nodes

and computing heuristics is relatively inexpensive. If computing heuristics and generating

successors is very expensive, more complicated techniques like explicit estimation search

[70] are more appropriate. Of the domains presented here, explicit estimation search only

outperforms skeptical search in vacuum world.

4.2.7 Summary

As we have just seen, our approach to learning heuristic corrections online, during the solving

of a single instance, produces heuristics with strong guidance and poor overall accuracy.
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We saw that the strong guidance led to good performance in both suboptimal and bounded

suboptimal search, improving substantially on the performance of the base heuristics. We

provided several indications that the learning being performed learned something specific

to the instance being solved, which is particularly useful when the instances of interest have

substantially different properties despite being from the same domain, as they might in

planning, for example.

Finally, we should note that we make no assumptions about the characteristics of the

heuristics used as the basis for learning, This allows our technique to be as general as

possible. None of the equations showing that the learning of single-step corrections is

theoretically sound rely on assumptions about the basic nature of the underlying heuristics

save for the following: h(n) estimates the cost-to-go from n to a goal, and d(n) estimates

the number of actions in that solution. We did not make, nor do we need make, any

assumption as to the consistency, admissibility, or accuracy of the underlying heuristic.

Naturally, better quality from the start will lead to better quality in the output, but even

with very uninformed heuristics the techniques are technically sound. This results in a wide

applicability for the described techniques.

4.3 Alternate Approaches

The single-step corrections presented in the previous section are not the only way that the

relationship between a parent and its best child might be leveraged. The following are some

alternative approaches that, while similarly justified and natural, do not appear to work as

well in practice, as we will see in the following evaluation.

4.3.1 Single-step Correction Without Distance Estimates

We might naturally wonder how much the distance-to-go heuristic d(n) is contributing to

the singles-step correction process. To evaluate this we altered the single-step error model

to use only cost-to-go estimates, removing the need for distance-to-go estimates entirely.
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Rather than measuring the error in h(n) per-step, we measure it per-cost:

ǫcosthp
=

(h(bc(p)) + c(p, bc(p)))− h(p)

c(p, bc(p))
(4.21)

This can also be rewritten using Equation 4.2:

ǫcosthp
=

ǫhp

c(p, bc(p))
(4.22)

Then, we compute the mean cost-step error at p as:

ǭcosthp
=

∑
n∈p goal ǫ

cost
hn

h∗(p)
(4.23)

We then compute the corrected heuristic as:

ĥcost(n) =
h(n)

1− ǭcosthn

(4.24)

using, as we did in Equations 4.18 and 4.20, either a path-based or global average to estimate

ǭcosthp
. The following proof shows that this is a legitimate correction:

Theorem 3 For any node p with a goal beneath it:

h∗(p) = h(p) + h∗(p) · ǭcosthp
(4.25)

where ǭcosthp
is the average per-cost error in the cost-to-go estimate h(p).

Proof: The proof is by induction over the nodes in p  goal, the optimal path from p to

a goal node. For our base case, we show that when bc(p) is a goal, Equation 4.25 holds:

h∗(p) = c(p, bc(p)) because bc(p) is the goal

= h(p) + c(p, bc(p))− h(p) by algebra

= h(p) + c(p, bc(p)) · c(p,bc(p)))−h(p)
c(p,bc(p)) by algebra

= h(p) + c(p, bc(p)) · (h(bc(p))+c(p,bc(p)))−h(p)
c(p,bc(p)) h(bc(p)) = 0

= h(p) + c(p, bc(p)) · ǭcosthp
by Equation 4.21

= h(p) + h∗(p) · ǭcosthp
because bc(p) is the goal

73



For the inductive case we show that, assuming that Equation 4.25 holds for bc(p), we

can show that it holds for its parent p as well:

h∗(p) = c(p, bc(p)) + h∗(bc(p)) by Equation 4.1

= c(p, bc(p)) + h(bc(p)) + h∗(bc(p)) · ǭcosthbc(p)
by inductive assumption

= h(p) + ǫhp
+ h∗(bc(p)) · ǭcosthbc(p)

by Equation 4.2

= h(p) + ǫhp
+
∑

n∈bc(p) goal ǫ
cost
hn

by Equation 4.23

= h(p) +
∑

n∈p goal ǫ
cost
hn

by definition of  

= h(p) + h∗(p) ·
∑

n∈p goal ǫ
cost
hn

h∗(p) by algebra

= h(p) + h∗(p) · ǭcosthp
by Equation 4.23

�

Solving Equation 4.25 for h∗(p), we can arrive at something nearly identical to Equa-

tion 4.24. The difference is that here we have the exact single-step error, and in Equa-

tion 4.24 single-step error is being estimated.

h∗(p) = h(p) + h∗(p) · ǭcosth

h∗(p)− h∗(p) · ǭcosth = h(p)

h∗(p) · (1− ǭcosth ) = h(p)

h∗(p) =
h(p)

(1− ǭcosth )

As with the single-step model, there are many ways we could choose to aggregate the

observed error in the heuristic. In this work we evaluate two:

Cost Global Computes ĥ based on the cost-based error in h(n), computed as in Equa-

tion 4.24 using a global average to estimate the error in h. The best-child is estimated

as in the global model.

Cost Path Computes ĥ based on the cost-based error in h(n), computed as in Equa-

tion 4.24. Error in the cost-to-go heuristic is aggregated along paths as in the previous

path-based model.
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Figure 4-10: Accuracy of cost-step model on “Life” grids (left) and small vacuum problems

(right)

We now evaluate the cost-step model. This will allow us to see the influence of distance

estimates on our single-step corrections.

Accuracy

Figure 4-10 shows the absolute accuracy of the cost-step models on “life” grid navigation

and small vacuum problems. The eight-puzzle is omitted because it has unit cost, and the

cost-step models are identical to the single-step models for such domains. Additionally,

the cost-based global model is omitted from Figure 4-10 as it occasionally estimated the

heuristic to be infinitely large. The figure shows that, like the single-step approach to

learning, the heuristics constructed online using cost-step error are less accurate than the

base heuristic that they are being built from. As we saw in the previously presented distance

based corrections, the global model appears to be less accurate in general than the path

based corrections.
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Life Grids Small Vacuums

sec
1000

cost
1000 secs cost

Baseline 169 2993 0.990 2673

Cost-Global 5140 9846 1.042 2786

Cost-Path 2509 3246 1.725 1910

SS Path 71 2795 0.260 2100

Table 4.5: Performance in greedy search on domains from accuracy study.

Dynamic Robot Dock Robot Vacuums

secs
1000 cost secs cost secs cost

Baseline 60 522 169 Failed 55 9.07 9635

Cost-Global 600000 Failed 40 349 Failed 73 1.75 Failed 1

Cost-Path 14 46 11.8 Failed 2 1.94 Failed 22

Path 14 47 0.385 29 1.22 6063

Table 4.6: Comparing cost-step corrections to single-step corrections on larger problems.
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Guidance

Table 4.5 shows the performance of the cost-step heuristics in a greedy best-first search on

the domains used in the accuracy study. While we might expect that, like the single-step

models, cost-step heuristics would provide better guidance than the baseline, the experi-

ments reveal that they do not. We see that, for these domains, both cost-based approaches

are worse than the base heuristic in terms of time and solution cost.

Table 4.6 shows the performance of the cost-step heuristics on larger benchmark prob-

lems. We see that although the global version of the cost-step approach is consistently worse

than the base heuristic, the path-based approach often makes substantial improvements,

solving problems faster and providing solutions of lower cost. The single-step path-based

heuristic is still substantially better in that it is never slower and it never failed to solve

one of our benchmark instances. From this we can conclude that using the distance-to-go

estimate d(n) is important to the good performance of our corrected heuristics.

4.3.2 Comparison to Generic Regression Algorithms

If our corrected heuristics were perfect, we would see that the estimated cost of the parent,

f̂ , was exactly that of the estimated cost of the best child. If we were computing the

corrected heuristic as a weighted sum of features we could expand this equation to be:

f̂(p) = f̂(bc(p)) (4.26)

g(p) + ĥ(p) = g(bc(p)) + ĥ(bc(p)) (4.27)

ĥ(p) = g(bc(p))− g(p) + ĥ(bc(p)) (4.28)

ĥ(p) = ĥ(bc(p)) + c(p, bc(p)) (4.29)

ĥ(p)− ĥ(bc(p)) = c(p, bc(p)) (4.30)

( ~φ(p)− ~φ(bc(p)))× ~w = c(p, bc(p)) (4.31)

This shows that, so long as we can determine which node is the best child, we can use linear

regression to compute an improved estimate of cost-to-go. To do this, we use the difference
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of a set of features between a parent and its best child and learn a function from them onto

the cost of the transition between them. The same function for estimating the cost of the

transition from the differences in features will be an estimator of the full cost-to-go from

any node, as shown by the above algebra.

Unfortunately, this does not work for all regression algorithms. If the learned function

is not a linear combination of the features, then we cannot perform the transformation in

between Equation 4.30 and Equation 4.31. We can still use regression techniques in these

situations, so long as we are willing to assume that the heuristic values of nodes deeper

in the search tree are more likely to be accurate than that of nodes higher in the tree.

Equation 4.1 suggests that we can approximate h∗(p) as h(bc(p)) + c(p, bc(p)). It may be

reasonable to assume that the heuristic of the child has a more accurate heuristic because

the best child is one step closer to a goal, and therefor has less to be uncertain about. What

this effectively provides us is a target value for standard regression techniques that can be

used during the search itself. For all nodes (save the root), we can collect a set of features

of the parent and then train them to estimate the heuristic of the best child plus the cost

of arriving at that child, which should be more accurate than the original heuristic.

We use the following four features for performing linear regression and training artificial

neural networks:

g(n) the cost of arriving at n from the root

h(n) an estimate of the cost-to-go from n to a goal along a cost-optimal path from n to the

goal

depth(n) the number of actions between the root and n

d(n) an estimate of the number of actions along a cost-optimal path from n to the goal

We take care to try to normalize the features between 0 and 1 based on an estimate of

their range (using the h and d values of the root), as this typically improves the performance

of learning. We cannot always normalize the values between 0 and 1 because we do not
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always know what the maximum value for a feature is a priori. We evaluate the following

learning techniques:

LMS Least means squared linear regression can be used to train an improved estimator of

cost-to-go. In the offline setting, this is typically done with batched regression using

a library like LAPACK. However, in our online setting, batched regression, while

incredibly efficient, is impractically slow. We use streamed regression which will still

converge provided the data are presented in a random order. Since an online approach

will present the data to the learner in an order related to the search order, we are

violating one of the assumptions that guarantees our learning will converge. Therefor

we can only make observations as to the empirical performance of online regression,

not its correctness.

ANN This learning technique was also used by Jabarri Arfaee, Zilles and Holte[28]. We

trained a three layer neural network with three hidden nodes and used it to compute

ĥ. We used a back-propagation learning rate of 0.01. To initialize the network, we

collected the first 100 training pairs and performed a batch regression for 1000 epochs

or until the network converged. Doing the batched regression any shorter or longer

had a negative impact on performance. After this initial period, we began streaming

subsequent features and target values to the learner.

ANN Offline We used the same network architecture and training algorithm as before,

but now in the offline sett. We used at least 500,000 feature-target pairs taken from

10 random instances, with the exact number of pairs varying by domain. We used

h∗(n) as the target value and used g∗(n), the optimal cost of arriving at a node from

the initial state, as features in addition to d(n), h(n), depth(n), and a constant. We

trained the network for 10,000 epochs or until it converged.

LMS Offline Using the same data as we did when training the offline ANN, we optimally

solved a least mean squared linear regression using h∗(n) as the target value and g∗(n),
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Eight Puzzle Life Grids Small Vacuums

generated cost sec
1000

cost
1000 secs cost

Baseline 582 128 169 2993 0.990 2673

Offline LMS 337 113 275 3967 6.266 1573

Online LMS 514 108 216 2993 0.158 1368

Offline ANN 798 31 323 2809 0.390 2459

Online ANN 610 56 919 5056 0.995 5415

SS Path 463 33 71 2795 0.260 2100

Table 4.7: Performance in greedy search on small domains

d(n), h(n), depth(n) and a constant as features.

Accuracy

Figure 4-11 shows the performance of the machine learning techniques in terms of absolute

accuracy on the Eight puzzle, “life” grid navigation, and our small vacuum benchmark. We

see, most notably in the eight puzzle plots of Figure 4-11, that the offline estimators are

better predictors of cost-to-go than the base heuristic or their online counterparts. That

is, they have a mean error that is closer to 0 than the other heuristics. We also see that

the online LMS corrections are unstable. It may be very accurate as it is in Life Grids, or

it could be incredibly inaccurate, having error many orders of magnitude larger than other

estimators, as we see in the eight puzzle. We will see that despite this wild fluctuation in

accuracy, online LMS regression produces the best performance of all regression techniques

evaluated here when used in a search algorithm.

Guidance

Table 4.7 shows the performance of these learned heuristics in greedy search for the same

domains that we used in the accuracy study. We see that the offline ANN tends to out-
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Figure 4-11: Accuracy of heuristics constructed with standard regression techniques on

Eight-puzzles, “life” grids, and small vacuum problems.
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perform its online counterpart. This isn’t particularly surprising. The offline learners have

better data available as they are learning against true cost-to-go values.

For the Eight puzzle, Offline LMS finds solutions faster than any other approach, while

the Offline ANN finds the best solutions but requires a few more expansions. For permu-

tation puzzles like the 8 and 15-puzzle, the state space for all problems is identical and a

heuristic learned on one instance of the problem transfers perfectly to new instances of that

problem. The offline techniques benefit by knowing the “correct” answer at the beginning

of search while the online technique must learn the improved heuristic on the fly. That is,

the offline techniques have already performed all of their learning and converged on a set

of weights to produce ĥ. This function will be used on all nodes in search. In contrast, the

online techniques are learning their weights, and so ĥ will fluctuate over time leading to

potentially unfair comparisons of nodes.

We see that for these small benchmarks the online LMS correction is competitive with

the single-step path corrections. It is nearly as efficient for the Eight Puzzle, and produces

better solutions in less time on the small Vacuum World benchmarks. It is interesting to

note that online LMS performs best when it is least accurate on these benchmark domains.

It is, however, just over three times slower on the Life Grid benchmarks. When we move to

larger benchmarks, we will see that online LMS is not competitive with single-step path-

based corrections as it finds worse solutions and is often much slower.

Table 4.8 shows the performance of the learned heuristics in greedy best-first search

on problems that are too large to enumerate. As these problems are so large, we can not

perform offline learning directly. The LMS heuristics now outperform the ANN heuristics

which had less variance and a better mean. Why is this? First, recall that the target values

for both learners are very different. The offline techniques are allowed to see truth, while

the online techniques must approximate the target value for learning using the f -values of

their children. We posit that the ANN is more sensitive to noise in the target values. Since

it is capable of learning a more expressive range of functions than linear regression, it is

also more prone to over-training. It may be learning to predict the noise in our prediction
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Fifteen Puzzle Dynamic Robot Dock Robot Vacuums

secs
1000 cost secs

1000 cost secs cost secs cost

Baseline 29 302 60 522 169 Failed 55 9.07 9635

Online LMS 8 520 75 522 73 Failed 17 9.42 9635

Reverse LMS 25 150 17128 95 – – 6.556 9648

Online ANN 2444 719 3418 881 135 Failed 47 7.40 6155

Reverse ANN 531 831 465133 254 – – 14.28 13525

SS Path 15 90 14 47 0.385 29 1.22 6063

Table 4.8: Comparing online LMS and ANN’s to single-step corrections on larger problems

of the true cost-to-go instead of predicting h∗ as we would desire.

That linear regression and neural network-based heuristics perform so poorly is espe-

cially surprising considering how well these techniques have performed in previous work on

learning in heuristic search and their high accuracy in our own evaluation. Our explanation

is that previous work has mostly focused (with the notable exception of Xu, Fern, and Yoon

[80], discussed in Section 4.5) on learning heuristics for optimal search algorithms, namely

iterative deepening A∗. The role, and therefore the desired properties, of the heuristic in

IDA∗ and greedy best-first search differ substantially. IDA∗ uses heuristics primarily for

pruning, and in many implementations only pruning, while greedy best-first search uses

the heuristic solely for guidance. IDA∗ works by expanding all nodes within a cost bound,

and iteratively increasing this cost bound until a solution is contained within it. In all but

the final iteration, the relative ordering of nodes is of no consequence, with the exception

of the final iteration, and many implementations ignore child ordering as a result 1. The

child ordering is of limited consequence because, excepting the final iteration, IDA* must

exhaust the entire f -layer to show that no solution exists within the current bound. This,

1The current state-of-the-art is to run IDA∗ with multiple action orderings in parallel [76],which takes

advantage of child ordering, but doesn’t use the heuristic to order the children.
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along with the way the bound is updated, guarantee that when a solution is found it will

be an optimal solution.

If our goal is to exhaust all nodes with some property and not, instead, to find a goal,

then we don’t care what order we expand the nodes in. Accurate cost estimates allow

IDA∗ to prune unpromising nodes early, dramatically reducing the size of these exhausted

layers, and therefore dramatically reducing the search effort. In contrast, greedy search

cares not one whit for accuracy in the absolute sense. Any heuristic that can correctly sort

the set of all open nodes so that nodes leading to good solutions are explored earliest is

acceptable even if it is incredibly inaccurate. By way of example, the following heuristic

results in perfect performance despite being infinitely inaccurate: the heuristic returns 1 on

any optimal path from the root to the goal, and infinity for any other state.

4.3.3 Estimating h
∗(n) Using Backwards-looking Heuristics

If we find ourselves in a domain where the heuristic can be computed between two arbitrary

points, we have an alternate technique for gathering information about heuristic error: we

can compare the heuristic estimate of the cost-to-go between an arbitrary state to the initial

problem with the cost of arriving at that node during this search, g(n). If we knew that we

had arrived at a node by an optimal path, as we would have if we were performing uniform

cost search or A* search with a consistent heuristic [43], we would be learning a function

from a set of features on to the true cost-to-go. g(n) is very likely to be suboptimal in the

kinds of searches we consider in this paper, but we can still use it as an approximation of

the true cost between an arbitrary node n and the root. Using g(n) as an approximation

of truth, we can learn ĥ(n) as a combination of features pointing from n to the root of the

search problem using any of the previously described regression techniques. When we want

to produce a forward looking estimate, we simply feed in forwards, rather than backwards,

looking features.

More specifically, let’s assume that we have a cost-to-go and distance-to-go heuristic

that can be computed between arbitrary states, h(n,m) and d(n,m) respectively. When
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Eight Puzzle Life Grids Small Vacuums

generated cost sec
1000

cost
1000 secs cost

Baseline 582 128 169 2993 0.990 2673

Online LMS 514 108 216 2993 0.0.158 1368

Reverse LMS 623 36 168 2763 1.065 2956

Online ANN 610 56 919 5056 0.995 5415

Reverse ANN 5032 83 1996 6829 1.884 4590

SS Path 463 33 71 2795 0.260 2100

Table 4.9: Performance in greedy search on domains from accuracy study

we present training examples to these learning algorithms, we present g(n) as the target

value, and h(n, root) and d(n, root) as features. When we want to compute ĥ(n, goal), then

we feed in h(n, goal) and d(n, goal) as features. All of the previously used features have

a corresponding backwards looking feature. g(n) can be estimated by h(n, goal), h(n) can

be mapped to h(n, root), depth(n) as d(n, goal), and d(n) as d(n, root). It should be noted

that such an approach is not nearly as general as those discussed previously. It limits us to

domains where we can efficiently compute heuristics between arbitrary states. This basically

precludes the use of PDB’s. It would be impractical to have a PDB for every possible start

state! Further, since many of the features for learning are not used for estimating the

cost-to-go heuristic in the forward direction, these techniques for learning also have more

overhead than the previously described techniques.

Evaluation

We evaluated an additional two heuristic learning techniques based on learning from heuris-

tics that look towards the root of the search space:

Reverse LMS Least means squared linear regression using backward looking features (the

heuristics computed towards the root for h and d, the heuristics computed towards
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Figure 4-12: Accuracy of heuristics constructed with standard machine learning techniques

and backwards looking heuristics on Eight-puzzles, “life” grids, and small vacuum problems.
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Fifteen Puzzle Dynamic Robot Dock Robot Vacuums

secs
1000 cost secs

1000 cost secs cost secs cost

Baseline 29 302 60 522 169 Failed 55 9.07 9635

Online LMS 8 520 75 522 73 Failed 17 9.42 9635

Reverse LMS 25 150 17128 95 – – 6.556 9648

Online ANN 2444 719 3418 881 135 Failed 47 7.40 6155

Reverse ANN 531 831 465133 254 – – 14.28 13525

SS Path 15 90 14 47 0.385 29 1.22 6063

Table 4.10: Comparing online LMS and ANN’s to single-step corrections on larger problems

the goal for g and depth) and g(n) as a target value.

Reverse ANN Estimating the remaining cost-to-go using an Artificial Neural Network,

trained on the cost of arriving at a node, g(n) and backward looking features as in

Reverse LMS. The ANN is constructed as before, with the same random weights and

the same initial training period.

Figure 4-12 shows the absolute accuracy of the backwards looking machine learning

approaches over three benchmark domains. While improved heuristics learned from back-

wards looking heuristic can produce more accurate estimates, most noticeable in the vacuum

world domain where both reverse LMS and reverse ANN heuristics have better means than

their forward looking counterparts, they tend to have a much wider variance than the other

techniques, something which holds for all three domains. While they can produce better

estimates, they won’t always, as is the case for life grids where the reverse looking ANN

heuristic produces a substantially less accurate estimator than its forward looking coun-

terpart. When we consider the additional overhead of computing the backwards looking

heuristics together with the large variance of the resulting estimators, it is unsurprising that

they perform worse when used in search, as we now demonstrate.
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Table 4.9 shows the performance of the machine learning techniques in terms of absolute

accuracy on the Eight puzzle, “life” grid navigation, and our small vacuum benchmark

respectively. We see that, perhaps surprisingly, the techniques that construct heuristics

looking backwards do not perform substantially better than similar techniques that look

forwards. This is likely because the target values being used for training, that is the g-

values of the nodes being expanded, are much higher than their optimal values. When a

node is expanded by an A* search on an admissible and consistent heuristic, we know it

is expanded with its optimal g-value. Greedy search on potentially inadmissible heuristics

enjoys no such guarantee. It appears that, empirically, this harms the performance of the

algorithm.

We see similar results for the larger domains in Table 4.10. The learning algorithms

that rely on heuristics that look towards the root are omitted for the dock robot domain.

This highlights a limitation of the approach. These backwards looking correction rely on

our ability to compute a similarly informed heuristic between arbitrary states in the space

efficiently. The base heuristic we use in this domain isn’t from state to state, but from one

state to a set of states, since many states satisfy the goal. Thus it is asymmetric.

4.3.4 Summary

One might ask what we lose, in terms of guidance and accuracy, by restricting ourselves

to only the information available in the online setting. In this section we compared the

performance of the online techniques to heuristics similarly trained offline. We found that

the offline techniques generally produced heuristics that were far more accurate than those

learned during the course of the search itself. Despite being more accurate, these heuristics

actually produced worse performance when used in best-first heuristic search algorithms.

This was especially surprising considering the success such approaches have enjoyed in

previous work on learning heuristics for optimal or near optimal search. We pointed out

that the purpose of a heuristic in an optimal search is substantially different than that in

a suboptimal search. Specifically, in optimal search we need the heuristic to be accurate so
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that we can effectively prune away unpromising portions of the space early allowing us to

prove solution optimality. In suboptimal search we merely need the heuristic to guide us

towards a goal, and the accuracy of the estimations with respect to truth is a secondary

concern at best.

4.4 Learning Interleaved with Search

This paper is primarily concerned with the problem of learning heuristics online during

search on a single instance. A strongly related problem is that of learning heuristics while

solving a large set of problems. Techniques for this setting are closely related for two

reasons. As discussed in Section 4.2.5, heuristics learned while solving one instance can be

transferred to other instances. In our case, the learned single-step errors ǭh and ǭd can be

passed between instances. Similarly, any technique that learns an improved heuristic while

solving multiple instances can be made to work on a single instance by first constructing a

training set.

4.4.1 Bootstrap Learning Of Heuristic Functions

Jabarri Arfaee, Zilles and Holte [28] showed that the process of solving a set of instances can

be shortened by interleaving learning with solving. Their bootstrapping method attempts

to solve all of the instances in a set within a time bound using a base heuristic, h0. It then

uses information from the solved instances, including the true cost-to-go for states along

optimal paths and a set of features to train a new heuristic using an ANN. This process then

iterates, using the newly constructed heuristic as a feature, over the unsolved instances until

all instances are solved. In addition to solving the instances, this procedure also results in

new heuristics. If an insufficient number of the instances are solved in any given iteration,

new easy-to-solve instances are automatically generated by random walks backwards from

the goal. While bootstrapping avoids the need for a set of training instances, it still assumes

that the instances are similar enough for the learning to transfer effectively. It also makes
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two additional assumptions that may not be immediately obvious. The first is that there

is some function that allows us to expand nodes backwards. In domains with reversible

actions, this exists trivially, in others we must construct such a function. The second

assumption is that a fixed goal state exists. There are some problems, such as STRIPS

planning, for which the goal is only partially specified, leading to a potentially huge set of

goal states from which we must regress in order to generate training instances. It is also

implicitly assumed that the base heuristic is too weak to solve the instances we care about,

as otherwise no learning ever occurs.

Unlike the techniques discussed previously, bootstrapping learns in between episodes of

search, not concurrently with it. When faced with a single target instance, bootstrapping

generates a set of instances of progressively increasing difficulty to solve along with the target

instance. Effectively, it takes the single problem setting and reduces it to the multi-problem

setting by generating a set of instances to solve and learn from. The actual generation

process cleverly constructs a set of problems that are almost guaranteed to be of increasing

difficulty, a property that bootstrapping finds beneficial. It does this by using a series of

longer and longer random walks backwards from the goal state of the problem. Further

details are given by Jabarri Arfaee, Zilles, and Holte[29].

Comparison of Bootstrapping and Single-Step Corrections

Table 4.11 compares the performance of bootstrapping and single-step corrections on the

24-puzzle (a 5x5 sliding tile puzzle). The results for Bootstrapping are taken from Jabarri

Arfaee, Zilles, and Holte[29] and personal communications with the authors. The table

is split into two halves. The top shows results for the search algorithm when solving 500

random instances of the 24-puzzle, the second shows results for a larger set of 5000 instances.

In both cases, we use the same instances used in [29]. The columns show the time consumed

while solving all instances, and the cost of all solutions summed together appears in the

final column. We must take care to note that the algorithms were implemented in different

languages and run on different machines, the timing results are not directly comparable.
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Total Time Total Cost

500 instances

Bootstrapping *42180 seconds *73878

Greedy 1921 seconds Failed 1

Greedy Path Adapt 87 seconds 139674

5000 instances

Bootstrapping *421200 seconds *575402

Greedy 21596 seconds Failed 17

Greedy Path Adapt 828 seconds 1387004

Table 4.11: Comparison of Bootstrapping and Single-step corrections on the 24-puzzle.

Results with a * taken from [29]

This table reveals two huge disparities between these two approaches to learning for heuristic

search. The path-based corrections are three orders of magnitude faster than bootstrapping,

but they produce solutions of much higher cost. Bootstrapping takes nearly 12 hours to

solve 500 random instances of the 24-puzzle, whereas path-based corrections take around

90 seconds to solve 500 random instance. For 5000 random instances, this gap widens with

bootstrapping taking several days and path-based corrections solving all 5000 instances in

14 minutes. While the timing results are not directly comparable, the gaps in solving time

are so large that we can reasonably conclude that greedy search on path-based corrections

is faster than bootstrapping on the 24-puzzle.

The huge disparities in solving time and solution quality reflect a fundamental differ-

ence in the goals of the two approaches. This difference is clearly outlined by the choice of

search algorithm the learned heuristic is used in. Bootstrapping relies on a search algorithm

designed for finding optimal solutions, while we evaluate our approaches in suboptimal and

bounded suboptimal algorithms. As was discussed in section 4.3.2, the desired qualities

of a heuristic differ for these two search paradigms. Optimal solvers like IDA* want very
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accurate heuristics, the type of heuristics that the learning in bootstrapping tends to pro-

duce. In suboptimal search, accuracy is unimportant, and ordering is key. In end effect, the

two approaches are solving distinct problems: Bootstrapping wants to find nearly optimal

solutions quickly, and build an accurate estimator as a side effect, and our approaches seek

to find any solution as quickly as possible with quality being a secondary consideration.

The Statistical Learning of Accurate Heuristics

[5] also proposed a technique that iteratively improves a heuristic used for solving a batch of

problems called SACH. Using the current heuristic, they attempt to solve all of the problems

in a set of instances within a given expansion bound using A∗ search. Any instances that

are solved are used to train a new heuristic using linear regression against h∗. The process

then repeats until all instances are solved. If all of the remaining instances are too difficult

to solve using the current heuristic, it applies a weight to the current heuristic. This results

in running weighted A* with an inadmissible cost-to-go estimate, the same approach taken

by the first phase of skeptical search. Again, we must be able to assume that all of the

instances we are trying to solve are similar enough to one another to allow learning to

transfer across instances.

In addition to the interleaved approach proposed in [5], a related paper shows how to

perform SACH online for a single instance [6]. The technique used for learning by SACH

can learn from arbitrary states, and so it does not need to completely solve an instance

to perform learning in the same way that bootstrapping does. To learn during a search,

SACH looks at the nodes on the search frontier. It uses parent pointers to trace backwards

from these nodes to the root of the search. For each state along the path from the fringe

to the root, it records the difference in g-values and a set of features. It uses these to learn

an estimate of the cost-to-go from arbitrary nodes to the goal. The learning is very similar

to what we proposed in Equation 4.31, except that instead of using differences between a

parent and its best child, it uses differences between a fringe node and all of its ancestors

to create training data.
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Fifteen Puzzle Dynamic Robot Dock Robot Vacuums

secs
1000 cost secs

1000 cost secs cost secs cost

Baseline 29 302 60 522 169.297 Failed 55 9.073 9635

SACH 149613 Failed 21 236815 Failed 6 238.142 Failed 83 85.824 Failed 2

SS Path 15 90 14 47 0.385 29 1.218 6063

Table 4.12: Performance of SACH compared to other search algorithms

Table 4.12 shows the performance of online, single-instance SACH on the larger bench-

mark domains from our evaluations. SACH doesn’t perform very well when compared to

the other algorithms, especially the single-step path-based corrections shown in the table.

Again, a large part in the difference in performance is due to the underlying search algo-

rithm. At the heart of SACH is a search algorithm intended to find optimal solutions, A*.

While it may be possible to extend bootstrapping and the SACH approach to incorporate

suboptimal or bounded suboptimal search techniques instead of A*, doing so is beyond the

scope of this paper.

4.5 Learning Search Orderings Directly

The previously discussed techniques attempt to learn an improved estimate of cost-to-go

to be used in guiding the search towards goals. While learning cost estimates is quite

popular [59, 28, 5, 18], [80] point out that it is not the only approach. They propose two

search algorithms, LaSO-BR and LaSO-BST, that rely on a technique that directly learns

an ordering over nodes based on the performance of that ordering in a beam search.

A beam search is a form of best-first search where the size of the open list, the nodes

which have been generated but not yet expanded, is kept to a fixed size. This size is

referred to as the beam width of the search, typically denoted b. Beam searches come in

two varieties, best-first and breadth-first. In best-first beam search, the best node on the

beam is expanded, its children are inserted into open, and the worst nodes on open are
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pruned until the open list is no larger than the beam width. In breadth-first beam search,

all nodes on the beam are expanded simultaneously, all children are added to the open

list, and then the open list is pruned until it is no larger than the beam width. Generally,

breadth-first beam search out performs best-first beam search [79].

Beam searches are intended to be a form of memory limited search; by controlling the

width of the beam, you can limit how many nodes need to be considered at any time, thereby

limiting the maximum amount of memory consumed by a beam search. For domains with

many duplicate paths to the same state and many potential cycles, beam searches need to

implement a closed list to be effective [79]. Having a closed list removes the limited-memory

property of beam search algorithms, but allows them to solve a wider variety of problems.

We will refer to these ranking functions learned from simulated beam search as LaSO or

the LaSO heuristic. Rather than performing a linear regression from the features of a node

to truth, this technique learns a weighting over the features that would prevent a beam

search with a given beam width b from pruning away all nodes leading to optimal solutions

from the beam. In essence, the algorithm works by simulating a beam search forward from

the root of the search problem. It repeatedly expands all nodes in the current beam and

sorts them based on the current weight vector and features of the node. If, when forming

the next beam based on the expansion of the previous beam, all nodes that lead to an

optimal solution have been pruned, the weights are updated. The weights are updated to

promote nodes on optimal paths that could have been in the beam but were not because

of the weight vector. Then, the current beam is set to be the remaining optimal nodes on

open. This process is performed offline before the algorithm is used to solve problems. It

requires a set of training instances that can be optimally solved by some other technique

such as A* or IDA*.

This ranking function can be learned from either best-first beam search or breadth-

first beam search. We refer to these approaches as LaSO-BST and LaSO-BR respectively.

Training for LaSO-BST often takes far longer than training for LaSO-BST. The first reason

for this is that it often takes best-first beam search longer to solve a problem than breadth-
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first beam search. The second is that it is rarer for a best-first beam search to prune away

all nodes leading to an optimal solution because it only expands a single node at a time. If

there are multiple paths to an optimal solution, as there are in all of the domains considered

in this paper, it is likely that several optimal nodes exist in the beam. Unless the children

of the node being expanded manage to drive them all out, LaSO-BST will perform no

learning in this step. LaSO-BR, on the other hand, expands all nodes at once. Presumably,

the optimal nodes are a small portion of the existing beam and they likely only have one or

two children on the optimal path. Thus, the optimal nodes must beat out many competitors

to be included in the next beam, they often don’t, and so learning occurs more frequently

in practice.

LaSO learns weights over a set of features such that they prevent a beam search with a

given beam width b from pruning away all nodes leading to good solutions. This is done by

solving training instances2, recording all nodes lying on a path to good solutions. [80] point

out that any solution path can be used for training. However, if we want to find solutions

of minimal cost (high quality) we should also train on optimal solutions. Additionally, the

authors point out that a smaller version of a problem may be trained from, then larger

problems can be solved using the same learned ordering. A beam search is simulated on the

same training instances, and the weights for the features are updated whenever the beam

search would prune away all promising nodes from the beam.

Pseudo-code for updating the weights in the breadth-first beam search variant of LaSO

is provided in Figure 4-13. In essence, the algorithm works by simulating a breadth-first

beam search. It repeatedly expands all nodes in the current beam (line 3) and sorts them

based on the current weight vector and features of the node (lines 5 & 6). If, when forming

the next beam based on the expansion of the previous beam, all nodes that lead to a good

solution have been pruned (lines 7 & 8), the weights are updated (line 9). The weights

are updated to promote nodes on good paths that could have been in the beam, Pi,j ∩ C,

2This evaluation only considers domains where we can solve the training instances optimally.
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Update-BR(Si,Pi,b,w)

//Si = 〈Ii, si(·), f(·), <i〉 and Pi = {Pi,0, ..., Pi,maxdepth}

//Ii is the root node, si(·) is the successor function

//fi(·) generates features of a node

//Pi is the set of all nodes along a desirable path to the goal

1. B ← Ii

2. for depth = 1 to maxdepth

3. C ← BreadthExpand(B, si(·))

4. for every v ∈ C

5. H(v)← w · f(v) // compute heuristic value of v

6. Order C according to H and the total ordering <i

7. B ← the first b nodes in C

8. if B ∩ Pi,depth = ∅ then

9. w ← w + α · (
∑

v∗∈Pi,depth∩C f(v∗)

|Pi,depth∩C| −
∑

v∈B f(v)

b
)

10. B ← Pi,depth ∩ C

Figure 4-13: Update Rule For LaSO-BR
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Unit 15 Puzzle Vacuum World Dock Robot

Algorithm sec
1000 Cost sec Cost sec Cost

Base 29 302 9.073 9635 169.297 Failed 55

LaSO-BR 85 391.95 142.4 Failed 7 576.83 Failed 98

SS Path 15 90 1.218 6063 0.385 29

Table 4.13: Heuristic performance in greedy search

but were not because of the weight vector. The code for LaSO-BST is similar, but the

breadth-first beam search is replaced with a best-first beam search.

Note that the beam width to be trained for is a parameter of the LaSO learning technique

(first line of Figure 4-13). This makes adapting the learning technique of LaSO to general

heuristic search difficult. What is the beam width of greedy search, or more directly, how

should we set the beam width to get the best performance for our learned heuristic in a given

search algorithm. This is an open question. For our evaluation, we tried multiple beam

widths, 1, 3, 5, 10, 50, 100, 500, and 1000, and then report results for the best-performing

beam width for the algorithm.

4.5.1 Evaluation: Greedy Search

Table 4.13 shows the performance of the learned heuristics in greedy best-first search across

five benchmark domains. The rows represent the learned heuristic, and the columns are

domains. Each major column is divided into two minor columns showing mean solving time

and mean solution cost respectively. In the event that a search algorithm failed to solve all

instances in the set, the mean solution cost would be infinity, and so we instead report the

number of instances it failed to solve.

Table 4.13 shows that greedy best-first search on single-step path corrections performs

best in terms of time and solution quality for all domains save the unit-cost fifteen puzzle

where it finds better solutions at the cost of increased solving time. We see that it has better
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coverage in our experimental domains than either of the other two heuristics when used in

greedy search; it never fails to solve an instance whereas the baseline and LaSO heuristic

do, in inverse tiles and heavy vacuums and dockyard robots respectively. We should also

note that the heuristic learned for use in LaSO-BR performs substantially worse than the

baseline in several domains. There are two reasons behind this. The first is that in domains

where the LaSO heuristic is performing poorly, the learning is unlikely to generalize well.

Consider the tiles domains, where the LaSO heuristic substantially outperforms the baseline.

Here, the underlying state space is identical (unit-cost) or incredibly similar (inverse cost)

across problems, and therefore the learned ordering generalizes well. Contrast that with

the dockyard robot domain, where the goal configuration and the cost of transition between

depots changes across instances. Here the learned node ranking performs poorly.

Secondly, the LaSO heuristic was trained to be used in beam search, not a best-first

search. The role of the heuristic is different in these two kinds of search algorithms, just as

the role of the heuristic in greedy search and IDA* differs. In best-first search, we want to

push goals, or nodes leading to goals, all the way to the front of open. In a beam search the

heuristic need only prevent us from pruning away all promising nodes. We can see in line 8

of Figure 4-13 that is exactly what we are training the LaSO heuristic to do. The weights

are only updated when all of the promising nodes are pruned away from the beam. In light

of that, we shouldn’t expect the LaSO heuristic to perform well in greedy best-first search

because it isn’t designed to provide the right kind of guidance.

4.5.2 Evaluation: Bounded Suboptimal Search Search

Figure 4-14 shows the relative performance of LaSO-BR and the best single-step correction

technique in a bounded suboptimal search. Since LaSO-BR does not learn a cost-to-go

estimate, we perform the initial search on the learned heuristic directly, and then perform

cleanup on f(n). We see that for all suboptimality bounds shown, skeptical search on single-

step path corrections outperforms skeptical search relying on the LaSO heuristic. While

skeptical search can construct an initial solution much faster when using the LaSO heuristic
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Figure 4-14: Single-step path corrections versus LaSO-BR in skeptical search on tiles.

the solution found is much more expensive. Even if this incumbent is within the bound,

proving this requires more effort than showing that a solution with lower cost is within the

same bound. Results for the other domains are similar.

4.5.3 Evaluation: Beam Search

The previous comparison of learned heuristics is, in some sense, unfair because LaSO wasn’t

designed to be used in general search algorithms. It was designed to be used in beam search.

Table 4.14 shows the relative performance of the learned heuristics in breadth-first beam

search for differing beam widths and domains. In the table, rows are the heuristic used to

sort the beam, and major columns show the beam width. As before, each major column

is divided into two minor columns that report the time required to find a solution and the

solution cost respectively.

The first results, those showing the performance on fifteen puzzle (first row of Ta-

ble 4.14), are particularly surprising because the techniques which learn their heuristics

appear to be dominated by search on the base heuristic. The mean time to solution for

beam search on h(n) are indeed lower, but this is primarily a result of reduced overhead.

The solution costs for each beam are within noise of one another, meaning that the depths
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Beam Width

10 100 1000

Ordering Time Cost Time Cost Time Cost

15 Puzzle

Base 0.0029 173 0.0249 73 0.2999 59

SS Path 0.0076 204 0.0360 74 0.4286 59

LaSO BR 0.0061 191 0.0296 74 0.3345 59

Vacuum World

Base 576.0024 Failed 145 41.3884 Failed 17 32.9744 Failed 1

SS Path 576.0022 Failed 141 3.5336 Failed 2 32.6410 Failed 1

LaSO BR 372.1086 Failed 104 3.5102 Failed 1 30.9520 Failed 1

Dock Robot

Base 97.1460 Failed 8 24.2612 Failed 1 25.2046 Failed 1

SS Path 0.1460 112 0.3962 29 1.6446 15

LaSO BR 97.1544 Failed 6 151.6342 Failed 10 299.7842 Failed 21

Table 4.14: Learning techniques in breadth-first beam search
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to which each beam search is going in this domain are incredibly similar and therefore

the number of nodes generated are similar. They are in fact not statistically distinct for

many of the beam widths. We see a similar phenomenon for the vacuum world domain,

where LaSO BR appears to outperform search on single-step path corrections, but the val-

ues are statistically indistinguishable from one another (the confidence intervals overlap

significantly).

Table 4.14 also reveals that, as was the case in greedy search, LaSO-BR fails to solve

many of the instances in the dockyard robot domain. Again, we attribute this to the

fact that the underlying instances are very different from one another. This impedes the

performance of techniques which perform all of their learning offline. Note that greedy

search on the LaSO heuristic (Table 4.13, second row) also performs incredibly poorly, and

so this performance is likely the fault of the heuristic and not the search algorithm itself.

Learning, both LaSO-BR and single step corrections, generally improve the performance

of our beam search algorithms. At worst, it does not appear to harm performance. Single-

step path corrections provides better guidance in beam search than the LaSO heuristic.

From Table 4.14, we see that it solves more instances across the beam widths examined

than the other two heuristics. Not only does it solve more instances, but it tends to have

lower mean solving time and better mean solution quality. While these times are not always

distinguishable from search performed on the LaSO heuristic, in the dockyard robot domain

search on single-step path corrections is clearly better than search on the LaSO heuristic.

4.5.4 Summary

None of the search algorithms considered in this paper rely exclusively on an estimate of

cost-to go. However, they all need functions that can discriminate between nodes effectively

to guide search. Learning exactly what we want, a way to order the nodes for search, is thus

incredibly appealing. The previous technique for learning search orders directly, LaSO, is

designed for a particular kind of search algorithm. Unfortunately this technique does not

appear to work as well when used in other kinds of search algorithms. Conversely, although
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the single step techniques proposed in this work are much more effective in best-first search

algorithms, they are, at best, competitive with LaSO techniques when used in beam search.

4.6 Other Related Work

Having discussed techniques for learning during search itself, we present previously proposed

alternative and complementary techniques for learning at other times, specifically before

any search begins, and in between multiple runs on a single instance. We say that the

techniques are complementary as the single-step error corrections presented here could be

added to these techniques to improve performance. The single-step corrections that are

the focus of this work make no strong assumptions about the underlying heuristics, these

heuristics learned before or in-between search episodes could be further strengthened using

the previously presented technique.

The most popular, or at least the most frequently proposed in the literature, technique

for learning heuristics for search is to learn those heuristics before any search of the target

instances begins, offline, from training data. All such techniques assume that training

instances are abundant, or at least that they are easily generated. Further, several of the

following approaches make use of strong domain-specific features to use for the learning of

heuristics. Both limit the applicability of the techniques.

Samuel’s checker playing program [61] used learning techniques to construct good static

evaluators to be used in his alpha-beta pruning game tree search and it is the earliest

to make use of learning techniques for constructing heuristic functions. This technique

is not directly comparable, or even easily combined, with those presented here. One of

the largest difficulties is that static evaluators in a game tree search do little more than

provide a relative ordering over interior nodes in the game tree. Recall that one of the few

assumptions that our approach makes is that the heuristics used discuss the cost and length

of a path beneath some node.

[62] propose that there are two fundamentally different techniques to learning heuristic
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data for search. The first is the kind most commonly considered and the focus of this

paper, the learning of heuristic evaluation functions that guide search by estimating cost

and distance to a goal. The second, and the focus of the authors’ attention, is the learning

and use of categorical data. That is, the focus of their learning is to identify sets of nodes

with interesting properties, such as nodes that are likely to lie on a path to a solution or

nodes that are more likely to be near to solutions. They then use these categories of nodes

to perform efficient tie-breaking in optimal search algorithms. Learning is performed offline,

from training data, before any search over the target instances begins. This paper suggests

that learning a heuristic in the form of a cost to go estimate has been thoroughly examined,

and unlike categorical data, is fundamentally limited in that it cannot be easily used for

optimal search. We disagree. Inadmissible numeric estimates can be just as easily used for

tie-breaking as categorical data. What you gain by having categorical data over numeric

is the ability to specify categories that aren’t comparable at all and preferences that aren’t

transitive, two things that would be extremely difficult with a single numeric value. It has

not been shown, and is beyond the scope of this paper to show, whether learned categorical

or numeric estimates data are best in the context of optimal heuristic search.

[59] present a technique for combining an arbitrary number of features into a single cost-

to-go estimate. In their implementation, these features are pre-computed pattern databases,

powerful heuristics in their own right. They train an artificial neural network (ANN) to

map these values to an estimate of the cost-to-go using h∗ as the target value. When

problems are too large to solve optimally, they substitute the optimal solution of a relaxed

problem for h∗. Naturally, this lessens the quality of the training data and leads to slightly

worse estimates as a result. One important limitation of this work is its reliance on powerful

features, specifically pattern databases. This is problematic in that it limits the applicability

of the presented approach. Pattern databases are not universally applicable. They work

best when all domains share an identical search space, as is the case with the permutation

problems considered in their evaluation. However, we might argue that the technique is not

specifically reliant on pattern databases, but simply on fairly accurate base heuristics. This
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is a bit more general, but again, we have no way of guaranteeing the quality of the heuristics

available for a given domain a priori. One of the most interesting contributions of this work

is that the authors show how to bias the learned heuristic towards admissibility during the

learning stage. This creates a heuristic that tends to, but does not always, underestimate

the true cost-to-go, making it ideal for optimal and near optimal search algorithms. [60]

provide a technique for compressing pattern databases efficiently that could be used here

to ensure admissibility. While we do not rely on admissibility, such a powerful cost-to-go

estimate would likely make a good starting heuristic for our online technique.

[18] proposes a technique that learns an improved heuristic for multiple searches over

the same instance of a pathfinding problem. Specifically, he assumes that the same graph

is being searched every time, but that the start and goal nodes may change. A cost-to-

go heuristic is learned in between search episodes using information recorded during the

previous search. Features of a node are recorded and a heuristic is learned by performing

a regression from these features to the true cost-to-go. As more problems are solved, more

data becomes available and the quality of the heuristic improves as a result of that. While

bootstrapping and the original implementation of SACH were exclusively evaluated on

permutation puzzles, where each solution shares the same underlying search space, it can

be run without alteration on problems where the underlying state space differs between

instances. This isn’t obviously the case for the technique proposed by Fink.

4.7 Discussion

There are three times when learning can happen: before any search, in between solving

instances of a batch, or during the execution of a search. This section covered the first

two, which are orthogonal to and can be combined with the third. We do not thoroughly

investigate the possibility of combining offline or interleaved learning with learning during

search in this paper. As we’ve shown that the online technique works with the base heuristic

and generally improves when the accuracy of the underlying heuristic improves, it is likely
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that a combination of the techniques would be very beneficial.

Another interesting thing that comes out of the analysis of previous work in learning

for search is that nearly all of the previous work has focused on finding optimal or near

optimal solutions. There have been very few techniques that consider speed as the primary

figure of merit. We see that in the search algorithms picked for the evaluations, which

are generally either A* or IDA*. There are many applications of search, and while many

demand solutions of the highest possible quality there are equally as important settings

that require us to solve problems quickly.

The previous approaches to learning for search focus, in effect exclusively, on learning

heuristics for optimal or near optimal search. We can see this in the algorithms that they

choose as the center of their evaluation (IDA* or A* in all cases but one), in their focus on

solution quality, and in the small additions made, for example biasing the learned heuristic

towards admissibility. That isn’t to say that solving problems optimally or nearly optimally

is bad or not useful. However focusing on that problem to the exclusion of all others is.

Equally important is the problem finding solutions of high quality to problems of incredible

difficulty is that of finding any solution as quickly as possible.

Having an online technique for improving the performance of heuristics is extremely

useful. By definition, search algorithms tend to spend a majority of their time searching

for a solution within a state space. This means taking a node, generating its successor

states, evaluating them, and placing them back into a set of nodes to be evaluated. Every

expansion, of which there will in the worst case for search (but the best case for learning)

be many, provides an opportunity to learn a potentially improved evaluation function so

long as we have a technique that can be effectively used during the search itself. Without

an online technique, we would be unable to use this valuable training data.

A point that bares repeating is that different kinds of search algorithms have differing

requirements for their heuristics. For finding optimal search, the problem that nearly all

previous work focuses on, we need the heuristic to be extremely accurate in terms of absolute

error. That is, the heuristic must be able to very accurate predict the true cost-to-go, h∗.
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This is because in optimal search the heuristic is used to prove that the returned solution

is optimal (ie expand all nodes where f(n) ≤ g(opt)). It determines what portion of the

search space we must exhaustively search before we can prove that the solution we find is

of a sufficient quality. If we are unconcerned with proving quality bounds, or if time is at

a larger premium than quality, we should use search algorithms that rely on the guiding

power of a heuristic. Here we are not exhausting large portions of the space to prove quality

and the limiting factor of the search is how quickly we can guide the algorithm into goals.

Any heuristic that prefers a node close to a solution before one far away will work well here,

regardless of how far away these estimates are from truth in many cases.

4.8 Conclusions

Learning for heuristic search has been primarily considered in two settings: learning an

improved heuristic offline, before any search begins, and learning an improved heuristic in

between the solving of instances in a large batch. The technique presented in this paper,

learning corrections from single-step error, learns during the execution of the search itself.

This approach complements the previous work in that it covers the third and final possible

time for learning improved heuristics. Further, it can be easily combined with either, or

both, of the other two settings to improve performance. Our technique has the advantage

of not making the same assumptions that previous techniques have made. Specifically, we

do not assume a training set or the ability to generate one, we do not assume we can solve

the problems optimally, and we don’t need to be sure that all of the instances being solved

are similar. We merely require that a heuristic search algorithm is being used, and we need

a cost-to-go and a distance-to-go heuristic. Both likely exist for any given domain. This

allows the described approach to be widely and immediately applicable. In our evaluation,

we found that, when used in search, the learning technique produces better solutions faster

than the base heuristics when used in greedy best-first search across a wide range of bench-

mark domains. The technique also proved to be beneficial in bounded suboptimal search,
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improving upon the performance of previous state of the art algorithms while additionally

removing the need for parameter tuning. Though not investigated empirically here, we

discussed how the online technique could be easily combined with offline and interleaved

approaches to improve performance even further.
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Part II

Search Strategies
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The previous section of the dissertation was primarily concerned with the construction

of heuristic information for guiding heuristic search algorithms. The following chapters in-

vestigate suboptimal search strategies in three main settings: bounded suboptimal search,

bounded cost search, and anytime heuristic search. As we previously noted, part of the

common thread between algorithms for all of these settings is that the can, and should,

consider the inadmissible estimates of cost and actions-to-go that we discussed in the pre-

vious section of the dissertation.

The first chapter in this section discusses the setting of bounded suboptimal search.

Algorithms which address the problem of bounded suboptimal search must find a solution

whose cost is provably within the user-supplied factor of optimal. The first major con-

tribution of this chapter is an argument that suggests they should also perform this task

as quickly as possible. Much of our discussion of the performance of bounded suboptimal

search algorithms from the literature and from this thesis will be focused on under what

circumstances, if any, the algorithm is capable of minimizing solving time subject to a

suboptimality bound.

The second major contribution of Chapter 5 is the Explicit Estimation Search algorithm,

first mentioned in Thayer et al [70], and fully presented in Thayer and Ruml [71]. The ex-

plicit estimation search algorithm is the goal-statement of bounded suboptimal search made

expansion order. It provides state of the art performance for many benchmark domains,

and the general framework that it lays out provides efficient algorithms for other subopti-

mal search setting, including bounded cost and anytime search, as we will see in Chapters 6

and 7.

The second chapter of this section, Chapter 6 covers a relatively new variant of subop-

timal search, the bounded cost search domain. In bounded cost search the goal is to find

any solution within a user specified cost-bound C as quickly as possible. This differs from

the bounded suboptimal domain in that we no longer care what the cost of the optimal

solution is, as we must prove an absolute rather than a relative bound.

The final chapter of this section covers the anytime search setting. Anytime search is one
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of three major methods for controlling the amount of time consumed by a heuristic search

algorithm. Anytime search is designed for situations where some unknown amount of time is

available for solving the problem. Since the deadline is unknown, anytime search algorithms

must expand to make use all available time, or at least as much time as is required to find

the optimal cost solution. Although anytime search algorithms are designed for unknown

deadlines, they are also popularly used in settings where the deadline is known before hand,

as it is in the international planning competition.
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CHAPTER 5

BOUNDED SUBOPTIMAL

SEARCH

5.1 Introduction

Heuristic search can be used to solve a surprisingly wide variety of problems, ranging from

path finding in video games [8] to multiple sequence alignment [31]. Many domain in-

dependent planners, including the award winning LAMA-11 [50] rely on heuristic search

algorithms of one variety or another. The surprising thing about the variety of problems

which can be solved with heuristic search techniques is that these problems have a an equally

wide variety of properties and requirements. The differ in the way their search spaces are

defined, the number of actions available on average, what constitutes an acceptable solving

time, and in a number of other key attributes. Despite these fundamental differences, prob-

lems from all of these domains can (and have) been solved using heuristic search techniques,

which speaks to the generality of the approach.

When time is not a concern, we can solve heuristic search problems optimally with

algorithms like A* [23] or IDA* [34]. These algorithms work by slowly increasing a lower

bound on the cost of an optimal solution to the problem under until a solution is contained

within their bound. If the bound was increased slowly enough, this solution has provably

optimal cost.

Proving that a solution has optimal cost can be very expensive; to do so the search

algorithm must examine all nodes that could potentially lead to a solution of lower cost.
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Even if we have heuristics that are unrealistically accurate, say that their estimate of cost-to-

go errs by no more than a constant value, finding cost-optimal solutions is still intractable

[53]. The cost of optimal solving is fundamentally at odds with many applications that

require fast response times.

The requirements of an application may require us to abandon optimal search as too

expensive, but that does not mean we should ignore the cost of solutions entirely. Just as

compute time is restricted, so too are execution time, battery power, fuel, and a variety of

other resources that the ‘cost’ in cost-optimal search may refer to. By simply relaxing the

optimality requirement, rather than abandoning it entirely, we can retain some control over

the cost of solutions returned by a search algorithm while potentially increasing the speed

with which those solutions are found.

Algorithms that guarantee that their returned solution will have cost within some user-

supplied factor of optimal are bounded suboptimal search algorithm. These algorithms have

also been referred to as ǫ-admissible or w-admissible search algorithms, as the user-supplied

parameter is often named ǫ or w. The goal of bounded suboptimal search is to return a

solution that is within a factor w (or alternatively 1 + ǫ) of optimal as quickly as possible.

Bounded suboptimal search algorithms ideally provide a way to smoothly shift the focus of

an algorithm from solution cost to solving time by tweaking one (or more) parameters. In

practice, the transition is not always smooth as we will see in Chapter 5.

The paper proceeds as follows: We begin with a discussion of bounded suboptimal

search, focusing on the properties an algorithm must have and a discussion of what the

overall goal of bounded suboptimal search is. In Section 5, we argue that the goal of

bounded suboptimal search is to minimize solving time with respect to a user-supplied

suboptimality bound.

In Section 5.12, we introduce the explicit estimation search algorithm (EES), a new

algorithm designed to optimize the goal we proposed for bounded suboptimal search. EES

works by combining potentially over-estimating heuristics for solution cost and solution

length to find solutions provably within a user-provided suboptimality bound as quickly as
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possible.

After describing EES, we relate it to previous work in the field of bounded suboptimal

search in Chapter 5. Our discussion of previous bounded suboptimal search algorithms

includes a discussion of how much previous work does not strictly minimize solving time

under a suboptimality bound. An empirical evaluation that shows EES is frequently far

more efficient for a given suboptimality bound than previous algorithms. Not only is EES

often faster, but it is more robust than previous approaches as well. We will see that the

mean solving time for EES across all benchmarks considered in this paper is lower than that

of other algorithms because EES never fails catastrophically for any of the domains consid-

ered, while all other algorithms have at least one domain where they perform exceptionally

poorly.

In Section 4.6 we discuss EES, and bounded suboptimal search in general, in the context

of related heuristic search settings. In particular, we will look at how EES relates to the

bounded-cost search setting, where we would like algorithms to produce a solution with

cost less than C as quickly as possible, and to the anytime search setting, where we would

like algorithms that provide the best possible solution under some unknown deadline. EES

can be adapted directly to either of these domains, resulting in performance exceeding that

of previous approaches in these areas.

5.2 Problem Definition

Bounded suboptimal search attempts to address a shortcoming of optimal cost heuristic

search: optimal search is often prohibitively, and perhaps needlessly, expensive. Finding

provably optimal solutions to problems takes much longer than finding suboptimal solutions

in general. If the time requirements of an application are short, optimal search is not always

an option. Even if the time constraints of our application could permit optimal search,

suboptimal solutions may be “good-enough” in a variety of situations and we may wish to

spend our resources on parts of the task other than search, making suboptimal solving a
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better decision than finding provably optimal solutions.

Bounded suboptimal search fixes this problem by allowing the user to trade increased

solution suboptimality for potentially decreased solving time. Generally, though not always

as we will see in the empirical evaluation, an increase in suboptimality bound produces a

reduction in solving time for a bounded suboptimal search algorithm on a given problem.

The reduction in solving time is also generally quite similar across similar instances. Thus,

a user typically plays with the suboptimality bound of a search algorithm until it is fast

enough.

This suggests the following goal for bounded suboptimal search algorithms: for a given

suboptimality bound, find a solution as quickly as possible. If the user is going to raise the

suboptimality bound until solving is sufficiently fast, we would like our algorithms to be

sufficiently fast with the smallest increase in the suboptimality bound.1

There are really two tasks that any bounded suboptimal search must solve. First, it

must find a solution, should one exist. Preferably it would find that solution as quickly as

possible, as we’ve just argued. Secondly, it must be able to prove that this solution is within

a user-specified factor of optimal, or it is not a bounded suboptimal search algorithm. We

now discuss each task in turn.

5.2.1 Finding a Solution as Quickly as Possible

A key task, and in some cases the only task, of heuristic search algorithms is to find a

solution to the problem in question should one exist. If no solution exists, the best we can

do is prove no solution exists by examining all states in the search space and showing that

none of them are a goal. However, if a solution to the problem does exist, then we can

strive to find that solution as quickly as possible.

1There are actually algorithms which attempt to optimize a user-specified utility function which says

exactly how much solving time is worth a certain reduction in solution suboptimality [54]. These are

problematic in no small part because users are very bad at accurately representing their utility functions,

and they are beyond the scope of this work.

114



Search algorithms have used a variety of approaches to find solutions quickly. Algorithms

like weighted A* [45] and greedy best first search (or pure heuristic search) place additional

emphasis on heuristic estimators to encourage search for a solution to complete quickly. In

domain independent planners such as FF [26] potentially over-estimating estimates of cost-

to-go, which we will refer to as ĥ(n), are used in place of admissible cost-to-go estimators in

an effort to speed search. Constructing subsets of the potential solutions under consideration

can also speed search, so long as the subsets we choose still contain solutions. This is the

approach taken by algorithms such as beam search [19, 3], A∗
ǫ [44], and Aǫ [20]. We will

see examples of all of these techniques in the discussion of previous work and the EES

algorithm.

Critically, many search algorithms overlook the importance of estimating the difficulty

of completing a partial solution when attempting to find that solution. If we truly wish to

find solutions as quickly as possible, we must find some way of ranking solution by their

cost of completion in order to prefer those solutions which are easy to find. Although it

is not known how we can estimate the difficulty of finding a solution directly, we do know

how to estimate the length of a solution. All else being equal, solutions with fewer actions

tend to require less search to find (the complexity of search is often a function of solution

length). Despite this natural relationship between solution length and solving difficulty,

many heuristic search algorithms, including weighted A*, fail to take this quantity into

account explicitly.

5.2.2 Proving Bounds

Suboptimal search algorithms are generally faster than cost-optimal search algorithms be-

cause they expend far less effort proving that their solutions are of sufficiently low cost.

Optimal search algorithms must show that there is no possible solution to the problem with

smaller cost, which requires examining a large number of potential solutions or nodes. By

contrast, bounded suboptimal search algorithms must only show that there is no solution

whose cost is more than a factor w smaller than the solution returned. By lowering the
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standard to which we hold solutions in search, we reduce the cost of proving the bound

precipitously. In fact, for a very limited set of problems we can show that bounded sub-

optimal search can be run in time linear in the length of the returned solution [13] rather

than exponential, which is generally the case.

There are two ways by which we can show a solution lies within a given suboptimality

bound. These are by exhaustion, and by construction. We discuss bounded suboptimal

search algorithms which use both approaches in this paper, so we discuss the approaches

briefly now and in depth for each algorithm as it is presented.

Optimal search algorithms such as IDA* show that a solution is within a desired sub-

optimality bound (e.g. w = 1) by exhaustion. That is, they exhaust all potential solutions

which could have cost less than a factor w than the returned solution. To do this, we must

compute a lower bound on the complete cost of a partial solution. If g(n) is the cost of

executing the actions in a partial solution and h(n) is a lower-bound on completing that

solution, then f(n) = g(n) + h(n) is a lower bound on a complete solution using the pre-

fix n. Algorithms that work by exhaustion must merely extend all partial solutions until

f(n) ≥ w · g(sol) where sol is the solution we would like our algorithm to return.

Proving that a solution lies within a suboptimality bound by construction is slightly

different. We must show that at the time a search algorithm was considering a node it

could show the solution represented by that node was within a bounded factor of the

optimal-cost solution. Generally such a proof relies on the order in which partial solutions

are considered by the search algorithm and properties of h(n), our estimator of cost-to-go.

Proving a solution is within a suboptimality bound by construction is neither explicitly

more difficult nor easier than proving a solution is bounded by exhaustion.

5.3 Weighted A*

Weighted A* [45] is, perhaps, the oldest bounded suboptimal search algorithm. It modifies

the standard node evaluation function of A∗, f(n) = g(n) + h(n), where g(n) is the cost
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weightedAstar(root,w)

1. open← {root}

2. while open 6= {}

3. let n = argminn∈open f
′(n) = g(n) + w · h(n) in

4. if goalp(n)

5. then return n

6. else open← open− {n}

7. for each child c of n, open← open ∪ {c}

8. return no solution

Figure 5-1: Weighted A* Pseudo Code

of getting to n from the root and h(n) is the estimated cost-to-go from n to the goal,

into f ′(n) = g(n) + w · h(n). Placing additional emphasis on h(n) is a common technique

for reducing the number of expansions needed to find solutions. Weighting the cost-to-

go heuristic is a common approach, taken by weighted A*, optimistic search, dynamically

weighted A*, clamped adaptive search, and AlphA* as we will soon seen. Weighting the

cost-to-go heuristic encourages the search algorithm to prefer states where there is little

estimated cost remaining to the goal, as they tend to be closer to the goal.

Figure 5-2 shows the order in which weighted A* expanded nodes when solving a 4-

connected unit-cost grid world navigation problem. Nodes in yellow were expanded early

on in the search, and as the nodes become redder they were expanded later on in the search.

The starting state for this problem is in the middle of the left-hand side of grid, and the

goal state is in the middle of the right hand side. For comparison’s sake we also include a

visualization of A*’s expansion order in Figure 1-10.

When comparing the two expansion orders, we see that weighted A* and A* are quite

similar. In fact, Figure 5-2 looks much like a thinned version of the expansion order of A*
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Figure 5-2: Expansion Order of Weighted A* (w = 1.5)Search on a Pathfinding Problem

shown in Figure 1-10. This is hardly surprising; the node evaluation functions of weighted

A* and A* only differ by w. As previously noted, weighting the heuristic makes weighted

A* place more importance on cost-to-go than cost already incurred. This tends to make

weighted A* prefer nodes closer to the goal, as these nodes tend to have lower h-values.

Like A* will expand all nodes with f(n) < g(sol), weighted A* will expand all nodes

with f ′(n) < g(sol). Although weighted A* will often find solutions of higher cost than

A*, weighting the cost-to-go heuristic also reduces the number of nodes with an evaluation

function (eg f(n), f ′(n)) of cost less than the eventually returned solution. This often

results in reduced solving times, as we will see in the following evaluation.

5.3.1 Implementation Concerns

Typically, we talk about weighted A* as a best first search on f ′(n) = g(n) + w · h(n), but

f ′(n) = w1 · g(n)+w2 ·h(n) can produce an equivalent bounded suboptimal search. In fact,

this was the way weighted A* was first proposed. On its own, the dual-weighting variant

of weighted A* isn’t particularly exciting, it does however, allow for the use of an integer-
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based open list for a larger range of weights than is possible with the standard single-weight

conception of weighted A*. An integer based open list is more efficient than a heap based

open-list, but less general. For example, at a weight of 1.25, very few nodes are going to

have integer values, even for domains with unit cost actions. However, 4 · g(n) + 5 · h(n)

produces an identical node expansion order and all resulting node-evaluations will be integer

if the underlying g and h-values are also integer. Thus, any rational weight can be done

with an integer based queue.

5.3.2 Proof of Bounded Suboptimality

Before discussing the shortcomings and performance of weighted A*, we reproduce the proof

from “Heuristic Search Viewed as Path Finding in a Graph” [45] showing that it obeys a

suboptimality bound. Once we’ve shown that weighted A* obeys a bound, we will show

that even if it chooses not to re-open duplicate states, it will still obey the same bound

assuming that the heuristic being used is consistent.

Theorem 1 If h(n) is an admissible heuristic, then the solution returned by weighted A*

has cost within a factor w of the optimal solution.

Proof: The proof is based on the construction of the open list. Let p be the deepest node

along a bath to the optimal solution. This node must exist. Initially it is the root, and

when the root is expanded, it is one of the generated children. Since we never discard a

node in this version of weighted A*, p is on the open list at all times, including when a

solution is returned. When weighted A* returns a solution (Line 5 of Figure 5-1), that node

has the smallest value of all nodes on the open list (Line 3). From this, we can conclude:

g(sol) = f ′(sol) By admissibility of h(n)

f ′(sol) ≤ f ′(p) By Line 3 of Figure 5-1

g(p) + w · h(p) ≤ w · (g(p) + h(p)) By algebra, definition of f ′

≤ w · f(p) By definition of f

≤ w · f(opt) By admissibility of h
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Weighted A*(root, w)

1. open← {root}

2. while(open 6= {})

3. remove n from open with minimum f ′(n) = g(n) + w · h(n)

4. if n is a goal

5. return n

6. else for each child c of n

7. if another node is in open with the same state as c

8. then keep the node with the smallest g-value

9. otherwise insert c into open

10. return no solution

Figure 5-3: Weighted A* pseudo code with duplicate dropping.

�

5.3.3 Dealing with Duplicates

Of all the algorithms we discuss in this paper, weighted A* is the only one that can ensure

bounded suboptimality while electing to not revisit previously expanded states. That is, it

ignores, or drops, duplicate states even when they are encountered by a better path. We

provide pseudo code for weighted A* with duplicate dropping in Figure 5-3. The proof

of bounded suboptimality for the duplicate dropping variant of weighted A* is slightly

different. There exist several proofs that weighted A* can drop duplicates without sacrificing

suboptimality bounds [39, 74], we reproduce Thayer et al [74] below.

Theorem 2 If h(n) is an admissible and consistent heuristic, then there always exists a

node p that is the deepest node along an optimal solution path that is on open and has
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g(p) ≤ w · g∗(p), where g∗(p) is the optimal cost of arriving at p.

Proof: The proof is by induction over iterations of the search algorithm. For the base

case we consider the first expansion, that of the root. One of its children must be along

an optimal path and it must also have it’s optimal g-value as well. For the inductive step,

assume that there is a node along an optimal path, pi−1, whose g-value is within a factor w

of it’s optimal g-value. Consider its fate during expansion. If it is not selected for expansion,

then pi−1 is still the deepest node along an optimal path on open, it obeys the inequality

g(pi−1) ≤ w · g∗(pi−1), and the proof holds trivially. If pi−1 is selected for expansion, one of

two things happens: pi is inserted into open, or pi was already expanded by another path

and is discarded. We now proceed by cases.

pi is inserted: If pi−1 is expanded and pi is inserted into open, then g(pi) = g(pi−1) +

c∗(pi−1, pi) ≤ w · g∗(pi−1) + c∗(pi−1, pi) ≤ w · g∗(pi) and the theorem holds.

pi is discarded: This can only happen because pi is already in closed after having been

expanded along another path. If pi was expanded before whichever w-admissible ancestor

pi−j was on the open list at that time, this means that f ′(pi) ≤ f ′(pi−j). But then:

f ′(pi) ≤ f ′(pi−j) by expansion order

g(pi) + w · h(pi) ≤ g(pi−j) + w · h(pi−j) by definition of f ′

g(pi) + w · h(pi) ≤ g(pi−j) + w · (c∗(pi−j , pi) + h(pi)) by admissibility of h

g(pi) + w · h(pi) ≤ g(pi−j) + w · c∗(pi−j , pi) + w · h(pi) by algebra

g(pi) + w · h(pi) ≤ w · g ∗ (pi−j) + w · c∗(pi−j , pi) + w · h(pi) by inductive assumption

g(pi) + w · h(pi) ≤ w · (g ∗ (pi−j) + c∗(pi−j , pi)) + w · h(pi) by algebra

g(pi) + w · h(pi) ≤ w · g ∗ (pi) + w · h(pi) by definition of optimal path

g(pi) ≤ w · g ∗ (pi) by algebra

�

The proof of bounded suboptimality under duplicate dropping is nearly identical to the

previous one:
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g(sol) = f ′(sol) By admissibility of h(n)

f ′(sol) ≤ f ′(p) By expansion order

g(p) + w · h(p) ≤ w · (g∗(p) + h(p)) By Theorem 2

≤ w · f(p) By definition of f

≤ w · g(opt) By admissibility of h

The additional step is required because we are dropping duplicates, and cannot guar-

antee p was arrived at by an optimal path anymore. Theorem 2 allows us to show that the

path to p is not too costly to ruin the proof of bounded suboptimality. Weighted A* is the

only algorithm that can drop duplicates without impacting its suboptimality bound, and it

can only do that so long as the cost-to-go heuristic is consistent. If we were to drop dupli-

cate states without a consistent heuristic, we would suffer a loosening of our suboptimality

bounds. Ebendt and Drechsler [17] showed that other bounded suboptimal algorithms, and

even weighted A* can drop duplicates without completely losing their suboptimality bound.

However, the bound does loosen based on the length of the solution. The resulting bound

is wlength, where length is the length of the returned solution. So, for example in the heavy

vacuum domain, where solutions are generally around a thousand actions long, if we were to

run weighted A* with duplicate dropping at w = 1.1, the resulting bound would be about

2.47 · 1041. The bound still exists, but only technically.

Figure 5-4 shows the impact duplicate dropping has on performance in two domains,

life-cost grid navigation and the fifteen puzzle; both are described in detail in Chapter 2.

The x-axis of these plots shows the suboptimality bound, w, supplied to the algorithm.

The y-axis presents mean solving time on a log scale with 95% confidence intervals about

the mean. We present results on two domains, grid navigation, a domain with tight cycles

and thus many duplicates, and the fifteen puzzle, a domain that has few cycles and few

duplicates.

Results vary very strongly between these two domains, as we see in Figure 5-4. In both

cases, ignoring duplicate states has a large impact on performance. For grids, it has a strong
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Figure 5-4: Impact of Duplicate Dropping on Weighted A* Performance

positive impact, as weighted A* without duplicate dropping is almost an order of magnitude

slower that weighted A* with duplicate dropping for all evaluated suboptimality bound. In

tiles, we see the opposite, weighted A* with duplicate dropping is nearly a full order of

magnitude slower than a weighted A* search that re-expands duplicate nodes as they are

encountered. It’s difficult to know a priori which strategy will perform best, but it tends

to be the case that for domains with tight cycles and many duplicates, dropping duplicates

is beneficial, while for domains with few cycles, duplicates should be re-expanded. As we

discussed earlier, technically other algorithms can drop duplicates as well, but at the cost

of a severe relaxing of their suboptimality bound.

5.3.4 Solving Time vs Suboptimality Bound

Figure 5-5 shows the time weighted A* required to solve a problem across a variety of

suboptimality bounds (5, 4, 3, 2.5, 2, 1.75, 1.5, 1.3, 1.2, 1.15, 1.1, 1.05, 1.01, 1.001, 1.0005,

and 1). Experiments were run until the problem was solved, memory was exhausted, or

more than ten minutes had passed. The reported times are therefore optimistic, as weighted

A* will report a time shorter than what is needed to solve the problem whenever it fails to

return a solution. Doing evaluations only on solved problems also provides an unrealistically

optimistic solution, and running only on problems small enough that they can be solved
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Figure 5-5: Performance of Weighted A*: Suboptimality Bound vs. Solving Time

by all algorithms in this evaluation is also too restrictive. We feel the above approach,

reporting the time required to exhaust memory, is the least worst option.

In Figure 5-5 the x-axis is the user-supplied suboptimality bound. On the y-axis we

report mean time-to-solve, with 95% confidence intervals about the mean. The number of

instances varies by domain, and these numbers are reported in Chapter 2. We place EES

on the plot with weighted A* (as we will for all evaluations in this section) to show how

previously proposed algorithms line up with the algorithm proposed in this work.

Generally, as the suboptimality bound supplied to weighted A* increases, the time the

algorithm requires to find the solution decreases. That is the intended behavior of weighted

A*. It is supposed to scale gracefully between A*-like behavior, cost-optimal solutions and

long solving times, and greedy search behavior, with expensive solutions but short solving

times. There are, however, three domains where this trend is not observed: inverse cost

tiles, heavy vacuum world, and dock robots.
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Figure 5-6: Weighted A* Doesn’t Always Improve with Larger w

In the heavy vacuum domain, weighted A* performance plateaus early on. That is, for

suboptimality bounds larger than two, the time required to find a solution doesn’t noticeably

decrease. This is because weighted A* has already converged on the performance of greedy

best first search. Greedy search takes on average 94 seconds to solve one of these instances.

No matter how much focus weighted A* shifts from cost-incurred to cost-to-go, it can never

become greedier than pure heuristic search, and so we would expect the performance of

greedy search on a problem to be a sort of bound on the performance of weighted A*. This

isn’t always true as we will soon discuss, but it is a fine heuristic for predicting performance.

For this domain, EES is substantially faster, up to two orders of magnitude, because it is

using additional information, an estimate of actions-to-go, to pursue easy to find solutions.

Outside of tie breaking, it is unclear how to incorporate such information into weighted A*

in a general way without losing guarantees of bounded suboptimality.

In the inverse tiles problems and dock robot problems shown in Figure 5-5 weighted A*

demonstrates a U-shaped performance curve. That is, it starts of needing large amounts

of time, improves for a while, and then becomes worse. We show weighted A* alone in

these domains to highlight the effect in Figure 5-6 This is surprising because it defies the

conventional wisdom that as suboptimality bounds are relaxed, heuristic search algorithms

take less time to solve problems. It turns out this notion of heuristic search performance
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Figure 5-7: Comparing EES and Weighted A* Based on Nodes Generated

is itself a heuristic in that it generally, not always, holds. In these problems weighted A*

is still converging on the performance of greedy best-first search, it just so happens that

greedy search performs very poorly for these problems because the heuristic can be quite

misleading. By putting too much focus on cost-to-go, weighted A* ends up ignoring cost-

incurred and is mislead by the heuristic. There is a ’sweet-spot’ where it performs quite

well, but where this is will vary by domain and instance. EES avoids this potentially bad

behavior by using online corrections of the misleading admissible cost-to-go heuristic and by

relying on multiple sources of information. The latter is known to improve the performance

of satisfying search substantially [53], but it is not known if a direct adaptation of this

technique to bounded suboptimal search results in improved performance.

Figure 5-7 shows the performance of Weighted A* and EES as a function of the number

of nodes generated during a search at a given suboptimality bound on the standard unit-

cost fifteen puzzle. When we look at the two algorithms in terms of time-to-solution, as

in Figure 5-5, we see that the two algorithms are barely distinguishable from one another,

126



Korf's 100 15 Puzzles

Suboptimality Bound
5432

S
o
lu
ti
o
n
 Q
u
a
li
ty

1

0.8

0.6

wA*

EES

100 Inverse 15 Puzzles

Suboptimality Bound
5432

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

EES

wA*

Life Four-way Grid World

Suboptimality Bound
42

S
o
lu
ti
o
n
 Q
u
a
li
ty

1

0.9

0.8

wA* dd

EES

Heavy Vacuum World

Suboptimality Bound
5432

S
o
lu
ti
o
n
 Q
u
a
li
ty

1

0.9

0.8

wA*

EES

Dynamic Robot Motion Planinng

Suboptimality Bound
42

S
o
lu
ti
o
n
 Q
u
a
li
ty

1

0.9

0.8

0.7

wA*

EES

Dock Robot

Suboptimality Bound
5432

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

EES

wA*

Figure 5-8: Performance of Weighted A*: Suboptimality Bound vs. Solution Quality

with weighted A* having a slight advantage for high suboptimality bounds. However, if

we look at the results in terms of states generated, then EES has a clear and consistent

advantage over weighted A*. This is meant to draw attention to the importance of search

overhead. In domains like the sliding tiles puzzle, where it is not uncommon for a well tuned

implementation to be able to generate millions of nodes per second. When node generation

is essentially free, the overhead of a search algorithm becomes incredibly important and

can be a determining factor in performance. When generating nodes becomes expensive,

as it is in domain independent planning for example, algorithm overhead becomes less of a

determining factor.

5.3.5 Solution Cost vs Suboptimality Bound

Another performance metric we might care about for bounded suboptimal search algorithms

is how cheap the returned solution is. While all solutions returned by bounded suboptimal
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search algorithms are provably within a bounded factor w of the optimal cost solution,

often they are better than this bound may imply. This is taken advantage of by some

bounded suboptimal search algorithms, optimistic search, which we discuss later, is one

example. Figure 5-8 present results of the IPC metric [52] of solution quality relative to

the suboptimality bound presented to the search algorithm. Solution quality is computed

as the cost of the best known solution to the problem divided by the cost of the solution

returned by the algorithm. Finding no solution has infinite cost, so this normalizes the cost

of solutions between 1 (best known) and 0 (no solution returned). Again, it isn’t an ideal

solution to the problem of not all algorithms solving all instances for the domains evaluated,

but it is widely used.

In Figure 5-8 we see that the solution qualities reported by weighted A* generally have

an inverted V shape. That is, for all domains save for Life grids where all problems are

solvable by all algorithms, for very tight suboptimality bounds low solution qualities are

reported, then solution qualities increase as suboptimality is increased, eventually reaching

a peak. Beyond this peak, the solution quality begins to decrease again. The initial stage

of low to high solution qualities is a result of moving from a suboptimality bound where

weighted A* fails to solve many instances within time and memory to a suboptimality bound

where it can find the solution to most of the problems under consideration. The second

phase, of moving from high solution quality to low solution quality, is exactly what we

should expect from a bounded suboptimal search algorithm. As the suboptimality bound

is relaxed, worse costing solutions are permissible and returned because they are easier to

find.

Perhaps more interesting than the solution quality of weighted A* is the comparison of

solution qualities between weighted A* and EES. In three of the domains under investiga-

tion, the original 15 puzzle, Life grid navigation, and heavy vacuum problems, weighted A*

consistently has higher solution qualities than explicit estimation search. This is because

EES is explicitly trying to minimize solving time by pursuing partial solutions believed to be

w-admissible in order of fewest estimated actions-to-go. If there is not a direct correlation
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between solution length and solution cost, then searching in order of d̂ could lead to low

quality solutions. Weighted A*, on the other hand, only ever considers cost-to-go for search

guidance, so we should expect it to return solutions of high quality so long as it can solve

the problem being considered.

There are three domains where EES is not dominated by weighted A*. These are the

inverse sliding tiles domain and dock robot domain, where EES consistently finds more

solutions for every suboptimality bound than weighted A*, and the dynamic robot domain.

In the latter domain, we cannot ascribe the good performance of EES to simply solving

more instances. Here, the good performance is likely the result of using more accurate

cost-to-go estimates than those used by weighted A*. We justify this by noting that greedy

best-first search on ĥ finds substantially better (i.e. cheaper) solutions than those returned

by greedy best-first search on h.

It is important to note that we could have made the solution quality comparison more

favorable to EES by picking a different range for normalization. Solution quality is current

computed by g(best solution)
g(my solution)

but 100· g(best solution)
g(my solution)

or 100000· g(best solution)
g(my solution)

are equally

legitimate. The proper range of normalization hinges on how costly it is to have no solution

to a problem. This varies from setting to setting. By virtue of relying on multiple heuristics

and directly trying to minimize solving time (and by proxy memory consumption), EES

will almost always solve more problems for a give setting than weighted A*. If we place a

high cost on having no solution, EES is clearly the better approach. If, however having no

solution is about as good as having a very costly solution, an approach like weighted A*

becomes more attractive.

From the perspective of bounded suboptimal search, this evaluation isn’t especially

useful. Hard guarantees of solution quality are all that really matter. On an unknown

domain, or even a new instance of a well studied domain, we can’t say anything for certain

about the cost of a solution returned by a suboptimal search but for the fact that it will

be within a bounded factor w of optimal. If hard bounds on solution cost are required,

there is an area of suboptimal search, bounded-cost search, that addresses this problem
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directly. We discuss these algorithms briefly in Chapter 6. For those who hand tune a

suboptimality bound for a bounded suboptimal search until it returns solutions of sufficient

quality sufficiently quickly, EES is likely to hit “sufficiently fast” with tighter bounds on

solution quality than weighted A*.

5.4 Dynamically Weighted A*

Dynamically weighted A* [46] is based on the second justification for weighting in weighted

A*, that weighting makes the search prefer nodes further along in the search and therefor

presumably nearer to a goal. Assuming that this preferential treatment is the reason for

the good performance of weighted A*, dynamically weighted A* attempts to improve upon

weighted A* by giving more preferential treatment to nodes far along in the search by

scaling the weight by which their heuristic is multiplied down.

The cost function for dynamically weighted A* is provided in Equation 5.2. Here,

ǫ = w − 1, so ǫ is the portion of the weight beyond optimal. There are, of course, many

ways to write the same expression, but this one highlights that the node evaluation function

of dynamically weighted A* is the evaluation function of A* plus an extra term based on

the depth of a node relative to the goal depth (scale(n) defined in Equation 5.1), and the

maximum allowable deviation from optimal, ǫ.

We can see that as the depth of a node increases, the value returned by Equation 5.1

approaches 0, so the deepest nodes in the search have no weight applied to them, while

nodes early on in the search have nearly the full suboptimality bound used (g(n) + h(n) +

(w− 1) · h(n) = g(n) +w · h ∗ (n)). This means that, for dynamically weighted A* to prefer

a node higher in the search tree to one lower in the tree, the higher node likely has a much

lower f -value. This results in a search algorithm which is loathe to reconsider previous

decisions, that is it will spend most of it’s time expanding nodes deep in the search tree

because they’re receiving preferential treatment.

Figure 5-9 shows the expansion order of dynamically weighted A* on a unit cost grid-
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Figure 5-9: Expansion Order of Dynamically Weighted A* Search on a Pathfinding Problem

world pathfinding problem. The visualization shows first time a node was expanded by

dynamically weighted A* search (w = 5). Nodes that were expanded early are colored

yellow, nodes that were expanded later on are colored red. We choose to color the first time

a node is expanded because dynamically weighted A* re-expands a great many nodes. You

can see that the dynamically weighted expansion order is much like the A* expansion order

(Figure 1-10, but shifted towards the goal, that is to the right. If we take a close look at

the node evaluation function used by dynamically weighted A*, this makes perfect sense.

As the depth of nodes increases, the weight applied to the heuristic increases. Eventually,

the depth of nodes will exceed MaxDepth, and fdwA∗(n) will be equivalent to f(n).

scale(n) = 1−min(1,
Depth(n)

MaxDepth
) (5.1)

fdwA∗(n) = g(n) + h(n) + ǫ · scale(n) · h(n) (5.2)
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5.4.1 Implementation Concerns

When looking at Equations 5.1 and 5.2, one might notice the MaxDepth value is not

supplied to the algorithm. While it is not supplied, it is required to perform the weight

scaling and thus the search as well. For some domains, like the traveling salesman problem,

the maximum depth of a search node is known, in that case it is the number of cities. For

the domains here, if we ignore cycles there is no maximum depth. If we disallow cycles,

there is a maximum depth, but it is far, far larger than the depth we would expect to

encounter solutions at. Having a huge MaxDepth relative to actual expected solution

depth would cause dynamically weighted A* to behave almost exactly like weighted A*,

effectively defeating the point of the algorithm. In our evaluation, we estimate the depth

of the solution using d(root).

5.4.2 Proof of Bounded Suboptimality

The proof of bounded suboptimality for dynamically weighted A* hinges on the fact that

Equation 5.2 is bounded from below by f(n) and from above by f ′(n). To see this, we must

merely observe that Equation 5.1 only returns values between 0 and 1. Thus, when ǫ is

0, fdwA∗(n) = f(n) and when ǫ is 1, fdwA∗(n) = f ′(n). Given this, we can use the same

chain of inequalities used in our proof of Theorem 1 to show the bounded suboptimality

of dynamically weighted A*. More generally, any node evaluation function obeying the

inequality f(n) ≤ f̃(n) ≤ w · f(n) can be shown to produce bounded suboptimal solutions.

Theorem 3 A best-first search on a node evaluation function f̃(n) returns solutions within

a bounded factor w of optimal so long as f(n) ≤ f̃(n) ≤ w · f(n).

Proof: The proof is based on the construction of the open list. Let p be the deepest node

along a bath to the optimal solution. This node must exist. Initially it is the root, and when

the root is expanded, it is one of the generated children. Since we never discard a node in

this search, p is always on the open list. When a best-first search expands a node, we know

132



it had the smallest node evaluation of all nodes on open. From this we can conclude:

g(sol) = f(sol) By admissibility of h(n)

f(sol) ≤ f̃(sol) By construction of f̃

f̃(sol) ≤ w · f(p) By construction of f̃

≤ w · f(opt) By admissibility of h

�

Unlike the previous algorithm, dynamically weighted A* cannot drop duplicates if they

are found along a better path even when the base heuristic is consistent. To see why this

is, imagine that we had written the node evaluation function of dynamically weighted A*

in this equivalent formula:

fdwA∗(n) = g(n) + w · scale(n) · h(n) (5.3)

Now consider combining scale(n) and h(n) into a single value, h̃(n). We are then left

with a weighted A* search on the new heuristic h̃(n). The new heuristic is admissible, as

h̃(n) ≤ h(n) because 0 ≤ scale(n) ≤ 1. However, the new heuristic is no longer guaranteed

to be consistent. Consider a pair of nodes, n1 and n2 where n1 is the parent of n2, the base

heuristic h(n) changes exactly by the cost of the transition between the two nodes c(n1, n2),

and Depth(n2) < MaxDepth. For h̃(n) to be consistent, the following must be true:

h̃(n1)− h̃(n2) ≤ c(n1, n2)

scale(n1) · h(n1)− scale(n2) · h(n2) ≤ c(n1, n2)

(1− Depth(n1)
MaxDepth

) · h(n1)− (1− Depth(n2)
MaxDepth

) · h(n2) ≤ c(n1, n2)

h(n1)− Depth(n1)
MaxDepth

· h(n1)− h(n2) +
Depth(n2)
MaxDepth

· h(n2) ≤ c(n1, n2)

c(n1, n2)− Depth(n1)
MaxDepth

· h(n1) +
Depth(n1)+1
MaxDepth

· h(n2) ≤ c(n1, n2)

c(n1, n2)− Depth(n1)
MaxDepth

· h(n1) +
Depth(n1)
MaxDepth

· h(n2) + h(n2) ≤ c(n1, n2)

Depth(n1)
MaxDepth

· (h(n2)− h(n1)) + h(n2) ≤ 0

h(n2)− Depth(n1)
MaxDepth

· c(n1, n2) ≤ 0
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Figure 5-10: Performance of Dynamically Weighted A*: Suboptimality Bound vs. Solving

Time

If h(n2) is ever larger than the cost of transitioning between n1 and n2, h̃ could violate

the inequality and thus be inconsistent. Since the consistency and admissibility of h(n)

don’t guarantee this property, we cannot guarantee that h̃ will be a consistent heuristic,

therefore dynamically weighted A* cannot ignore duplicate states arrived at via duplicate

paths without having an immense negative impact on the suboptimality bound [17].

5.4.3 Solving Time vs Suboptimality Bound

Figure 5-10 shows the time required by dynamically weighted A* to find a solution as a

function of the suboptimality bound supplied to the algorithm. We also place EES on the

plots for reference. Results for the heavy vacuum domain are omitted because dynamically

weighted A* solved no problems for any of the suboptimality bounds considered. The

plots reveal that for no suboptimality bound and for no domain is dynamically weighted
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Figure 5-11: Moving away from the root is not the same as making progress towards a goal

A* competitive with EES. In fact, for no suboptimality bound is dynamically weighted

A* competitive with weighted A*. Part of this is that the domains we consider in our

evaluation don’t have known solution depths, and so MaxDepth must be estimated. If

we have estimates of MaxDepth that are too conservative, dynamically weighted A* will

spend much of it’s time doing a mini-A* search near the goal state. If they are too large,

dynamically weighted A* will spend too much time exploring depths where no solutions

exist. Even if we pick MaxDepth well, dynamically weighted A* will be running an A*-like

search as it approaches the goal, and like A*, these searches will be expensive.

5.5 Revised Dynamically Weighted A*

Dynamically weighted A* [46] is built around the idea of rewarding progress away from the

starting node of the search space. And there are domains, such as the traveling salesman

problem or the knapsack problem where this is exactly the right thing to do. In these

domains every step away from the root is a step towards some goal, and so dynamically

weighted A* is always rewarding progress towards a goal. However in many domains we

can make steps away from the goal. Consider a single expansion in a completely empty

4-connected grid, shown in Figure 5-11, world where the agent has the same y-coordinate

as the goal, but is still to the left of the goal. When we expand the root of this problem,

we generate four children, only one of which is actually closer to the goal. Despite only one

child making any real progress, all four children have the same depth. Dynamically weighted

A* will give the same preferential treatment to all children, even those that moved away
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Figure 5-12: Expansion Order of Revised Dynamically Weighted A* Search on a Pathfinding

Problem

from the goal.

scalerdwA∗(n) = max(1,
d(n)

d(root)
) (5.4)

To try and correct for this degenerate behavior, we proposed revised dynamically weighted

A* [68, 74]. Revised dynamically weighted A* scales the heuristic values based on estimated

distances to the goal rather than the depth of the node as we see in Equation 5.4. If d(n),

an estimate of the length of a cost-optimal path beneath node n, is accurate then revised

dynamically weighted A* will only reward progress towards a goal instead of rewarding all

movement away from the root. We will see in the evaluation that this results in substantially

improved performance over dynamically weighted A*.

frdwA∗(n) = g(n) + h(n) + ǫ · scalerdwA∗(n) · h(n) (5.5)

Figure 5-12 shows the expansion order of Revised Dynamically Weighted A* (RDwA*)

search for the same suboptimality bound used by Dynamically weighted A* search in Fig-
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ure 5-9 (w = 5). We can see that while RDwA* does perform a mini-A* search near the

goal, the size of this search is much smaller than that of the previous dynamic weighting

scheme. This is because the revised dynamic weighting recognizes that not all progress away

from the root is progress towards a goal. By recognizing that nodes at the same depth may

represent solutions of radically different costs, we end up with a much improved expansion

order as we see here and in the empirical evaluation.

5.5.1 Proof of Bounded Suboptimality

The proof of bounded suboptimality is identical to that of the proof of Theorem 3. Since

Equation 5.4 always returns values between 0 and 1, frdwA∗(n) is always between f(n) and

w ·f(n). Any node evaluation function obeying this inequality will produce solutions within

a factor w of the optimal cost solution when used in a standard best-first search.

5.5.2 Solving Time vs Suboptimality Bound

Figure 5-13 shows the performance of revised dynamically weighted A* in terms of the time

needed to find solutions relative to the suboptimality bound provided to the algorithm. EES

is also included in the plots for reference. We see that revised dynamically weighted A*,

while significantly improving upon dynamically weighted A*, is substantially worse than

explicit estimation search for all domains and nearly all suboptimality bounds. We say

nearly all suboptimality bounds because for very tight suboptimality bounds in the standard

tiles problem and life grid pathfinding, revised dynamically weighted A* has performance

that is marginally better than that of explicit estimation search. Even though it corrects the

conflation of moving away from the root and moving towards a goal, revised dynamically

weighted A* is not a competitive bounded suboptimal search algorithm.
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Figure 5-13: Performance of Revised Dynamically Weighted A*: Suboptimality Bound vs.

Solving Time

Figure 5-14: Expansion Order of Clamped Adaptive Search (w = 1.25) on a Pathfinding

Problem
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5.6 Clamped Adaptive

Clamped adaptive [73] is very similar in spirit to weighted A*. It has the same philosophy

that making the cost-to-go seem more important than the cost already incurred is likely to

lead to a faster search algorithm. However it bases its search on an inadmissible heuristic

ĥ(n) rather than on h(n) as seen in Equation 5.6. This heuristic could be a hand-crafted

inadmissible heuristic, or it could be learned during search.

A heuristic unfettered by the requirements of admissibility could potentially be more

accurate than an admissible heuristic. This makes intuitive sense as an admissible heuristic

has to deal with an unlikely best-case scenario so that it can guarantee that it will never

over-estimate the true cost to go from a node, while an inadmissible heuristic could consider

what is likely to work in the majority of problems even if this may occasionally over-estimate

the true cost to go. Thus, it should be the case that by allowing ourselves to consider

inadmissible estimates of cost-to-go we could find a more informative estimate than the

base admissible cost-to-go estimate. As in EES, we refer to the inadmissible cost-to-go

estimate as ĥ. It has the same potential sources as before, and in our evaluation of clamped

adaptive ĥ is learned online, during the course of search using single step corrections.

f̂ ′(n) = g(n) + w · ĥ(n) (5.6)

One might wonder why clamped adaptive is a best-first search based on Equation 5.6

instead of a best first search on the same f̂ used by EES. The argument for using a weighted

variant of f̂ is very similar to the argument against selectNodel2: it never becomes suffi-

ciently greedy. If ĥ were perfect, this wouldn’t matter, as search on f̂ , f̂ ′, and ĥ are nearly

equivalent if ĥ = h∗. However, heuristics are rarely perfect, hence the need for search al-

gorithms. When the heuristic is inaccurate, search will not proceed directly to a goal, but

it will fill in minima in the heuristic value by raising the g-value of nodes with low f̂ or

f̂ ′ values. By placing additional emphasis on the heuristic, we can hope directly address

the problem of failing to become greedy under the realistic assumption that the heuristic is
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imperfect.

Naturally, weighted A* run on an inadmissible heuristic is not guaranteed to return

solutions within the desired suboptimality bound. This means that we cannot simply run

a best-first search on f̂ ′. Instead the node evaluation function of clamped adaptive search

must be slightly modified to ensure bounded suboptimality, as we see in Equation 5.7.

By restricting the node evaluation function to never be larger than w · f(n) we will be

able to prove bounded suboptimality in much the same manner that weighted A* (without

duplicate dropping) proves suboptimality bounds.

fca(n) = max(f(n),min(w · f(n), f̂ ′(n))) (5.7)

There is a large potential problem with the node evaluation function proposed in Equa-

tion 5.7. If ĥ(n) is consistently much larger than h(n), then f̂ ′(n) will consistently be larger

than w · f(n). In this situation, Equation 5.7 states that most nodes will be sorted in

order of w · f(n). If all nodes are sorted in order of w · f(n), that is equivalent to sorting

them in order of f(n). Effectively, if the inadmissible heuristic consistently reports values

much larger than the admissible heuristic, then clamped adaptive search converges to an

A* search order, regardless of suboptimality bound. While f̂ is more conservative than f̂ ′,

and thus less likely to revert to A* expansion order, it has problems with not becoming

sufficiently greedy as the suboptimality bound is relaxed, as we just discussed.

Obviously such behavior is undesirable, but for an arbitrary inadmissible heuristic it is

also unavoidable for some sets of problems. The evaluation will show that such behavior is

not merely theoretical, it is experienced in practice for online heuristic corrections like those

used by EES. EES avoids this problem partially by not limiting the range of values that f̂

can take, but as we previously noted, if f̂ is needlessly large this can result in too many

bound-proving expansions and poor performance for EES. That is, EES may experience a

similar failure relating to the relative magnitudes of ĥ and h, but in the case of EES it is

non-catastrophic, while clamped adaptive search will revert to an A* search order.
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5.6.1 Proof of Bounded Suboptimality

The cost function for clamped adaptive obeys the inequality f(n) ≤ fca(n) ≤ w · f(n)

and therefor returns bounded suboptimal solutions by the same argument as the previous

algorithms.

Theorem 4 If h(n) is an admissible heuristic, and f̃ is an arbitrary node evaluation func-

tion obeying the inequality f(n) ≥ f̃(n) ≤ w·f(n) then the solution returned by the algorithm

has cost within a factor w of the optimal solution.

Proof: The proof is based on the construction of the open list. Let p be the deepest node

along a bath to the optimal solution. This node must exist. Initially it is the root, and

when the root is expanded, it is one of the generated children. Since we never discard a

node in this version of weighted A*, p is on the open list at all times, including when a

solution is returned. When a best-first search algorithm on f̃ , that node has the smallest

value of all nodes on the open list (Line 3). From this, we can conclude:

g(sol) = f̃(sol) By admissibility of h(n), definition of f̃

f̃(sol) ≤ f̃(p) By Definition of p, best-first

f̃(p) ≤ w · f(p) By definition of f̃

≤ w · f(opt) By admissibility of h

�

As we can see, the proof presented here is nearly identical to the proof of bounded

suboptimality for weighted A*. The node evaluation function (f ′(n) for weighted A*) has

been replaced with a generic node evaluation function f̃(n). The definition of f̃ is left open

save for the fact that it is bounded from below by f(n) and from above by w · f(n). As

shown by the proof, any node evaluation function obeying such inequalities is guaranteed

to provide a solution within a bounded factor of optimal. f ′(n) obviously obeys such an

inequality, and fca does so by construction.
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Figure 5-15: Performance of Clamped Adaptive: Suboptimality Bound vs. Solving Time

5.6.2 Dealing with Duplicates

Unlike weighted A*, an algorithm that may avoid re-expanding duplicate states so long as

the base heuristic is consistent, clamped adaptive must re-expand duplicate nodes as they

are encountered. We have no guarantee that ĥ is consistent. Even if we did, it isn’t obvious

that the resulting node-evaluation function allows for a proof similar to what we did to

prove Theorem 2. As such, clamped adaptive must re-expand duplicate states encountered

by a better path or suffer a sever loosening of its bounds.

5.6.3 Solving Time vs Suboptimality Bound

Figure 5-15 shows the performance of the clamped adaptive algorithm, in terms of time to

solution, as a function of the suboptimality bound. EES is also included in the plot for refer-

ence. We see in the results that the behavior of Clamped Adaptive search is almost bimodal.
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In some domains (dynamic robots, dock robots, standard tiles) it performs relatively well,

perhaps failing to become sufficiently greedy as the suboptimality bound increases. For

other domains, it fails to solve a majority of the instances within time and memory for

some or all suboptimality bounds. The bad behavior of clamped adaptive search can be

almost entirely ascribed to the clamping performed in Equation 5.7. We previously noted

that when there is a large gap between h(n) and ĥ(n), that clamped adaptive will assign

w · f(n) to most nodes being considered by search, leading to a very A*-like search order.

A* search is ideal for optimal search, but it is a very poor approach to finding suboptimal

solutions quickly.

5.7 AlphA*

AlphA* [47] is a best first search which tries to improve the performance of search by

separating nodes into two groups, good nodes who will be sorted according to their f -value,

and bad nodes who will be sorted on w ·f(n). Thus, bad nodes are maximally penalized, we

cannot give them a value larger than w ·f(n) or we could not prove bounded suboptimality.

Any measurement of goodness could be used, but the paper introducing AlphA* suggests

four, shown in Equations 5.10 through 5.13. In these equations, π(n) is the parent of node

n and n̂ is the last node expanded.

fα(n) = wα(n) · f(n) (5.8)

wα(n) =





1 α(n) is true

w α(n) is false
(5.9)

αg = g(π(n)) ≥ g(n̂) (5.10)

αh = h(π(n)) ≤ h(n̂) (5.11)
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α′
g = g(π(n)) ≥ max

n∈closed
g(n) (5.12)

α′
h = h(π(n)) ≤ min

n∈closed
h(n) (5.13)

Equation 5.10 says that a node is good so long as the cost of arriving at its parent

is at least as much as the cost of arriving at the last node expanded by the search. This

function ends up encouraging progress away from the root, not unlike dynamically weighted

A*. It gives the search a kind of forward momentum, because nodes with lower g-values are

presumably elsewhere in the search space, and abandoning the current avenue of search is

made expensive by this alpha function.

Equation 5.11 is very similar to that of Equation 5.10, except now instead of preferring

nodes which have incurred lots of cost since leaving the root, we give nodes which appear

to be at least as close as the last node expanded preferential treatment. If a node appears

to be better (based on f(n)) but further away in terms of cost-to-go, then it must be much

better than the last expanded node to be considered. Again, this policy is aimed at giving

the search a sort of forward momentum.

Equations 5.12 and 5.13 are more aggressive version of the previous two rules in that

they consider the values of all nodes ever expanded instead of just the previously expanded

node. Not only are these rules stricter, they also incur less overhead. For the previous

rules, the alpha-value of a node would change at every expansion, potentially requiring a

resorting of the open list for ever node expanded.

5.7.1 Implementation Concerns

The way that fα is defined leads to large concerns for the efficient implementation of AlphA*.

The truth of α(n) can change from expansion to expansion for a great many nodes. If many

nodes change α and thus fα-values every expansion, we might have to resort the entire open

list if it stored nodes in order of fα.
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AlphA*(root, w, α)

1. open← {root}

2. while(open 6= {})

3. remove n from open with minimum fα(n)

4. if n is a goal

5. then return n

6. else expand n, inserting children into open

7. return no solution

Figure 5-16: AlphA* pseudo code.

Figure 5-17: Expansion Order of AlphA* Search on a Pathfinding Problem
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Figure 5-18: Performance of AlphA*: Suboptimality Bound vs. Nodes Generated

Clearly, resorting the entire open list every expansion is impractical. The simplest way

to implement AlphA* is to perform a linear scan of an open list sorted on f(n). For every

node, determine its α and fα-value. The first node with α(n) = true is going to have the

lowest fα value and can be returned. If we must return some node with fα(n) = w ·f(n), we

may have to scan a large portion of the open list in order to determine that we can return

this node.

Reese[47] has a yet-more-efficient way of determining the best node for an AlphA* search

algorithm. In order to improve the efficiency of the above approach, AlphA* may maintain

a pointer, or marker, to the first open node whose fα(n) = f(n), or the first active node.

When this node is selected for expansion, the pointer must be updated using a sweep of a

prefix of the open list, but maintaining and updating the marker saves time on iterations

in which an active node is note expanded, reducing search overhead.

Of course, none of this really matters. Even if we could completely eliminate the over-

head of AlphA*, it is not a particularly effective algorithm, at least not on the sorts of

domains investigated here with the α-functions suggested by the original paper. Figure 5-18

shows a performance evaluation of selected AlphA* algorithms in terms of nodes generate.

Examining algorithms in terms of nodes generated removes all over-head from the evalua-

tion. Even absent the considerable overhead of AlphA*, it is an uncompetitive algorithm.
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Figure 5-18 shows the performance of the AlphA* algorithm in terms of nodes generated

while solving a problem. We report results for the three domains where AlphA* was able

to solve problems within memory and the ten minute time limit. Two things become

immediately apparent: αg has the best overall performance, although it is only slightly

better than αh, and AlphA* does not perform well on domains without unit cost actions.

For domains with unit cost actions, ie the standard fifteen puzzle reported in the leftmost

panel of Figure 5-18, AlphA* is competitive in terms of the number of nodes generated.

5.7.2 Proof of Bounded Suboptimality

No matter what alpha is, we know that the following inequality holds:

f(n) ≤ fα(n) ≤ w · f(n) (5.14)

This comes from the way fα is constructed; all of the rules are only capable of returning

either f(n) or w · f(n) for any node. Any cost function obeying this inequality can use

the same proof of bounded suboptimality provided in the proof of Theorem 4. By the

same line, we know that AlphA* must re-expand duplicate nodes in order to maintain it’s

suboptimality bounds.

5.7.3 Solving Time vs Suboptimality Bound

Figure 5-19 shows the performance of AlphA* in terms of time rather than in terms of

nodes generated. Even an efficient implementation of AlphA* is dramatically slower than

other search algorithms, including EES which as we previously discussed has non-negligible

overhead. If we were to compare AlphA* with even more streamlined algorithms, such as

weighted A*, the comparison would be even more one-sided than the one seen in Figure 5-19.

5.8 Aǫ

Aǫ [20] was published slightly before A∗
ǫ , but is easier to describe in terms of A∗

ǫ , so we

delayed its presentation until now. It is easiest to conceptualize Aǫ as a blend of A∗
ǫ and
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Figure 5-19: Performance of AlphA*: Suboptimality Bound vs. Solving Time

Aǫ(root, w)

1. open← {root}

2. while open 6= {}

3. focal← {n ∈ open : f(n) ≤ f(fmin)}

4. remove n from focal with minimum d(n)

5. if n is a goal return n

6. else pursue(n)

7. return no solution

Figure 5-20: Aǫ pseudo code
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pursue(n)

1. if f(n) > w · f(bestf )

2. if persevere(open, n)

3. expand bestf , inserting children into open

4. pursue(n)

5. else insert n into open

6. else if n is a goal

7. return n

8. else children→ expand(n)

9. n′ → argminchildren d(n)

10. insert children− {n′} into open

11. pursue(n′)

Figure 5-21: pursue subroutine of Aǫ
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persevereA∗
ǫ
(open, n)

1. return false

persevereclose(threshold, open, n)

1. return d(n) ≤ threshold

perseverefgap(threshold, open, n)

1. bestf → argminf(n) open

2. best′f → argminf(n) open− {bestf}

3. return f(best′f )− f(bestf ) ≥ threshold

perseverefgap′(threshold, open, n)

1. bestf → argminf(n) open

2. return f(n)
f(bestf )

≤ threshold

Figure 5-22: Possible Persevere Predicates
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local search. We can see in Figure 5-20 that the pseudo-code for Aǫ is nearly identical to

that for A∗
ǫ . Aǫ build exactly the same focal list as the one used by A∗

ǫ .

Where they differ is in what is done with the node selected for expansion. While

A∗
ǫ would simply expand the node and insert it’s children into the open list, Aǫ invokes

the pursue function, shown in Figure 5-21. pursue is essentially a small local search run

starting from every node selected for expansion. This search hill-climbs on d(n) (lines 5

and on) so long as the next state can be shown to have cost within a bounded factor w

of optimal (line 1). If the node that hill-climbing would like to expand cannot be pursued

because we would lose our guarantees of bounded suboptimality, Aǫ might still pursue this

node by choosing to persevere. In this case, that means attempting to raise the lower bound

on solution cost until the node given to pursue can be shown to have cost within a bounded

factor w of optimal (lines 1 through 4).

persevere largely dictates the performance difference between Aǫ and A∗
ǫ , as it deter-

mines to what extent Aǫ will use its local search behavior. We replicate the predicates

suggested by Ghallab and Allard[20] in Figure 5-22, and add an additional predicate that

further highlights the similarity between A∗
ǫ and Aǫ. persevereA∗

ǫ
which Aǫ to A∗

ǫ . If we

never attempt to raise f(bestf ) in order to extend our local from the node selected for

expansion, Aǫ will behave exactly as A∗
ǫ .

The other suggested persevere rules are designed to actually allow Aǫ to do some limited

amount of local search depending on the situation. persevereclose allows for hill-climbing if

a node is estimated to be sufficiently close to being expanded into a goal. perseverefgap and

perseverefgap′ take the point of view that hill-climbing should be continued if raising the

lower-bound on optimal solution cost so that the node can be expanded while maintaining

a bound won’t be too expensive. Where they differ is in their definition of too expensive.

perseverefgap looks at the potential difference that could be gained as a result of a single

expansion of bestf , while perseverefgap′ looks at the relative difference between n and bestf

to determine if we should persevere. Note that, with the exception of the rule reducing Aǫ to

A∗
ǫ , all of the suggested rules require an additional parameter, which if selected improperly
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Figure 5-23: Expansion Order of Aǫ Search on a Pathfinding Problem

could prove disastrous for performance.

5.8.1 Proof of Bounded Suboptimality

The proof of bounded suboptimality for Aǫ follows the same line of reasoning as that for A∗
ǫ

and EES. Anytime a node is expanded, we know that f(n) ≤ w · f(bestf ). Since f(bestf )

is a lower bound on the cost of an optimal solution to the problem, we know that the cost

of any returned solution will be within a bounded factor w of optimal.

5.8.2 Solving Time vs Suboptimality Bound

Figure 5-24 shows the performance of Aǫ on the three benchmark domains where it was

able to solve problems within memory or ten minutes: both examined variants of the tiles

puzzle and life-cost grid navigation problems. We show results for the best performing

perseverance rule, that of using a relative threshold to deciding when to persevere. We

can see from the plots that, even for the best performing rule, Aǫ has poor performance.

For small suboptimality bounds, where bounded suboptimal search is most like A*, it has
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Figure 5-24: Performance of Aǫ on Three Benchmark Domains

performance that is on par with or, in tiles, slightly better than, EES. However, once the

bound is loosened and Aǫ is allowed to search through nodes in the order of its choosing,

its performance becomes far worse than that of EES.

5.9 A
∗
ǫ

A∗
ǫ [44] is a bounded suboptimal search algorithm that seeks to find solutions of bounded

suboptimality as quickly as possible by constructing a subset of all the nodes that could be

considered by search, and expanding only nodes out of this subset. As we have previously

noted, creating a subset of the nodes for consideration can speed up search by reducing

the size of the space that needs to be considered and by reducing overhead in key data

structures for a search algorithm. In A∗
ǫ ’s case, it is creating a subset of all nodes that,

if expanded at the current time, could be shown to lead to a solution within the desired

suboptimality bound. Of these nodes, it expands the node that is estimated to be closest

to a goal, based on d(n). Pseudo code for this algorithm is provided in Figure 5-25.

A∗
ǫ is the previously proposed algorithm that is most similar to explicit estimation

search, as is obvious from the algorithm description. The key distinction between the two

approaches is that EES builds a subset of all search nodes it estimates to lead to solutions

that are within a bounded factor w of optimal, while A∗
ǫ builds a subset of all nodes it can
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A∗
ǫ (root, w)

1. open← {root}

2. while open 6= {}

3. focal← {n ∈ open : f(n) ≤ f(bestf )}

4. remove n from focal with minimum d(n)

5. if n is a goal

6. then return n

7. else expand n, inserting children into open

8. return no solution

Figure 5-25: A∗
ǫ pseudo code

prove lead to a solution within a bounded factor w of optimal. More directly, EES uses f̂

to determine if a node is included on focal, while A∗
ǫ uses f . As we will see, this leads A∗

ǫ

to have less than ideal performance in practice.

The reason A∗
ǫ can perform poorly in practice is as follows: When using an admissible

cost-to-go estimate, the f -values of nodes cannot decrease, and typically increase, as the

search proceeds outward from the root. In contrast, along a path towards a goal, the d-values

of nodes will usually decrease. Thus, nodes with low d-values will often have relatively high

f -values.

This is not, in of itself, a problem. However, it leads to a behavior we refer to as

thrashing. Let the best node on A∗
ǫ ’s focal list, that is the node with the smallest d-value,

be bestd. Because f -values tend to rise as nodes move away from the root of the search

problem, it is often the case that nodes with low d-values have higher f -values. As a result,

bestd often has an f -value that is so high that it only barely qualifies for inclusion into the

focal list, while the node with the smallest f -value is all the way at the end of focal. When
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Figure 5-26: Expansion Order of A∗
ǫ Search on a Pathfinding Problem

bestd is expanded, its children will often have higher f -values than it did. As a result, they

may no longer qualify for inclusion in focal until bestf is expanded and f(bestf ) raises. bestf

will be expanded and f(bestf ) will raise, but generally only after all of the other nodes on

focal have been expanded. A more thorough discussion of this phenomena is available in

Thayer et al[74].

5.9.1 Implementation Concerns

Open and focal are separate lists, at least conceptually. There are several ways we could

build them, but an inefficient implementation will harm the performance of the algorithm.

One might consider only maintaining the open list, and iterating through the first handful

of nodes on every expansion to select dmin. Unfortunately when the bound is loose such

an algorithm would be examining every node in open at every expansion. Alternatively, we

might keep both open and a list of all nodes ordered on d in memory, iterating back on this

d-list until a node near enough to bestf is discovered, but again, this is inefficient.

To make A∗
ǫ a practical algorithm, we use a more sophisticated data structure. Nodes

155



in the open list are stored in a balanced binary tree totally ordered by f . In our implemen-

tation, we used a red-black tree following Cormen, Leiserson, Rivest, and Stein[11]. Those

nodes within ǫ of the node with minimum f are also stored in a heap ordered on d. We used

a binary heap stored in an array, following Sedgewick [63]. Using this arrangement, it takes

constant time to identify the node to expand, logarithmic time to remove it from the heap

and tree, and logarithmic time to insert each child resulting from the expansion. However,

if the node with minimum f changes, then nodes may need to be added or removed from the

heap. (All nodes are stored in the tree.) While it is easy to find the nodes whose f -values

fall between w times the old minimum f and w times the new one (because the tree is

ordered on f), there might be many such nodes that need to be added or removed from

the heap. Removal is easy because we maintain, in each node, its index in the heap array.

Using this more sophisticated data structure speeds up A∗
ǫ in practice by an enormous factor

which increases as problem become more difficult.

5.9.2 Proof of Bounded Suboptimality

The proof of bounded suboptimality is identical to that for optimistic and skeptical search.

At the time a solution is returned in Line 5 of Figure 5-25 we know that the cost of that

solution is within a bounded factor w of f(bestf ) by the construction of the focal list (Line

3). Since f(bestf ) is a lower bound on the cost of an optimal solution, we know that the

solution returned by A∗
ǫ is within a bounded factor of optimal. Conceptually, it is identical

to the proof of bounded suboptimality for EES.

5.9.3 Solving Time vs Suboptimality Bound

Figure 5-27 shows the performance of A∗
ǫ as a function of the provided suboptimality bound

in terms of the time needed to find a solution. Generally, A∗
ǫ performs worse than or is at

best competitive with EES in terms of time to a solution. We will shortly see that EES,

however, has consistently better solutions. Whenever A∗
ǫ does outperform EES, it is for

large suboptimality bounds. We can see this when we look at life cost grids, heavy vacuum
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Figure 5-27: Performance of A∗
ǫ : Suboptimality Bound vs. Solving Time

problems, or large inverse cost tiles problems. Here, for suboptimality bounds larger than

3, A∗
ǫ finds solutions faster, on average, than EES. Interestingly, high suboptimality bounds

are exactly the bounds where the detrimental thrashing behavior of A∗
ǫ does not occur.

For tighter bounds, where thrashing is a problem, we see remarkably poor performance for

A∗
ǫ . For example, for 1 ≤ w ≤ 2.5, A∗

ǫ fails to solve most instances of the grid pathfinding

problem, exhausting memory or timing out at ten minutes. For reference, the mean A* time

is about 4.5 seconds, so A∗
ǫ is a full two orders of magnitude slower than optimal search in

some cases.

In Figure 5-28 we see that a portion of the competitive behavior of A∗
ǫ can be ascribed to

its reduced per-node overhead when compared to EES. In Figure 5-28 we show the perfor-

mance of algorithms as measured by the number of nodes generated while solving a problem.

This removes search overhead from the consideration. We show three domains where the

performance of A∗
ǫ and EES was closest, the inverse cost fifteen puzzle, life cost grid-world
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Figure 5-28: Performance of A∗
ǫ : Suboptimality Bound vs. Nodes Generated

pathfinding, and dynamic robot motion planning. When we remove search overhead from

consideration, A∗
ǫ no longer has a clear advantage over EES for high suboptimality bounds.

The confidence intervals of the two lines overlap strongly for all domains. EES must main-

tain an additional sorting over the nodes to perform search. The cost of maintaining this

open list is well worth it, as it helps EES avoid the thrashing problem experienced by

A∗
ǫ , but for high suboptimality bounds where thrashing is not experienced, it can lead to

marginally worse performance.

5.10 Optimistic Search

Optimistic search is based on the following observation of the performance of weighted A*:

weighted A* often returns a solution much better than the bound would imply. Consider

the proof of weighted A*’s suboptimality bound presented in Proof 5.3.2. In the third line of

this proof, we state that, by algebra, g(sol) ≤ f ′(p) ≤ w ·f(p). Essentially, we are weighting

g(p) by a factor w that was not present in the node evaluation function f ′. This introduces

a looseness in the provable suboptimality bound for weighted A* that often allows this

algorithm to return solutions much better than the suboptimality bound suggests.

We show an example of this behavior in one domain in Figure 5-29. Here, the x-axis is

the suboptimality bound (or weight) weighted A* was run with and the y-axis represents
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Figure 5-29: Actual solution quality versus bound in bounded suboptimal search

actual solution quality, computed by solving the instance optimally and then dividing the

cost of the solution returned by weighted A* by that of the optimal solution. To show the

bound, we draw the line y = x.

As we see in the left panel of Figure 5-29, we should often be able to run weighted

A* with a weight much higher than the desired suboptimality bound and still be able to

find a solution within the bound. However, the guarantee of bounded suboptimality for

weighted A* is based on the supplied weight as we saw in the proof of Theorem 1. So even

if the returned solution is likely to be within the bound, we won’t know for certain, and

the algorithm would no longer be a bounded suboptimal algorithm2. In order to provide a

bound on the quality of solutions returned by such a search, we would need to find a way of

proving the quality of solutions that was independent from the search order that generated

those solutions. The right panel of Figure 5-29 shows that, although optimistic search was

proposed with weighted A* in mind, a similar approach is still valid for any of the bounded

suboptimal search algorithms investigated here, even EES.

Since we cannot prove the quality of the solution in the first phase of search, when

2There is some work concerning search algorithms that provide probabilistic bounds, where the solution

is within the desired bound with some probability. Such algorithms have different applications that the ones

discussed here and are thus outside the scope of this work.
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we find the solution, we will have to prove the quality of the solution using an additional

phase of search. In their paper on anytime heuristic search, Hansen and Zhou [22] point out

that, if we are not discarding duplicate states, the node on the open list with the smallest

f -value acts as a lower bound to the cost of an optimal solution. Thus, we can compute the

quality of an incumbent solution by dividing its cost by the smallest f -value on open as in

g(inc)
f(bestf )

. We can determine which node has the smallest f -value among all nodes by either

performing a linear scan of the open list or maintaining a separate, synced priority queue

sorted in order of increasing f -value. We take the latter approach and refer to this set of

nodes as the cleanup list.

This only shows how we can compute the bound on the current incumbent solution. If

the incumbent is within the bound, then we could simply return it, but the more interesting

case is the one where we cannot immediately show that the incumbent is within the bound.

In this case, there are two reasons why the solution might not appear to be within the

bound. Either the solution isn’t within the desired bound, or the solution is within the

bound but our lower bound on optimal solution cost is not tight enough to prove that the

incumbent is indeed within the bound. In the former case, we must abandon our current

solution and attempt to find a new one, in the latter, we must merely raise the lower bound.

To raise the lower bound, we need to increase the f -value of bestf . The most direct way

to do this is by expanding bestf and inserting its children into both the open and cleanup

lists. Since the heuristic used for computing f -values is admissible, expanding the node

with minimum f -value will either leave that value the same or will increase it. Eventually,

if the solution is within the desired bound, expanding bestf will raise the minimum f -value

to the point where we can show the incumbent solution is within the desired bound.

If the solution wasn’t within the bound, expanding bestf will eventually generate a

cost-optimal solution that is guaranteed to be within the bound. However, such a search

would, in terms of nodes evaluated, be less efficient than simply running A* in the first

place. It might be faster in terms of CPU time because of reduced overhead from having

an incumbent for pruning. In order to avoid this degenerate behavior, optimistic search
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Figure 5-30: Expansion Order of Optimistic Search (w = 1.5, opt = 2) on a Pathfinding

Problem

implements an ‘escape hatch’ which fires when it appears that there is a solution better

than the incumbent. Specifically, in lines 13-16 of Figure 5-33, we see that optimistic search

may pursue a new incumbent solution if its f ′-value appears to be less than the cost of

the incumbent. Such a node would have to have an f -value smaller than the cost of the

incumbent solution, so it could potentially lead to a better solution. In practice, these rules

are rarely, if ever, used. For a node to be expanded by these rules, it must first be generated

by an bestf expansion, otherwise it would have been expanded before an incumbent was

found in lines 1–7. In practice, we prove the quality of a solution long before such a node

becomes a candidate for expansion in line 13. If w and b are selected such that the solution

initially found is outside of the bound, these rules will be used.

Figure 5-30 shows a visualization of the expansion order of optimistic search on a unit

cost grid pathfinding problem. This particular visualization shows the first time a node

was expanded by search (recall that optimistic search may need to re-open nodes). Nodes

that were expanded for the first time early on are colored yellow, and as the color of a cell
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Figure 5-31: Initial Phase of Optimistic Search (w = 1.5, opt = 2) on a Pathfinding Problem

Figure 5-32: Cleanup Phase of Optimistic Search (w = 1.5, opt = 2) on a Pathfinding

Problem
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approaches red, that node was expanded later on in the search. Nodes that were untouched

remain white, and obstacles on the grid are colored in black. In the visualization we can see

the two phases of optimistic search, the greedy pursuit of the goal and the cleanup phase.

We visualize each phase of optimistic search separately in Figure 5-31 and Figure 5-32.

The first phase, lines 3 through 7 of Figure 5-33 and shown in Figure 5-31 is the search

for a first solution, when the incumbent solution is found. This shows optimistic search run

with a suboptimality bound of 1.5 and and optimism of 2, which means that we’re seeing

the same expansion order as weighted A* run with a weight of 2. Optimistic search runs

weighted A* with a weight that is optimism times as generous as the suboptimality bound,

which means we take the portion of the weight beyond optimal, and multiply by optimism

(ie (1.5− 1) · 2 + 1).

The second phase, the red colored onion around the beginning of the search space, is

where the quality of the solution found by the first phase of search is proved. While in

Figure 5-30, the red bulb did not form a closed region, here it does. That is because

previously we were only showing the first time a node was expanded, now we are showing

the first time a node was expanded during the cleanup phase. Some of the nodes expanded

in the first phase shown in Figure 5-31 are re-expanded in the cleanup phase shown in

Figure 5-32. These nodes must be re-opened to prove the bound later on.

If we compare the expansion order of optimistic search (Figure 5-30) with that of EES

(Figure 5-42), we notice that the two algorithms expand a nearly identical set of nodes,

but they do so in opposite orders. Optimistic search expands a thin strip of nodes leading

towards the goal, and then expands a set of nodes near the root to prove that the returned

solution was indeed within the bound. EES on the other hand, expands a small set of nodes

near the root in order to raise the lower-bound on optimal solution cost. It then expands

a thin strip of nodes from the tip of this A*-like initial phase into the goal. Because EES

expands the cleanup nodes first, in A* order, it will often have to do less repeated work

than optimistic search.
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OptimisticSearch(root, b, w)

1. incumbent← null

2. open← {root}

3. while(incumbent = null and open 6= {})

4. remove n from open with minimum f ′(n) = g(n) + w · h(n)

5. if n is a goal

6. incumbent← n

7. otherwise, expand n and insert children into open

8. while(open 6= {})

9. bestf ← n ∈ open with minimum f(n) = g(n) + h(n)

10. bestf ′ ← n ∈ open with minimum f ′(n) = g(n) + w · h(n)

11. if b · f(bestf ) ≥ g(incumbent)

12. return incumbent

13. otherwise, if f ′(bestf ′) ≤ g(incumbent)

14. if bestf ′ is a goal

15. incumbent← min(bestf ′ , incumbent)

16. otherwise, remove bestf ′ from open, expand it, and insert its children.

17. otherwise, remove bestf from open, if it is a goal, return it, otherwise expand it and insert children

18. return incumbent

Figure 5-33: Optimistic Search pseudo code with escape hatch.
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5.10.1 Implementation Concerns

An efficient implementation of optimistic search requires us to have easy access to both

bestf ′ and bestf . This suggests two open lists, one sorted on f ′-values, and the other

sorted on f -values. We refer to these as open and cleanup respectively. Although open

must exist for the entire lifetime of the search, cleanup is only important after an initial

solution is found. Thus, cleanup should only be constructed once the first solution is found

by iterating over all nodes in open, discarding those nodes with f(n) ≥ g(incumbent), and

inserting all other nodes into cleanup. Once cleanup is constructed, search can continue.

Keeping cleanup and open synchronized after this step, and performing the pruning on the

incumbent solution while building cleanup require data structures that support arbitrary

element removal.

5.10.2 Proof of Bounded Suboptimality

Optimistic search only returns a solution at three places, in Lines 12, 17, and 18 of Figure 5-

33. We can only return a solution in line 18 if the search space is exhausted without finding

a solution. In line 17, we return bestf , a cost-optimal solution. Obviously the optimal

solution is within a bounded factor of optimal. The more interesting case is when a solution

is returned in line 12.

Theorem 5 If h(n) is an admissible heuristic, then the solution returned by optimistic has

cost within a factor b of the optimal solution.

Proof: The proof is based on the construction of the cleanup list. Let p be the deepest

node along a path to the optimal solution. This node must exist. Initially it is the root,

and when the root is expanded, it is one of the generated children. Since we never discard

a node in optimistic search, p is on the cleanup list at all times, including when a solution

is returned. Unfortunately, we do not know which node is p. However, we can determine

which node has the smallest f -value, and this will allow us to prove the quality of the

solution.
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g(incumbent) ≤ b · f(bestf ) By line 11 of Figure 5-33

b · f(bestf ) ≤ b · f(p) By definition of bestf

b · f(p) ≤ b · f(opt) By admissibility of h(n)

By this chain of inequalities, we can see that when a solution is returned on Line 12

in optimistic search, that solution is within a bounded factor b of the cost of an optimal

solution. We previously showed that the other situations produce optimal solutions. This

completes the proof of bounded suboptimality. �

5.10.3 Dealing with Duplicates

Although optimistic search cannot discard duplicates as a result of the way it computes its

suboptimality bounds, it can delay their expansion until the second phase of search, the

bound proving phase. Effectively, we can run a variant of optimistic search where duplicate

states are only ever inserted into the cleanup list, but are never held on open. This, generally,

will result in finding an incumbent solution faster, although with slightly higher cost. If

the incumbent solution has higher cost, proving it to be within the bound will be harder.

So it is unclear if speeding the search to the first solution will always be beneficial. We

show results for duplicate delaying in Life grids, the only domain where it had a substantial

impact on algorithm performance.

5.10.4 Solving Time vs Suboptimality Bound

Figure 5-34 presents the time required by optimistic search and optimistic search with

duplicate delaying to find a solution or a given suboptimality bound across six benchmark

domains. EES is also included in the plots. As before, time is displayed on a log scale, and

95% confidence intervals about the mean are also displayed in the plot. These results show

optimistic search run with an optimism parameter of 2, as was used in the first conference

paper on optimistic search [67]. We will investigate the impact of optimism parameter on

performance shortly.

166



Korf's 100 15 Puzzles

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta

l 
ra

w
 c
p
u
 t
im

e 2

0

-2

EES

Optimistic

100 Inverse 15 Puzzles

Suboptimality Bound
5432

lo
g
1
0
 t

o
ta

l 
ra

w
 c

p
u
 t

im
e

2

0

-2

Optimistic

EES

Life Four-way Grid World

Suboptimality Bound
42

lo
g
1
0
 t
o
ta
l 
ra
w
 c
p
u
 t
im
e

3

2

1

0

Optimistic

EES

Optimistic dd

Heavy Vacuum World

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta
l 
ra
w
 c
p
u
 t
im

e

3

2

1

0

Optimistic

EES

Dynamic Robot Motion Planinng

Suboptimality Bound
42

lo
g
1
0
 t
o
ta
l 
ra
w
 c
p
u
 t
im

e

2

0

Optimistic

EES

Dock Robot

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta
l 
ra
w
 c
p
u
 t
im
e

3

2

1

optimistic

EES

Figure 5-34: Performance of Optimistic Search: Suboptimality Bound vs. Solving Time
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These plots reveal that duplicate delaying in optimistic search is nearly universally

beneficial to search performance, or at the very least it does no harm. The largest speedup

gained by duplicate delaying is in Life cost grids, while in some domains we see small

increases in mean solving time. In these cases, the two algorithms are indistinguishable

because the confidence intervals overlap so strongly. We will see in the comparison of

suboptimality bound versus solution quality that the improved solving times do come at

the cost of an increase in average solution cost and thus a decrease in solution quality.

For two thirds of the domains evaluated, EES is faster than either variant of optimistic

search, sometimes by small amounts, as in dynamic robot motion planning, and sometimes

by wide margins (3 to 4 orders of magnitude) as we see in the inverse tiles problems.

EES appears to have a substantial edge on performance in domains with a wide range

of operator costs, as is the case for the inverse tiles problem, heavy vacuum world, and

dock robot domain. In these domains, optimistic search pursues cheap solutions over short

solutions, resulting in increased solving time, but also decreased solution cost.

In dock robots, we also see the previously discussed U-shaped profile of weighted A*

manifesting inside of the optimistic framework. As the suboptimality bound increases, the

performance of optimistic search does not always get better. It improves up to a point

(a bound of 3., an effective weight of 5.) and then begins to perform worse as the weight

increases.

In the domains where performance between EES and optimistic search is closest, the

fifteen puzzle, Life cost grids, and dynamic robot pathfinding, we also examine the number

of nodes generated by the algorithms while solving a problem to get a feeling for how much

of the competitive performance of optimistic search is a result of reduced overhead. These

results are displayed in Figure 5-35, and they reveal that a portion, though not all, of the

competitive nature of optimistic search is a result of reduced overhead. The only domain

where optimistic search is consistently the better choice when evaluating search algorithms

in terms of the number of states evaluated is the standard 15 puzzle. This is also the only

domain with unit cost actions in the evaluation. As the domain has unit cost actions, EES
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Figure 5-36: Impact of Optimism Parameter on Optimistic Search Performance

receives no benefit from distinguishing between solution cost and solution length because

there is no difference here.

5.10.5 Impact of Optimism Parameter

Figure 5-36 shows the impact that the optimism parameter has on the performance of op-

timistic search for the dynamic robot domain, though results for other domains are similar.

We report only optimistic search, not the duplicate dropping variant. Again, the results

are similar across duplicate handling techniques. As the optimism parameter is increased,

solving times generally lower. Similarly, solution qualities generally lower as the optimism

parameter is raised. There are of course exceptions to this. We could, for example, pick an

optimism parameter so large that optimistic search reverted to A* search.

5.11 Skeptical Search

When searching for an incumbent solution, optimistic search can use any inadmissible

heuristic and still retain its guarantees of bounded suboptimality as long as an admissi-

ble heuristic is available for proving that the incumbent was within the desired bound.

While, at first glance, it may not be obvious that optimistic search is using an inadmis-

sible heuristic, we can show that it is by closely examining line 4. Rather than writing
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f ′(n) = g(n) + w · h(n), we could instead write f ′(n) = g(n) + b · w
b
· h(n). We can think

of w
b
· h(n) as an inadmissible heuristic that attempts to correct for the under-estimating

nature of the admissible heuristic h(n) by scaling it up uniformly (recall that w > b). We

can replace the weighted admissible heuristic from the first phase of optimistic search with

any learned heuristic. We call this modification of optimistic search skeptical search [72],

and we provide pseudo code for it in Figure 5-37. It is skeptical in that it does not place

absolute trust in the base heuristic. Note that the ad hoc additional weight parameter of

optimistic search has been removed, and so skeptical only accepts two parameters instead

of three. As we will see in the following evaluation, skeptical search offers two benefits

over optimistic search. It removes the need for parameter tuning and provides improved

performance in several benchmark domains.

The implementation details, proof of suboptimality and consideration of duplicates for

skeptical search are identical to that of optimistic search. A visualization of its expansion

order is shown in Figure 5-38. If we compare the expansion order of Skeptical search with

that of Optimistic, we see that the two approaches are very similar, differing primarily in

their greedy search phase. This is because optimistic search works with a fixed inadmissible

heuristic, whereas skeptical search is learning its inadmissible heuristic online, during search.

These two algorithms are cut from the same cloth. They differ only in that it is obvious

skeptical search is using an inadmissible heuristic, while with optimistic search we must

make an argument that applying an additional weight over the suboptimality bound on h

is an elementary attempt to correct for an underestimating heuristic, and thus optimistic

search does indeed search on inadmissible estimates of cost-to-go.

5.11.1 Solving Time vs Suboptimality Bound

Figure 5-39 shows the relative performance of EES and skeptical search in terms of time to

return a solution for the given suboptimality bound. As before, the y-axis reports the mean

time to solution on a log scale, with 95% confidence intervals about the mean. The relative

performance of EES and skeptical search largely mirrors the relative performance of EES
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SkepticalSearch(root, w)

1. incumbent← null

2. open← {root}

3. while(incumbent = null and open 6= {})

4. remove n from open with minimum f̂ ′(n) = g(n) + w · ĥ(n)

5. if n is a goal

6. incumbent← n

7. otherwise, expand n and insert children into open

8. while(open 6= {})

9. bestf ← n ∈ open with minimum f(n) = g(n) + h(n)

10. f̂ ′
min ← n ∈ open with minimum f̂ ′(n) = g(n) + w · ĥ(n)

11. if w · f(bestf ) ≥ g(incumbent)

12. return incumbent

13. otherwise, if f̂ ′(f̂ ′
min) ≤ g(incumbent)

14. if f̂ ′
min is a goal

15. incumbent← min(f̂ ′
min, incumbent)

16. otherwise, remove f̂ ′
min from open, expand it, and insert its children.

17. otherwise, remove bestf from open, expand it and insert children into open

18. return incumbent

Figure 5-37: Skeptical Search pseudo code
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Figure 5-38: Expansion Order of A* Search on a Pathfinding Problem
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Figure 5-39: Performance of Skeptical Search: Suboptimality Bound vs. Solving Time
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and optimistic search. For two thirds of the domains considered, EES provides obviously

better performance than skeptical search. In the remaining two domains, EES and skeptical

search are about at parity with one another, with skeptical search being slightly better in

the unit cost tiles puzzle. Here, distinguishing between solution cost and solution length,

something EES does but skeptical search does not, provides no additional advantage when

determining search order.

What is interesting is that the gap between the performance of the search algorithms

is narrower for EES and skeptical search than it was for EES and optimistic search. This

is in part because skeptical search, in this evaluation, uses the same inadmissible cost-to-

go heuristic that EES uses when determining search order. This inadmissible estimate of

cost-to-go is based, in part, on an estimate of actions-to-go [72]. Incorporating action-to-go

estimates is known to be particularly beneficial in domains where actions may have a wide

range of costs, as is discussed in Chapter 2. The two domains where skeptical is substantially

better than optimistic search, heavy vacuum problems and the inverse cost tiles puzzles,

also have a wide variance in action cost. So it is likely that skeptical search is getting some

performance benefits from incorporating action-to-go estimates via the “backdoor” of how

it constructs its inadmissible cost-to-go estimates.

5.12 Explicit Estimation Search

Explicit Estimation Search (EES) is a new bounded suboptimal search algorithm that in-

corporates the objectives of bounded suboptimal search directly into its search order. It

uses inadmissible, or potentially over-estimating, heuristics for cost and actions-to-go in

order to pursue the shortest w-admissible solution to the problem. As we will discuss later,

shorter solutions should be easier to find, and so EES is attempting to minimize solving

time within a given bound by proxy. To ensure that the suboptimality bound is met, EES

also relies on the more traditional admissible heuristics for cost-to-go.

Pseudo code for EES is provided in figure 5.12. We can see that explicit estimation
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EES(root,w)

1. open← {root}

2. while open 6= {}

3. let n = selectNode(open,w) in

4. if goalp(n)

5. then return n

6. else open← open− {n}

7. for each child c of n, open← open ∪ {c}

8. return no solution

Figure 5-40: Pseudo Code for Explicit Estimation Search

search is a standard best-first bounded suboptimal search algorithm. It takes as input

an initial state and a suboptimality bound and returns a bounded suboptimal solution

should one exist (line 6) or no solution if the space contains no solution (line 9). The most

interesting part of EES, and indeed any best-first search algorithm, is how it selects the

next node for expansion. We now discuss this portion of EES in detail.

5.12.1 Explicit Estimation Search Order

EES keeps track of three values for every node. f(n) = g(n)+h(n), an admissible estimate

of the total cost of a solution passing through node n. f(n) will be used to construct a lower

bound on the cost of a solution to the problem, and it is how EES shows that returned

solutions are within the bound. f̂(n) = g(n) + ĥ(n) is similar to f(n), but inadmissible.

f̂(n) is EES’s best guess as to the cost of a solution through n. EES will use f̂(n) to

estimate which nodes will lie within the suboptimality bound. Finally, EES uses d̂(n), an

inadmissible estimate of the number of actions required to complete a solution beginning

with node n. d̂ is a proxy for search effort, and is used to ensure EES pursues solutions

that can be found quickly.
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Using these three measurements, EES keeps track of three special nodes in the search

space. bestf , bestf̂ , and best
d̂
. bestf is the node with the smallest f(n) for all nodes that

have been generated but not yet expanded. bestf is interesting because f(bestf ) represents a

lower bound on the cost of a solution to the problem under consideration. As we previously

noted in Section 5, expanding all nodes with w · f(n) < g(sol) allows us to show that sol

has cost within a bounded factor w of optimal.

best
f̂
is an inadmissible doppelganger of bestf . Where bestf is used to find a lower-

bound on optimal solution cost, we use best
f̂
to construct our best estimate of optimal

solution cost as in f̂(best
f̂
). EES will use this estimate of optimal solution cost to construct

a subset of apparently w-admissible nodes to consider for expansion.

best
d̂
is selected from this suspected to be w-admissible subset. Among those nodes

estimated to be w-admissible, it is the node with the smallest d̂-value, the least estimated

actions-to-go. Effectively, of all potentially w-admissible solutions, best
d̂
is estimated to be

the easiest to complete. “Easiest to complete” naturally refers to computation time, and

while actions-to-go is not a direct measurement for computation time, it has been shown to

be a reasonable proxy for it [15].

Slightly more formally the three nodes can be defined as:

bestf = argmin
n∈open

f(n) (5.15)

best
f̂

= argmin
n∈open

f̂(n) (5.16)

best
d̂

= argmin
n∈open∧f̂(n)≤w·f̂(best

f̂
)

d̂(n) (5.17)

It is of course possible that there are multiple nodes with the smallest f -value, smallest

f̂ -value, or smallest d̂-value. In this case, the above formal definition is incorrect, though

it still provides the intuition behind these nodes. For bestf and best
f̂
, we are primarily

interested in the value associated with the node, and ties are of little consequence. For

best
d̂
, tie breaking is very important. We now discuss tie breaking for all three nodes.

In the case of bestf , we recommend breaking ties in favor of low g-values. Nodes with

more of their f -values in cost-to-go, h(n), than in cost-incurred, g(n), are less likely to
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selectNode

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

3. else bestf

Figure 5-41: Node selection function of EES

have been reached by a suboptimal path because they are, generally, the result of fewer

expansions. This is absolutely true for unit-cost domains, but if actions may have differing

costs, this is only a heuristic and not always the case. The intuition is that by preferring

nodes with low g-values we are more likely to improve a path to a node already on our open

list, improving the chances that it may be selected for expansion.

For best
f̂
ties should be broken in favor of low f -values. If two nodes have the same

estimated total cost, then we should prefer the node with lower d̂(n). By preferring the

node with lower d̂, we may end up converting best
f̂
into best

d̂
, thereby allowing the search

to pursue a solution rather than busying itself with book keeping and bound proving. An

argument can also be made for breaking ties in favor of low f -values. A node with low

f -values is more likely to be expanded as bestf later on in the search. By expanding it now,

we save ourselves the effort of doing it later. Pilot experiments showed that tie-breaking on

low d̂-values was slightly better performing.

For best
d̂
, we should break ties in favor of low f̂ -values. Nodes with lower f̂ -values are

more likely to stay on the focal list of EES, and they are more likely to be legal for expansion

by the criteria f̂(n) ≤ w · f(bestf ). By preferring the node with the smaller f̂ -value, we

are attempting to pursue lower-cost solutions. All else being equal, low-cost solutions are

easier to show to be within the desired suboptimality bound, thus potentially speeding up

search.

At every expansion, EES chooses from among these three nodes using the function
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Figure 5-42: Expansion Order of Explicit Estimation Search (w = 1.3) on a Pathfinding

Problem

described in Figure 5.12.1. EES first considers best
d̂
, as pursuing nearer goals should lead to

a goal fastest, satisfying the “as quickly as possible” objective of bounded suboptimal search.

best
d̂
is selected if its expected solution cost can be shown to be within the suboptimality

bound. That is, if f̂(best
d̂
) ≤ w · f(bestf ). In prose, this conditional says pursue best

d̂
only

if we suspect we could convert it into a complete solution that we could return without

raising the lower-bound on optimal solution cost. If best
d̂
is unsuitable, best

f̂
is examined.

We suspect that this node lies along a path to an optimal solution. Expanding this node

can also expand the set of candidates for best
d̂
by raising f̂(best

f̂
). We only expand best

f̂
if

it is estimated to lead to a solution within the bound. If neither best
f̂
nor best

d̂
are thought

to be within the bound, we return bestf . Expanding it can raise our lower bound f(bestf ),

allowing us to consider best
d̂
or best

f̂
in the next iteration.

Figure 5-42 shows the order in which EES expands nodes on a unit-cost grid navigation

problem with suboptimality bound w = 1.3. The root of the problem is in the middle of

the left-hand-side of the grid, and the goal is in the middle of the right-hand-side. Nodes
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are colored by the time they were last examined by the search algorithm. We say last as

EES may re-expand some states. Nodes that were expanded early on are colored yellow,

and as the search progresses, the color changes from yellow to red.

In Figure 5-42 we see that order in which nodes are expanded is strongly related to their

proximity to the root and the goal. Nodes near the root are all expanded early (these nodes

are primarily yellow), and as we approach the goal, nodes become orange and then finally

red. States that were never explored by search remain white, and the obstacles appear as

blackened cells.

Obviously, at the beginning of the search many nodes will be near the root. However,

the search staying near the root early on is also a result of the inadmissible heuristics we’re

using and the relative power of the admissible heuristic. Early on the online estimators

used by EES in this paper are unstable, as they are based on observed error in the heuristic

and very few observations have been made. This leads to a situation where ĥ-values for

nodes are often very high, especially relative to the h-value of nodes. This means that most

nodes appear to exist outside of the currently provable suboptimality bound, causing EES

to expand bestf repeatedly until estimates of ĥ calm down and some nodes appear to lead

to solutions within the bound. These are then expanded until a goal is produced, often

without the need to go back and improve our lower bound on optimal cost solutions.

While this makes good intuitive sense, we will see that such behavior is not common

to previous work in bounded suboptimal search. There are some exceptions to this general

observation on expansion order, for example some nodes near the root are colored orange.

These nodes were expanded later on in order to prove the suboptimality bound for the

solution, as we will now see.

Figure 5-43 provides an alternative perspective on the search order of EES run with

w = 1.3 on this grid pathfinding problem. In this image, we see not the order in which

nodes were expanded, but rather the rule in selectNode by which they were selected. If

selectNode returned bestf , then the node is colored blue, if it was returned by best
f̂
, then

the node is green, and if the node was returned by best
d̂
, then the node is colored red. To
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Figure 5-43: Visualization of Which Node was Selected by SelectNode

deal with duplicates, we only show the first rule by which a node was expanded.

Nodes near the root are selected when they are bestf . We expand bestf in order to

allow for the expansion of other nodes, and to prove the suboptimality bound. Admissible

heuristics are, by definition, optimistic. As search progresses, the f -value of nodes tends

to rise, so nodes near the root often have the smallest f -values. Therefore, nodes near the

starting state are often going to be expanded as bestf rather than as any other node.

Nodes expanded as best
d̂
, colored in red, are a thin strand proceeding in almost a

straight line towards the goal. This is exactly what we should expect from the expansion

order. If d̂ and f̂ were perfect, then some child of best
d̂
would always be the next best

d̂
, and

search could proceed directly towards a goal, if we were to ignore the suboptimality bound.

While f̂ and d̂ aren’t exactly perfect in practice, they aren’t particularly inaccurate on this

problem either. If they were, the strip of nodes expanded by as best
d̂
would be much wider

as a result of vacillation [15].

Vacillation is a measure of the indecision experienced by search when deciding what

is best. If we think of searches as inducing a tree of possible solutions from the initial

179



state using the expand function, then vacillation is a measurement of how frequently the

search algorithm hops between subtrees. Since heuristics are not truth, a systematic best-

first search will occasionally need to abandon one line of inquiry for another. Accurate

heuristics can reduce the amount of vacillation experienced by search and thus improve

performance.

There is another surprising thing about the nodes expanded as best
d̂
, none of them are

near the root, in the area expanded by bestf . In this paper, as we will soon discuss, we

use online correction to produce ĥ and d̂ from base heuristic estimators. As a result of the

online correction, ĥ and d̂ are very volatile early on in the search, having estimates that

differ wildly between parent and child. The estimates are also, generally, quite high. As a

result, all nodes appear to be outside of the provably suboptimality bound early on, and so

nodes are expanded in bestf order until the online estimators settle down.

Finally, there are a surprisingly large number of expansions of best
f̂
. best

f̂
is only

chosen for expansion in the event that best
d̂
isn’t expected to lead to a w-admissible solution

currently, but best
f̂
is. For tight suboptimality bounds, such as the one considered here,

that can occur quite frequently. As we will discuss shortly, we could ignore best
f̂
, and

only consider best
d̂
and bestf when selecting nodes for expansion. This would remove all of

the green nodes in Figure 5-43, but it actually harms performance for tight suboptimality

bounds, as we will see.

5.12.2 Sources of ĥ and d̂

The expansion order of EES relies heavily on an admissible estimate of cost-to-go and

inadmissible estimates of cost-to-go and actions-to-go, ĥ and d̂ respectively. Yet we have

not discussed where these estimates come from. Admissible estimates of cost-to-go are a

staple of heuristic search, and we therefor know many ways of efficiently computing lower

bounds on solution cost. These include abstraction based techniques like pattern databases

[12] and relaxation techniques like ignoring obstacles in grid pathfinding.

Actions-to-go estimates of any stripe are slightly rarer in bounded suboptimal search, in

180



part because they are not required (admissible heuristics are needed to prove suboptimality

bounds), but are nonetheless simple to construct for an arbitrary problem. Several of the

bounded suboptimal search algorithms we will discuss as previous work rely on actions-to-go

estimates, so such estimates are not particularly novel, simply less common. The simplest

way of constructing an estimate of actions-to-go is to take the same approach that we would

for constructing estimates of cost-to-go, but rather than using the cost of actions, simply

replace action costs with 1.

There are several methods of constructing inadmissible estimates of cost or actions-to-

go. Hand crafted heuristics constructed by a domain expert are perhaps the oldest. As we

previously noted, it has been suggested that we could use the Manhattan distance of all

tiles plus three times the linear conflicts measure as a heuristic for the sliding tiles puzzle.

Such a heuristic is no where near admissible, but it does provide reasonable guidance on

the puzzle for which it was proposed. Inadmissible heuristics can also be automatically

constructed. This can be done offline, using training instances to learn improved evaluators

[59], in between instances when solving a large number of problems from the domain [30, 6],

or over the course of a single search algorithm by evaluating the accuracy of a heuristic on

the search tree [72].

5.12.3 Proof of Bounded Suboptimality

We’ve stated that explicit estimation search is a bounded suboptimal search algorithm, but

we have yet to demonstrate that the solutions returned by EES are guaranteed to be within

a bounded-factor w of optimal. We now present a proof that EES is guaranteed to only

produce solutions whose cost is within a bounded factor w of the optimal cost solution.

Theorem 6 If h(n) ≤ ĥ(n) and g(opt) represents the cost of an optimal solution, then for

every node n expanded by EES, it is true that f(n) ≤ w · g(opt), and thus EES returns

w-admissible solutions.
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Proof: selectNode will always return one of best
d̂
, best

f̂
or bestf . No matter what node

n is selected we will show that f(n) ≤ w · f(bestf ). This is trivial when bestf is chosen.

When best
d̂
is selected:

f̂(best
d̂
) ≤ w · f(bestf ) by selectNode

g(best
d̂
) + ĥ(best

d̂
) ≤ w · f(bestf ) by definition of f̂

g(best
d̂
) + h(best

d̂
) ≤ w · f(bestf ) by h ≤ ĥ

f(best
d̂
) ≤ w · f(bestf ) by definition of f

f(best
d̂
) ≤ w · g(opt) by admissibility of h

g(best
d̂
) ≤ w · g(opt) by admissibility of h and best

d̂
being a goal

When best
d̂
is a solution, h(best

d̂
) = 0 and f(best

d̂
) = g(best

d̂
), thus the cost of the solution

represented by best
d̂
is within a bounded factor w of the cost of an optimal solution. The

best
f̂
case is analogous:

f̂(best
f̂
) ≤ w · f(bestf ) by selectNode

g(best
f̂
) + ĥ(best

f̂
) ≤ w · f(bestf ) by definition of f̂

g(best
f̂
) + h(best

f̂
) ≤ w · f(bestf ) by h ≤ ĥ

f(best
f̂
) ≤ w · f(bestf ) by definition of f

f(best
f̂
) ≤ w · g(opt) by admissible h

g(best
f̂
) ≤ w · g(opt) by admissible h and best

f̂
being a goal

�

EES only expands nodes returned by selectNode, and since any of the nodes returned

by selectNode must have cost within a bounded factor w of g(opt), any solution returned

by EES must be within a bounded factor w of optimal, thus completing the proof.
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5.12.4 Implementation Considerations

Explicit Estimation Search is structured like a classic best-first search: insert the initial

node into open, and at each step, we select the next node for expansion using selectNode.

To efficiently access best
f̂
, best

d̂
, and bestf , EES maintains three orderings over the nodes:

the open list, focal list, and cleanup list. These lists are used to access best
f̂
, best

d̂
, and

bestf respectively. The open list contains all generated but unexpanded nodes sorted on

f̂(n). The node at the front of the open list is best
f̂
. focal is a prefix of the open list ordered

on d̂. focal contains all of those nodes where f̂(n) ≤ w · f̂(best
f̂
). The node at the front of

focal is best
d̂
. cleanup contains all nodes from open, but is ordered on f(n) instead of f̂(n).

The node at the front of cleanup is bestf . We need to be able to quickly select a node at

the front of one these queues, remove it from all relevant data structures, and reinsert its

children efficiently. To accomplish this, we implement cleanup as a binary heap, open as

a red-black tree, and focal as a heap synchronized with a left prefix of open. This lets us

perform most insertions and removals in logarithmic time except for transferring nodes from

open onto focal as best
f̂
changes. This requires us to visit a small range of the red-black

tree in order to put the correct nodes in focal.

For domains with integer action costs, performance could be improved by using a buck-

eted open list instead of a binary heap for cleanup and open. In this restricted case, we can

use integer-based bucketed open lists to get constant insertion and removal times instead of

the log times that we have with heap backed priority queues. This can result in substantial

speedups, as open lists can be quite large. In the empirical evaluation in this paper, we will

ignore this potential optimization because it is not general.

Search algorithms should perform duplicate detection on node generation (ie on line 7 of

Figure 5.12), rather than on node expansion. There are many domains with huge numbers

of duplicates, and maintaining duplicate nodes on open increases the cost of all operations

needlessly, as most operations have complexity logarithmic in the number of nodes in the

list . To do detection on insertion into node lists, you have to have arbitrary removal and
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replacement for all of your node structures. This is not particularly difficult if one is willing

to write their own data structures, but many standard libraries, C++’s STL for example,

do not provide this ability.

Goal tests should be done on generation if goal tests are inexpensive. The small amount

of pruning this gives you can actually improve performance in some settings. With goal

testing on generation, the pseudo code for the algorithm changes as shown in Figure 5-44.

The proof of suboptimality for this variant of EES is very simple. We can see in line 4 of

Figure 5-44 that EES with goal tests on node generation only exits the search loop when no

solution exists or the cost of the incumbent solution can be shown to be within a bounded

factor w of f(bestf ). Since f -values are based on admissible heuristics, this proves the

incumbent is within a bounded factor w of the optimal cost solution as well, completing the

proof.

5.12.5 Performance vs. Heuristic Accuracy

Explicit Estimation Search relies on three heuristic functions, an admissible cost-to-go

heuristic h as well as ĥ and d̂. These latter two estimate the true cost-to-go and true

actions-to-go respectively. Since they are not bound by the constraint of admissibility, we

hope that they can be more accurate predictors of these values. We now consider what

happens in several extreme cases and examine the performance of EES as the corrections

are degraded in a controlled experiment, arriving at the expected outcome that better cor-

rections lead to better behaviors. Our analysis of the behavior of these algorithms relies on

the assumption that our actions-to-go estimations are estimating the length of the shortest

optimal solution beneath a node, and not simply the shortest solution beneath a node.

While the algorithm will work with either interpretation of actions remaining in practice,

the intention of the algorithm encourages us to use the cost-optimal variant. When we

determine whether or not a node can be included in the set of all likely w-admissible

solutions, we decide so optimistically. That is, we consider all nodes whose cost-optimal

completion is estimated to have cost within the bound. In the worst-case, this is the only
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EESGoalGen(root,w)

1. open← {root}

2. cost←∞

3. incumbent← None

4. while open 6= {} ∧ w · f(bestf ) < cost

5. let n = selectNode in

6. open← open− {n}

7. for each child c of n

8. if f(c) < cost

9. if goalp(c)

10. incumbent← c

11. cost← g(c)

12. else open← open ∪ {c}

13. return incumbent

Figure 5-44: EES with Goal Testing on Node Generation
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solution beneath a node within the desired suboptimality bound. As a result, we should

tailor our proxies for completion-cost to this worst case. Otherwise we run the risk of

substantially underestimating the cost of finding a solution beneath a node, harming search

performance.

5.12.6 ĥ = h
∗ & d̂ = d

∗

In an ideal world, both inadmissible heuristics would be equal to the true cost to go heuristic

h∗ and the true distance to go heuristic d∗. Surprisingly, in this situation we are neither

guaranteed to find the optimal solution, nor will we always find the shortest solution within

the bound. We will however find one of these two solutions. In this situation, selectNode

will repeatedly expand bestf , since bestf is based on an admissible h. h may be much

smaller than h∗, and the difference in these two heuristics determines just how many bestf

expansions are performed. As bestf continues to be expanded, f(bestf ) will steadily rise as

a result of the admissibility of h. At some point this value will be large enough so that one

or both of w · f(bestf ) ≤ f̂(best
f̂
) and w · f(bestf ) ≤ f̂(best

d̂
) will hold. If both become

true, EES will expand best
d̂
into the shortest w-admissible goal. However, if we manage to

show only that best
f̂
is provably within the bound then we will expand it. At some point,

it will become the new best
d̂
, and will be expanded into the optimal goal.

Figure 5-45 shows the performance of EES on a Life-cost grid-world pathfinding problem,

described in detail in Chapter 2 with a summary of features presented in Table 2.1, when

both inadmissible heuristics are perfectly accurate. The y-axis of the plot shows mean

number of nodes generated across 100 instances on a log scale, with 95% confidence intervals

about the mean, and the x-axis shows the suboptimality bound with which the algorithm

was run. We report node generations to remove overhead from the consideration; the two

algorithms are implemented slightly differently due to the source of their heuristics.

Unsurprisingly, EES using perfect inadmissible heuristics, Perfect Inadmissible in the

plot, outperforms EES using online learning techniques to produce its inadmissible estimates

of cost and actions-to-go. This is the version of EES used throughout the evaluation in this
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Figure 5-45: Performance of EES When ĥ = h∗ and d̂ = d∗

chapter. What we might find surprising are the peak in online learning and the fact that

the performance difference is limited to a single order of magnitude for most suboptimality

bounds, ie outside of the peak. Recall that only the inadmissible heuristics, ĥ and d̂, have

perfect information. h is still the admissible augmented Manhattan distance described in

Appendix 2. While the EES with perfect information can find a w-admissible solution in

time linear to the length of that solution, proving the solution is within the bound is still

difficult because the admissible heuristic is imperfect. This limits the potential difference

in performance. The relationship between h and ĥ plays a very important role in the

performance of EES.

The peak for the realistic implementation of EES, and its absence for perfect inadmissible

heuristics, is also of interest. The peak is the result of node re-expansion, that is it is the

result of reopening nodes that are encountered with a better path. Using perfect heuristics

ensures that we never encounter a node by a suboptimal path when selecting bestf or best
f̂

for expansion (best
d̂
may still encounter a node by a suboptimal path, even with perfect
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Figure 5-46: Performance of EES Both ĥ and d̂ May Be Inaccurate.

information). However, even though EES with perfect heuristics can (and does) encounter

nodes by suboptimal paths, it will never re-open a node. With perfect information, EES

will expand nodes from bestf until a provably w-admissible solution is on the open list.

It will then directly pursue this w-admissible solution until the goal is returned. Since

solutions contain no cycles, and since bestf expansions always expand nodes with their

optimal g-value, no node can require re-expansion when perfect inadmissible heuristics are

used. Realistically, EES will interleave proving the bound and solving the problem. It

may also make mistakes when estimating if a node has a solution beneath it whose cost

is within the suboptimality bound, resulting in a large number of re-expansions for some

suboptimality bounds. This manifests as a peak for tighter suboptimality bounds, as we

see in Figure 5-45.
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5.12.7 ĥ 6= h
∗ & d̂ 6= d

∗

This situation represents reality, where neither ĥ nor d̂ are perfectly accurate. We present

results for this setting in Figure 5-46. To construct heuristics with controlled amounts of

error, we compute h∗ for all states. Then, when computing the heuristic for a given state, we

introduce noise. Since inadmissible heuristics can err in either direction, that is we expect

h∗(n) ≥ ĥ(n) to be just as likely as h∗(n) ≤ ĥ(n) , we must be sure that our corrupted

heuristic is equally likely to err on both sides of truth. We set some maximum magnitude,

say 0.1, and then select a value, called c at random between−0.1 and 0.1. Then, the reported

heuristic for a node is hcorrupt(n) = h∗(n) · (1 + c) where c is selected independently for

each node. EES with various maximum corruptions, ranging from no corruption to 0.3,

are shown in Figure 5-46. We also include online learning for sake of comparison. Again,

results are reported in terms of states examined on a log scale to control for overhead.

In Figure 5-46 we see that, as the error introduced to the heuristic increases, perfor-

mance of the algorithm decreases. Similarly, as we introduce noise, the number of nodes

needed to be re-expanded increases, seen in the size of the peaks for small suboptimality

bounds. Surprisingly, the online corrections used in this evaluation provide better are better

performance than any of the evaluated corruptions. This is surprising because the online

estimators are known to be inaccurate, as we discussed in Chapter I, in fact more inaccurate

than the corrupted estimators studied here. It is important for ĥ to be accurate in absolute

terms, as it forms the set of all nodes estimated to lead to w-admissible solutions. Further

we use it to determine if a node can be extended into a complete solution without needing

to perform the bound-proving bestf expansions, so ĥ may harm performance in this way

as well. d̂ need only provide good relative orderings over nodes, as we want to purse the

easiest to find solution, but we don’t really care how difficult it is to find in absolute terms.
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5.12.8 Alternate Expansion Rules

The selectNode function is the heart of EES in that it determines the search order and

thus the behavior of the algorithm. We previously argued that selectNode was directly

motivated by the goal of suboptimal search outlined in Section 5: find a solution within

the suboptimality bound as quickly as possible. While selectNode is nearly a direct tran-

scription of this goal into an algorithm, that does not preclude the usefulness of alternative

selectNode functions. We investigate several of these alternate functions below.

5.12.9 Conservative

Although the formulation of selectNode is directly motivated by the stated goal of bounded

suboptimal search, it is natural to wonder if there exist other formulations of select node

that may have better performance or be beneficial in particular settings. We consider a

more conservative approach called selectNodecon, but find that it produces an expansion

order identical to that of selectNode.

selectNodecon

1. if f̂(best
f̂
) > w · f(bestf ) then bestf

2. else if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

3. else best
f̂

selectNodecon is a more conservative approach in that it wants to do the bound-proving

expansions, those on bestf , as early as possible and so it considers expanding bestf before

any other node. If bestf wasn’t selected for expansion, it then considers best
d̂
and best

f̂

in the same order as before. This expansion order produces a solution within the desired

bound by the same argument as that for selectNode.

selectNodecon

1. if f̂(best
f̂
) > w · f(bestf ) then bestf

2. if f̂(best
d̂
) ≤ w · f(bestf ) ∧ f̂(best

f̂
) ≤ w · f(bestf ) then best

d̂
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3. if f̂(best
d̂
) > w · f(bestf ) ∧ f̂(best

f̂
) ≤ w · f(bestf ) then best

f̂

Using the ordering of the rules and the properties of bestf , bestf̂ , and best
d̂
we can

rewrite selectNodecon as seen above. The rule for selecting bestf is unchanged. The rule

for selecting best
d̂
has been strengthened. If we are considering selecting best

d̂
, then it must

have been the case that bestf was unsuitable for expansion. This gives us the second half

of the rule for selecting best
d̂
. This is simply the negation of the rule for selecting bestf .

We then apply the same strengthening to the rule for selecting best
f̂
. As it is the last node

to be considered, the first two rules must have failed.

selectNode

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. if f̂(best
d̂
) > w · f(bestf ) ∧ f̂(best

f̂
) ≤ w · f(bestf ) then best

f̂

3. if f̂(best
d̂
) > w · f(bestf ) ∧ f̂(best

f̂
) > w · f(bestf ) then bestf

We can apply the same techniques to obtain a more precise definition of selectNode as

well. As before, we leave the first rule, that for selecting best
d̂
, untouched. The rule for

selecting best
f̂
is strengthened by adding the negation of the first rule to its condition. This

makes sense because we would only consider the second rule if the first failed. Finally, we

form the rule for selecting bestf by stating what the relationship between best
d̂
, best

f̂
and

bestf must be for the first two rules to fail.

selectNode

1. if f̂(best
d̂
) ≤ w · f(bestf ) ∧ f̂(best

f̂
) ≤ w · f(bestf ) then best

d̂

2. if f̂(best
d̂
) > w · f(bestf ) ∧ f̂(best

f̂
) ≤ w · f(bestf ) then best

f̂

3. if f̂(best
f̂
) > w · f(bestf ) then bestf

The proceeding is a simple restatement of the strengthened selectNode. We have added

the condition f̂(best
f̂
) ≤ w · f(bestf ) to the rule for the selection of best

d̂
. This adds no

new restrictions of the rule, as f̂(best
d̂
) ≥ f̂(best

f̂
), but it does make it identical to the
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selectNodeopt

1. if incumbent = None ∨ f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

3. else bestf

Figure 5-47: Optimistic Node Selection Function for EES

rule from selectNodecon. The rule for bestf has been altered for the same reason. We’ve

removed a redundant statement rather than adding one. It is now obvious that selectNode

and selectNodecon are equivalent, modulo order of course.

5.12.10 Optimistic

In contrast to the above ‘conservative’ approach for selecting nodes, the optimistic node

selection function we are about to discuss actually produces a different search order from

the original selectNode function. This particular select node function, described in Fig-

ure 5.12.10, is optimistic in that it will expand nodes that it cannot immediately prove to

be within the current suboptimality bound. We see this in line 1 of Figure 5.12.10, where

best
d̂
may always be selected for expansion so long as there is no incumbent solution. Once

an incumbent solution is found, selectNodeopt and selectNode are equivalent.

As selectNodeopt cannot guarantee the w-admissibility of the nodes it returns in the

same way selectNode does, we must find another way to ensure returned solutions have

bounded suboptimality. Effectively, any optimistic version of EES must be a sort of limited

anytime algorithm. Potentially, we could produce two solutions, the first solution that is not

w-admissible, and a second solution that is. Pseudo-code for an optimistic EES algorithm

is provided in Figure 5-48. This algorithm differs from EES with goal testing on node

generation only in the function used for node selection.

There are two reasons to prefer an optimistic node selection function to the original

selectNode. The first is that selectNodeopt may encounter its first solution far faster than
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EESGoalGen(root,w)

1. open← {root}

2. cost←∞

3. incumbent← None

4. while open 6= {} ∧ w · f(bestf ) < cost

5. let n = selectNodeopt in

6. open← open− {n}

7. for each child c of n

8. if f(c) < cost

9. if goalp(c)

10. incumbent← c

11. cost← g(c)

12. else open← open ∪ {c}

13. return incumbent

Figure 5-48: Optimistic EES with Goal Testing on Node Generation
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selectNode. This can happen because selectNode will always prove suboptimality bounds,

and thus select bestf for expansion quite frequently, only in the very extreme case where

w = 1 would we want to return a solution by bestf , as it will always be an expensive to

find optimal cost solution. Finding a solution early on is beneficial because it allows for

more opportunities to prune nodes. This, as we noted with EES with goal testing on node

generation, can reduce solving time.

The second reason to prefer an optimistic approach is that it may actually reduce the

cost of proving a solution is within a bounded factor w-of optimal. If we have a solution in

hand, we know exactly what nodes need to be expanded in order to prove that the solution is

within the bound. This is the case in an optimistic variant of EES. The normal selectNode

rule uses f̂ to guess what nodes must be expanded in order to prove the suboptimality

bound. If our guesses are bad, and they may well be, this could lead to needless effort.

On the other hand, the normal selectNode function will never find solutions outside of

the desired suboptimality bound. Because selectNodeopt may, it runs the risk of needing to

do two disjoint searches over the space, resulting in far more expansions for the optimistic

EES than the regular EES. The chance that selectNodeopt will return a solution outside of

the desired suboptimality bound on the first iteration hinge on the accuracy of ĥ. If ĥ is

very accurate, or consistently underestimates h∗, then the chances that the solution found

by selectNodeopt will be outside of the suboptimality bound are low. If ĥ is inaccurate, the

opposite is true.

In Figure 5-49, we see three plots comparing the performance of explicit estimation

search using selectNode and selectNodeopt, labeled in the plots as EES and EES Opt.

respectively. We present results for three of our benchmark domains: 100 instances of the

15-puzzle originally used in Korf’s paper on IDA* [34], the same puzzles with a different

set of action costs, and a robotic vacuuming domain. The domains are explained in detail

in Chapter 2 with their most interesting features described in Table 2.1. The plots in this

figure all follow the same layout: the suboptimality bound is listed on the x-axis. On the

y-axis, we show the time required to find a solution at the given suboptimality bound in
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Figure 5-49: A Performance Comparison of EES and EES Opt

seconds on a log scale. The line presents the mean value of solving time, and the error bars

show a 95% confidence interval about the mean.

As we can see from the three plots here, there is little difference between selectNode

and selectNodeopt in terms of performance on these three problems. There is no discernible

difference in the standard 15-puzzle (left panel), EES using selectNodeopt has slightly better

performance in the inverse cost 15-puzzle shown in the center panel, and EES using the

original selectNode dominates EES using selectNodeopt for the heavy vacuum problems

shown in the right panel. While, for very accurate ĥ’s and domains with many cycles,

we would expect selectNodeopt to outperform selectNode, realistically we don’t know the

accuracy of our heuristics a priori, making it difficult to know which of EES and EES

Opt. will have the best performance. For the domains and heuristics considered here, the

difference between the two approaches is not particularly large, nor is it consistently in one

direction as we saw in Figure 5-49

5.12.11 Lesion Study Of Expansion Order

We now turn to the question of whether selectNode is more complicated than it needs to

be. One way of reducing the complexity of the algorithm is to reduce the number of nodes

being considered by selectNode. This reduces the complexity of selecting the next node for
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expansion. It may also remove the need for maintaining the set of nodes from which best
d̂

is selected. This would reduce the overhead of the algorithm. We consider three lesioned

versions of selectNode; each ignores one rule.

selectNodel1

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else bestf

In selectNodel1, we expand either best
d̂
, the node that is nearest to a solution that we

estimate to be w-admissible, or bestf . We would expand this node in order to prove the

bounds on the solution represented by best
d̂
. Note that within this formulation best

f̂
is

still present. We use it to define best
d̂
. While this lesioned version of selectNode performs

well at high weights, it can have trouble at tight suboptimality bounds. This is because the

gap in quality between bestf and best
d̂
can be much larger than the gap in quality between

best
f̂
and best

d̂
, which is fixed at w. It may be difficult to prove that best

d̂
is within the

bound precisely because of this gap. In these situations, expanding best
f̂
and pursuing the

solution estimated to have optimal cost, as EES would, is the best course of action as we

will soon see.

selectNodel2

1. if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

2. else bestf

In selectNodel2 we ignore best
d̂
, choosing instead to pursue the node that appears to be

the furthest along on a path to an optimal solution, best
f̂
, and those nodes needed to prove

that the optimal solution is within our desired bound, represented by bestf . While this

approach is effective for tight suboptimality bounds where even the suboptimal solutions

must be nearly optimal, for generous bounds, the search fails to become sufficiently greedy.

If f̂ is wrong by even a small amount, the effort required to find the optimal solution becomes

quite large [25]. The ability to select from all nodes that appear to be w-admissible allows
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Figure 5-50: Comparing the Performance of Lesion selectNode Functions

us to skirt this problem and provides considerable utility in domains where the shortest and

the cheapest solutions are very different.

selectNodel3

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else best
f̂

l3 is essentially selectNodeopt, except that it has no mechanism for ever enforcing the

suboptimality bound. We mention selectNodel3 merely for completeness sake; it is the last

function resulting from removing a single rule from selectNode. The previous discussion of

selectNodeopt covers a more realistic implementation of such a lesioned expansion rule.

We might also consider lesioned variants where two rules are removed. These provide

A*, a greedy search on d̂, and a greedy search on f̂ . None of these is particularly interesting

when discussing bounded suboptimal search algorithms as the first isn’t suboptimal and

the last two aren’t bounded. We will discuss the later two in Section 4.6.
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Figure 5-50 compares the performance of the standard selectNode with the two lesioned

variants on the standard 15 puzzle. Results are presented in terms of nodes generated (on

a log scale) in order to remove differences caused by differing overheads. selectNodel2, for

example, must not maintain focal as it never expands best
d̂
. We show three algorithms in the

plot, EES using the standard selectNode function, labeled EES, EES using selectNodel2,

labeled EES - L2, and EES using selectNodel1, labeled EES - L1.

There are two interesting phenomena displayed in Figure 5-50. First, there are places

where both lesioned selectNode functions converge on the original selectNode. For selectNodel1,

this is for loose suboptimality bounds, where best
d̂
is very likely to be selected for expan-

sion. For selectNodel2, it is for tight suboptimality bounds, where best
d̂
is unlikely to be

selected. A particular suboptimality bound in combination with our inadmissible heuristic

estimators may effectively lesion our expansion order.

The second thing to note is that selectNodel2 never becomes as greedy as the other

two approaches. While we might initially suspect this is because it never considers d̂, this

evaluation is performed on a unit-cost domain where ĥ = d̂, so this isn’t strictly true. The

difference is more nuanced; selectNodel2 never considers the inadmissible estimate on its

own. If our corrections were perfect, this wouldn’t matter; a greedy search on f∗ is the same

as a greedy search on h∗ (and d∗) in unit-cost domains. However, because our inadmissible

estimates are often imperfect, incorporating cost-incurred into the node evaluation function

can lead to a more conservative search order, as we see in the plot.

5.12.12 Summary

This section presented the explicit estimation search algorithm in detail. We discussed how

its search order, defined by selectNode shown in Figure 5.12.1 is nearly a direct imple-

mentation of the stated goal of bounded suboptimal search. It would be identical, but we

use estimates of solution length as a proxy for estimating search effort. We also discussed

visualizations of the expansion order of EES. This showed that EES does indeed behave as

our intuitions about the algorithm would suggest. Early on, the algorithm expands nodes
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to raise its lower bound on solution cost to be more in line with it’s inadmissible estimate

of optimal solution cost. Once this is done, EES proceeds more or less directly towards a

goal.

Our discussion of alternate expansion orders showed that selectNode is indeed the proper

definition of “best” for bounded suboptimal search. An apparently more conservative ap-

proach, selectNodecon was shown to be equivalent to selectNode upon further examination.

Although selectNode and selectNodeopt did differ in which nodes they would consider for

expansion, we saw in Figure 5-49 that the difference in performance between EES and EES

Optimistic was not particularly large, nor was it consistently in favor of one algorithm over

the other. Finally, our discussion of lesioned expansion orders show that selectNode is

exactly as complicated as it needs to be in order to have good performance.

5.13 Suboptimality Bound vs. Nodes

The previous evaluations of the bounded suboptimal search algorithms compared their

performance in terms of actual running time. That evaluation was fair in the sense that it

took algorithm overhead into account. While we are often concerned with the question of

which algorithm takes less time to solve a problem, we may also care about the number of

states that need to be considered by a search. Such an evaluation is interesting because it

says something about the scalability of the algorithms, as a search which examines more

nodes will exhaust memory faster. Similarly, search is fundamentally limited by the cost of

examining states, as much of the other computation in a search algorithm can be optimized

away or tuned to the point of not introducing too much cost. Thus, looking at the number

of nodes generated by a search tells us something about their relative performance in the

limit of infinite optimization. Such an evaluation follows.
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ated
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5.13.1 Weighted A*

Figure 5-51 compares the weighted A* search algorithm with explicit estimation search

across a wide variety of benchmarks. Here, we are examining the performance of algorithms

as a function of the number of nodes they generate, shown on the y-axis in log scale. In

these evaluations, a node is generated if it was generated by expanding a node; that is, we

count duplicates as generated, even though they will be discarded before being inserted into

open.

Unlike the previous comparison in Figure 5-5, which was quite favorable for weighted

A*, we see here that EES effectively dominates weighted A* with the notable exception of a

small range of suboptimality bounds in life-cost grid pathfinding. We will discuss the brief

exception momentarily. Recall that the plots here ignore algorithm overhead entirely. As

we discussed previously, weighted A* has very little overhead, whereas EES must compute

additional heuristics and maintain additional orderings over nodes. Thus, when ignoring

algorithm overhead, we ignore the primary advantage weighted A* has over EES.

The exception to EES’ dominance over weighted A* is in the problem of life-cost grids.

In this domain, there are a great many duplicates, which weighted A* can ignore (wA*

dd in the legend). However, we see that even weighted A* with re-expanding duplicates is

better than EES for a small range of weights. Why should EES re-expand more nodes than

weighted A*?

The answer comes from an examination of their expansion orders. For low w, weighted

A* will expand nodes in approximately A* order. Since A* requires no re-expansions, we

would expect a search order that is almost identical to require relatively few expansions.

EES, on the other hand, deviates as much as possible from an A* search order. When

expanding a node it effectively shoots out a greedy search on d from that node until all of

the children look to be outside the suboptimality bound. Greedy searches often reach nodes

by suboptimal paths. In the case of a near optimal search, many of those nodes will have

to be re-expanded in order to find a solution within the bound. This is why EES is slower

201



Korf's 100 15 Puzzles

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta

l 
n
o
d
e
s 
g
e
n
e
ra

te
d

7

6

5

4

DwA*

EES

100 Inverse 15 Puzzles

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta
l 
n
o
d
e
s 
g
e
n
e
ra
te
d

8

6

4

DwA*

EES

Life Four-way Grid World

Suboptimality Bound
42

lo
g
1
0
 t
o
ta
l 
n
o
d
e
s 
g
e
n
e
ra
te
d

8

7

6

DwA*

EES

Heavy Vacuum World

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta
l 
n
o
d
e
s 
g
e
n
e
ra
te
d

7

6

5

4

dwa*

EES

Dynamic Robot Motion Planinng

Suboptimality Bound
42

lo
g
1
0
 t
o
ta
l 
n
o
d
e
s 
g
e
n
e
r
a
t
e
d 8

6

DwA*

EES

Dock Robot

Suboptimality Bound
5432

lo
g
1
0
 t
o
ta
l 
ra
w
 c
p
u
 t
im
e 4

2

DwA*

EES

Figure 5-52: Performance of Dynamically Weighted A* Search: Suboptimality Bound vs.

Nodes Generated

than even weighted A* in this small area of the life-grid problems.

5.13.2 Dynamically Weighted A*

Figure 5-52 compares the dynamically weighted A* search algorithm with explicit estimation

search across a wide variety of benchmarks. This evaluation isn’t particularly revealing,

except that the performance difference between dynamically weighted shown in the plots

here is larger than that shown in Figure 5-10. This is because, like weighted A*, dynamically

weighted A* has low per-node overhead relative to EES. However, unlike weighted A*,

dynamically weighted A* was never competitive with EES on the benchmarks evaluated

here.
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Figure 5-53: Performance of Revised Dynamically Weighted A* Search: Suboptimality

Bound vs. Nodes Generated
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Figure 5-54: Performance of Clamped Adaptive Search: Suboptimality Bound vs. Nodes

Generated

5.13.3 Revised Dynamically Weighted A*

Figure 5-53 compares the revised dynamically weighted A* search algorithm with explicit

estimation search across a wide variety of benchmarks. The comparison is much like that

provided for dynamically weighted A*. It is not particularly surprising because revised

dynamically weighted A* was not an especially competitive algorithm on the benchmarks

considered in this dissertation.

5.13.4 Clamped Adaptive

Figure 5-54 compares the clamped adaptive search algorithm with explicit estimation search

across a wide variety of benchmarks. The interesting results here are in the dock robot

domain, where we see that the good performance of clamped adaptive relative to EES is
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only partially a result of reduced overhead. For small suboptimality bounds (w < 2), we

see that clamped adaptive search has performance on par with that of explicit estimation

search.

Recall that when we performed the lesioned evaluation of EES, we saw that for small

suboptimality bounds, search on best
f̂
and bestf exclusively performed about as well as the

full fledged EES algorithm. The expansion order for clamped adaptive is not that different

than that of the lesioned EES. Clamped adaptive will assign a value w · f(n) to a node if

g(n)+w · ĥ(n) is too large to be provably within the bound at the time of expansion. These

are exactly the nodes that EES would deem unqualified for expansion by best
f̂
. Further, all

of these nodes will be sorted in f -order because a linear scaling of all f -values does nothing

to impact the order of nodes. The ordering of nodes qualified for expansion by best
f̂
will

differ between EES and clamped adaptive, as only scaling the heuristic portion of the node

evaluation function can change search order. This is why we see some deviation in terms of

the number of nodes expanded.

5.13.5 A
∗
ǫ

Figure 5-55 compares A∗
ǫ with explicit estimation search across a wide variety of bench-

marks. The interesting thing to note here is that the good performance of A∗
ǫ is not entirely

attributable to overhead. For large suboptimality bounds w > 3, it appears that search on d

is actually sometimes faster than search on d̂. We see this in life grids, heavy vacuums, and

the inverse 15 puzzle. This seems to be in conflict with the results reported in the previous

chapter, where we showed that the learned heuristic was almost always better than the base

heuristic. However, there we were talking about h and ĥ, not d and d̂.

Further, we aren’t really searching greedily on either of these values. We’re searching

greedily over an, admittedly very large, subset of nodes. Taking this subset is likely pruning

away many of the poorer options that the learned heuristic would not expand, but that the

base heuristic might. Essentially, we’re reducing the advantage that the learned heuristic

has over the base heuristic by building subsets of the nodes.
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Figure 5-55: Performance of A∗
ǫ Search: Suboptimality Bound vs. Nodes Generated

5.13.6 Optimistic Search

Figure 5-56 shows the performance of optimistic search relative to the suboptimality bound,

where performance is measured by the number of nodes expanded during the search. The

interesting thing to note from these results is that the good performance of optimistic search

in the sliding tiles domain is not entirely the result of reduced overhead. Optimistic search

consistently expands fewer nodes than EES.

For lower bounds, where the difference is noticeable, we suspect that this is the result of

ĥ being too high. We saw in Chapter 4 that path based correction often far over-estimated

the cost-to-go on tiles puzzles (see for example Figure 4-3. If ĥ(n) > h∗(n) for many nodes,

then EES will do too much cleanup as it will incorrectly assume that most solutions actually

lie outside of the bound. Optimistic search, on the other hand can not do too much cleanup

because it waits until a solution is in hand to start. That way it can always do the minimum
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Figure 5-56: Performance of Optimistic Search: Suboptimality Bound vs. Nodes Generated

amount of cleanup necessary for the solution it finds.

5.13.7 Skeptical Search

Figure 5-57 shows the performance of skeptical search relative to the suboptimality bound,

where performance is measured by the number of nodes expanded during the search. The

results here are very much in line with those in Figure 5-39 and reveal that in two domains,

the competitive performance of skeptical search is a result of having less per-node overhead

than EES.

5.14 Analysis on Explicit Graphs

In previous sections of this chapter, we have examined the empirical performance of bounded

suboptimal search algorithms on a variety of benchmark domains. We saw that, in general,
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Figure 5-57: Performance of Skeptical Search: Suboptimality Bound vs. Nodes Generated

algorithms which took estimates of the number of actions remaining in a solution into

account outperformed those that did not. Similarly, algorithms that took inadmissible

estimates of the cost-to-go into account tended to perform better than those algorithms

that only relied on admissible heuristics for this value.

In this section, we will look at algorithm performance on two families of explicit graphs.

The graphs are constructed to make two points: even if we had perfect information, al-

gorithms that weight the cost-to-go heuristic cannot ever minimize solving time under a

bound because they do not prefer shorter paths; algorithms that use actions-to-go esti-

mates to prefer shorter paths are also fatally flawed and cannot always prefer the shortest

path in the bound.
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Figure 5-58: Explicit Graph that Thwarts cost-focused search

5.14.1 An Inconvenient Graph

Figure 5-58 shows a template for a family of graphs, each of which has exactly two solutions.

The first, cost-optimal solution that goes from the starting node S to the goal node G over

a, and the second solution that goes from S to G over b. We will refer to these as patha

and pathb respectively.

patha and pathb are related in the following ways: patha is marginally cheaper than

pathb, cost(pathb) = cost(patha) + ǫ, however pathb has a length of 2, while patha has a

length of n. Thus, pathb is arbitrarily shorter than patha. Obviously, for all suboptimality

bounds other than 1, we would prefer our search algorithms to find pathb rather than

patha. Unfortunately nearly every algorithms we have previously discussed will find patha

regardless of the suboptimality bound, even when the heuristics are perfectly informed.

To show that an algorithm will always find the longer solution, we need merely show that

it’s expansion order prefers node a to node b. So long as a is considered favorable to b, then

all nodes beyond a will be favorable to b. Any algorithm that works by placing additional

emphasis on cost-to-go estimates will be fooled by the above graph because h∗(a) < h∗(b).

Weighted A*

When S is expanded, a and b are placed in the open list. As h∗(a) < h∗(b), f ′(a) < f ′(b),

and thus weighted A* will prefer node a. For all nodes n along patha beyond node a,
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h∗(n) < h∗(a) < h∗(b), and thus f ′(n) < f ′(b). Thus, weighted A* finds the longer, but

cheaper path.

Dynamically Weighted A*

When S is expanded, a and b are placed in the open list. As h∗(a) < h∗(b) and a and b are

at the same depth, dynamically weighted A* will prefer node a to node b. All nodes n along

patha beyond a will have lower cost-to-go values and they will be at deeper depths. Since

dynamically weighted A* rewards depth, all nodes n along path patha will look better than

node b as they will be deeper and have smaller h∗-values.

Clamped Adaptive

As we are discussing a world in which h(n) = h∗(n), clamped adaptive search is equivalent

to weighted A* search. This is because the clamping behavior will never be observed. Since

ĥ(n) = h∗(n), clamped adaptive will take one of w · f∗(n) or g(n) + w · h∗(n), whichever

is smaller. The two values are equivalent at the root, but beyond node s, g(n) + w · h∗(n)

will always be less than w · f∗(n). If it wasn’t, weighted A* wouldn’t be guaranteed to

return a solution within the bound given an admissible heuristic (h∗ never over-estimates

the cost-to-go), and thus we would have a contradiction. Clamped adaptive runs into the

trap because in this setting it is running weighted A* with a perfect heuristic.

Optimistic Search

In the initial phase, optimistic search runs weighted A* search with a higher weight than

the desired suboptimality bound. It therefore falls into the trap by the same argument as

weighted A* search.

Skeptical Search

In the initial phase, skeptical search runs weighted A* on an inadmissible heuristics. Since

the heuristic used in this discussion is perfect, h∗(n) = ĥ(n) = h(n). Thus, skeptical search
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falls into the trap by the same argument that weighted A* does.

5.14.2 AlphA*

AlphA* always evaluates a node with either f(n) or w · f(n). In this setting, since we are

dealing with perfect heuristics, this becomes f∗(n) and w · f∗(n). None of the proposed

α-functions would make us penalize node a and not node b. Therefore they will be sorted

according to their f∗-values, which will make AlphA* prefer node a to node b. As search

progresses along patha from a, the f∗-values of nodes on this path will remain constant, and

thus be preferable to node b even if we do not penalize b. Thus, AlphA* finds the cheaper,

but longer path.

Revised Dynamically Weighted A*

Is the only algorithm which scales cost-to-go values that does not fall into the trap demon-

strated by Figure 5-58. There are some values of w for which revised dynamically weighted

A* will find the long solution, but there are many more where it will find the longer, albeit

more expensive solution.

The reason revised dynamically weighted A* has different behavior is because it scales

the cost-to-go estimate based on the actions-to-go estimate. While h∗(a) < h∗(b), d∗(b) <

h∗(a). As d∗(n) is defined to be the number of actions along the optimal cost path from n

to a goal, f ′
rdwa∗(a) = f∗(a) + (w − 1) · n−1

n
· (n−1)·cost

n
while f ′

rdwa∗(b) = f∗(b) + w−1
n
· cost.

We can show via algebra that a will often be preferable to b:
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f ′
rdwa∗(b) < f ′

rdwa∗(a)

f∗(b) +
w − 1

n
· cost < f∗(a) + (w − 1) · n− 1

n
· (n− 1) · cost

n

f∗(a) + ǫ+
w − 1

n
· n · cost

n
<

ǫ+
w − 1

n
· n · cost

n
< (w − 1) · n− 1

n
· (n− 1) · cost

n

n2 · ǫ+ (w − 1) · (n · cost) < (w − 1) · (n− 1) · ((n− 1) · cost)
n2 · ǫ
w − 1

+ (n · cost) < (n− 1) · ((n · cost)− cost)

n2 · ǫ
w − 1

+ (n · cost) < n2 · cost− n · cost− n · cost+ cost

n2 · ǫ
w − 1

< n2 · cost− 3 · n · cost+ cost

n2 · ǫ
w − 1

< (n2 − 3 · n+ 1) · cost
ǫ

w − 1
< (1− 3

n
+

1

n2
) · cost

We now have that, in all situations when ǫ
w−1 < (1− 3

n
+ 1

n2 ) · cost, b is preferred over

a. Since ǫ is supposed to be very small (but non-zero), the largest value the left hand

side of the equation could ever have is 1, in the case where w = 1 + ǫ. Since we wanted

to show that b is preferable to a for all weights over many graphs, we need to show that

(1− 3
n
+ 1

n2 ) · cost > 1.

As the figure is drawn, n is at least 4 and cost is always larger than 0. Thus, a will be

preferred to b in all cases where cost is larger than 16
5 . As the size of the graph increases,

the minimum value of cost for the equation to hold also decreases.

A∗
ǫ and EES Do the Right Thing

A∗
ǫ and EES do the right thing on the graph shown in Figure 5-58. That is, they find the

shorter, but ǫ more expensive path. After expanding S, the root, a and b are both on open.

Both A∗
ǫ and EES build a focal list based on what nodes are estimated to be within the
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Figure 5-59: Explicit Graph that Thwarts EES and A∗
ǫ

suboptimality bound. In the case of perfect information, they build a focal list based on

what nodes are known to be within the suboptimality bound. Since pathb is only ǫ worse

than patha, pathb will be within the suboptimality bound for all bounds greater than 1.

While both a and b will be on focal, both A∗
ǫ and EES will prefer b, as it has a smaller

d∗-value.

5.14.3 Confusing EES and A
∗
ǫ

The graph shown in Figure 5-59 is meant to demonstrate a flaw in algorithms which do not

weight the cost-to-go heuristic in order. There are three paths through the graph shown in

Figure 5-59, a length n cost-optimal path over a, an ǫ suboptimal path over nodes b and

b′ of length n + 1, and a 2 · ǫ suboptimal path over node b′. In this graph, all algorithms

discussed in the paper will prefer the long cost-optimal path over a.

This is because the graph is constructed to give a misleading value of actions-to-go for

node c. Recall that d∗(n) is defined to be the number of actions in the cost-optimal solution

beneath node n. Thus, d∗(c) = d∗(a), and so a will be preferred under any reasonable

tie-breaking scheme. Once a is expanded, all other nodes considered along patha will have

lower d-values than node c, and thus we will get the cheaper but longer solution.
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5.14.4 Summary

In this section we discussed a pair of explicit graphs which highlighted weaknesses in the

algorithms described in this chapter. The first graph showed that algorithms which work

by weighting cost-to-go estimates can easily be tricked into preferring arbitrarily long paths

even when a very short path within the desired suboptimality bound exists. This is because

they do not consider the number of actions remaining when determining expansion order.

The second graph showed how our definition of d can lead algorithms which explicitly

consider actions to go to be mislead. In reality, we need more expressive heuristics that

would let us estimate the length of the shortest solution beneath a node within the bound.

Unfortunately, it is unknown how to compute such a heuristic.

5.15 Discussion

Explicit estimation search provides a substantial improvement over the previously proposed

algorithms for bounded suboptimal search. It is faster than previous approaches for a given

suboptimality bound across a wide range of suboptimality bounds and domains. However,

while it is not always the fastest algorithm, it is robust in a way that previous proposals

were not. This is why EES had the lowest mean solving time of all algorithms as we saw in

Figure 5-34.

However, to say that the contribution of EES is limited to faster solving times and

more robust behavior is to miss the point. When designing search algorithms, we should

make sure we’re solving the right problem. That is the largest lesson to be taken away

from explicit estimation search, and this work in general. By looking at what it was we

wanted from a bounded suboptimal search algorithm and crafting a search strategy tailored

to that, we ended up with a more effective approach to the problem. Similar results were

experienced in anytime search and bounded-cost search.

A fixation on admissible heuristics and optimal solving has likely been harmful to the

field of heuristic search as a whole. Admissible heuristics are useful for proving that solutions
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returned by an algorithm have certain desirable properties, for example cost-optimality or

being within a bounded factor of optimal. Admissible heuristics are also incredibly useful

for permanently pruning away unpromising areas of the search space. However, these two

tasks represent a small part of what search algorithms need to do. They also have to

find solutions, and they may need to do so quickly in order to obey restrictions on solving

time. These tasks are neither easily nor best accomplished relying on admissible cost-to-go

heuristics alone.

More effort needs to be put into inadmissible cost-to-go estimates, both hand crafted

techniques, and ways of deriving such automatically. These heuristics are useful in all

search settings, excluding perhaps cost-optimal search. Having techniques for automatically

constructing inadmissible heuristics from the definition of a problem is a key part of building

a theory of suboptimal search.

If we want fast algorithms, we need to be able to estimate the relative speed with which

various partial solutions can be brought to completion. We didn’t notice that we didn’t

have one in heuristic search for a great many years because we’ve been too focused on unit-

cost domains like the sliding tiles puzzle. We still don’t really have an estimate of the time

it will take to convert a partial solution into a complete solution in heuristic search. We

have reasonable proxies in the form of action-to-go estimates, and paying attention to these

does indeed improve the speed of search algorithms. It seems likely that if we construct

estimators for the desired value and guide search based on those that search can be sped

up even further.

5.16 Conclusions

In this Chapter we introduced a new state of the art bounded suboptimal search algorithm,

Explicit Estimation Search. Explicit Estimation Search relies on inadmissible estimates of

solution cost and solution length to guide search towards easy-to-find solutions within the

bound. While EES is a significant improvement over the previous state of the art in bounded
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suboptimal search, it is not the most important contribution of this work. This chapter,

and particularly the discussion of how EES addresses the problem of bounded suboptimal

search, forms a part of the foundation of the theory of suboptimal search. Specifically, we

put forth a definition of the goal of bounded suboptimal search, and we pointed out several

sources of information needed to address that goal. EES uses inadmissible estimates because

efficient suboptimal search requires inadmissible estimates to determine what solutions are

likely to be within the bound and to determine what solutions are easy to find. EES isn’t the

best performing bounded suboptimal search algorithm because of brilliant insight or clever

optimization, it’s simply the first algorithm to attempt to optimize the goal of bounded

suboptimal search directly. Hopefully this is an approach that will prove useful for many

areas of heuristic search and AI in general.
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CHAPTER 6

BOUNDED COST SEARCH

Recently, Stern, Puzis, and Felner[64] began studying a slightly different variation on

bounded suboptimal search called bounded-cost search: given a user-specified cost bound

C, find a plan with cost less than or equal to C as fast as possible. Bounded-cost search

corresponds to many realistic cost-constrained scenarios such as constructing an interesting

air show for model planes, or planning a trip within a budget. They also introduced an

algorithm called Potential search, abbreviated as PTS, designed for the bounded-cost search

setting. PTS is a best-first search on potential — the probability that a given node will be

part of a solution whose cost is no more than C. Nodes that are more likely to have a goal

node beneath them are preferred.

6.1 Potential Search

Stern, Puzis, and Felner[64] define bounded-cost search in the context of heuristic shortest-

path graph search: Given a description of a state space, a start state s, a goal test function

and a constant C, find a path from s to a goal state with cost less than or equal to C.

Potential search [64] (PTS) is a bounded cost search algorithm based on considering the

potential of all nodes that have been generated but not yet expanded (i.e. nodes on open).

The potential of a node is the probability that a solution of cost no more than C exists

beneath that node. The potential of a node n is PTC(n) = Pr(g(n) + h∗(n) ≤ C).

PTS is a best-first search on PTC . In general, we don’t know how to calculate the

potential of a node. However, for some cases it is possible to order the nodes according
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to their potential without being able to calculate it. If we know how h(n) and h∗(n) are

related then there are situations where we can order the nodes by their potential without

being able to calculate it directly.

In particular, if h(n) and h∗(n) are related linearly, then we can order the nodes in order

of their relative potentials without bothering to compute the potential of the two nodes. If

the error in h with respect to h∗ grows linearly, then we can order nodes on flnr(n) =
h(n)

C−g(n)

and end up exploring the nodes in order of increasing potential without needing to compute

the potential directly.

6.1.1 Potential Search on Inadmissible Heuristics

In the following evaluation, we consider two variants of Potential Search, the original (PTS

in the plot) and a newer variant presented in Thayer, Stern, Felner, and Ruml [75] which uses

inadmissible estimates of cost-to-go in order to calculate the potential of a node. Assuming

that the inadmissible heuristic has the same relationship to true cost-to-go as the admissible

heuristic, there is no reason not to use an inadmissible estimate of cost-to-go in order to

estimate the potential of a node. In their evaluation and the one conducted here, Potential

Search with inadmissible heuristics (PTS ĥın the plot) uses the same online correction

technique that we have discussed before. It is identical to PTS except that we sort nodes

on f̂lnr(n) =
ĥ(n)

C−g(n) .

6.1.2 Implementation Concerns

In practice, we implement P̂ TS as a best-first search on f̂lnr(n) =
ĥ(n)

1−
g(n)
C

, where we have

effectively divided the potential score of all nodes by the cost bound C. This does not affect

node ordering. When we divide the potential scores of all nodes by a constant, in this case

C, we preserve the relative ordering. Order is exactly what matters in a best-first search.

Restating the node ordering function this way does two things. First, it makes it clear

that for large values of C, PTS and P̂ TS will behave like a greedy search on cost-to-

go estimates (sometimes called pure heuristic search). Secondly, it avoids precision issues
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caused by large C values. For large C, implementing flnr(n) as
h(n)

C−g(n) will result in flnr(n) =

0 for all nodes. For flnr(n) =
h(n)

1−
g(n)
C

, we have flnr(n) = h(n) for large C.

6.1.3 Drawbacks

One small drawback of the potential search technique is that, if the heuristic does not exhibit

linear relative error, the above cost functions are no longer valid. This leaves us with several

options. Either we construct a heuristic for every domain which we know will have linear

relative error, we construct a node evaluation function that will work with whatever error

model our heuristic has, or we accept that we will only expand nodes in approximate order

of improving potential.

The first two are difficult. It’s unclear how to construct a heuristic with linear relative

error, though it appears that many admissible heuristics exhibit this property naturally, as

PTS does not need to consider exceptional heuristics for the domains it uses for evaluation

in the original paper. Similarly, it isn’t obvious that a potential ordering function can be

constructed for arbitrary heuristic error models. While it is obvious that we could simply

accept an approximate best-first order for our bounded cost search, that is less than ideal.

We will now discuss a technique for bounded cost search that does not rely on a measurement

of potential, and thus does not suffer from these drawbacks.

6.2 Bounded Cost Explicit Estimation Search

Bounded-Cost Explicit Estimation Search [75] (BEES) considers both admissible and inad-

missible estimates of cost-to-go (h and ĥ) as well as inadmissible estimates of actions-to-go

(d̂). BEES is inspired by EES in that both rely on estimates of solution cost and actions

remaining to guide search rather than exclusively relying on lower bounds as PTS does. To

suit the goal of bounded-cost search, instead of considering best
d̂
like EES, BEES considers
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selectNodebees

1. if there exists n ∈ open s.t. f̂(n) ≤ C

2. then return best
d̂c

3. else return bestf

Figure 6-1: BEES Node Selection Strategy

the following node:

best
d̂c

= argmin
n∈open∧f̂(n)≤C

d̂(n)

Note that best
d̂c

is a member of the set of all nodes in open whose estimated total cost is

less than that of the cost bound. Of these, best
d̂c

is the node with the smallest d̂(n). best
d̂c

is the node we estimate has the fewest actions remaining between it and a goal, among all

the nodes whose estimated total cost is less than the cost bound. Again, tie breaking is an

important consideration. If multiple nodes could be best
d̂c
, then we should prefer the node

with the least f̂ . If this still doesn’t eliminate all ties, then we should prefer nodes with

lower f -values.

BEES chooses to expand either best
d̂c

or bestf according the rule described above. Using

this rule, BEES attempts to pursue the shortest solution estimated to be within cost bound

C if it estimates that such a node exists (line 2). If BEES thinks there are no solutions

within the cost bound, it expands nodes in A∗ order to efficiently prove no solution exists

(line 3).

This differs from the selectNode function of EES in that best
f̂
is never returned. In

the context of bounded-cost search, it doesn’t make sense to expand best
f̂
, because we’ve

estimated that the cost of the optimal solution is beyond the cost-bound C for the given

problem; that is we predict the problem has no solution. If we assume the problem isn’t

solvable, the right thing to do is to prove that the problem isn’t solvable by raising the lower-
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selectNodebeeps

1. if there exists n ∈ open s.t. f̂(n) ≤ C

2. then return best
d̂c

3. else return bestp

Figure 6-2: BEEPS Node Selection Strategy

bound on optimal cost above C as quickly as possible. Thus, BEES will be more effective

for bounded cost search than a modified EES because it actually addresses the problem

at hand, much in the same way EES was better than previous approaches to bounded

suboptimal search because it focused on addressing the problem as directly as possible.

6.2.1 BEEPS

While straightforward, the previous approach ignores the potential measurement suggested

by Stern et al[64]. To takes this new quantity into account, we propose Bounded-Cost

Explicit Estimation Potential Search (BEEPS). In addition to best
d̂c
, BEEPS considers

expanding the node with the highest potential, or in other words the lowest f̂lnr(n).

The node selection strategy of BEEPS is exactly the same as that of BEES, differing

only in the last line. When BEES decides to return bestf , BEEPS will return bestp. BEES

assumes that f̂ is accurate and so if best
d̂c

does not exist, then there must not exist a

solution to this problem within cost bound C. If that is true, then the optimal way of

proving it is by expanding nodes in A∗ order until we have shown that there is no node

with f(n) ≤ C, proving the problem unsolvable. In contrast, BEEPS acknowledges that ĥ

is not a perfect estimator and thus even when best
d̂c

does not exist, the problem may well

be solvable. For solvable bounded-cost problems, PTS was shown to be superior to A∗ with

pruning [64], so BEEPS reverts to P̂ TS instead.

Naturally, BEEPS has all of the same drawbacks as potential search. This is because

it relies on the same measurement of potential. However, BEEPS only uses the potential
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Figure 6-3: Relative Performance of Baseline Bounded Cost Algorithms

values in the case that our inadmissible heuristics lead us to suspect that no solution exists

within the desired cost bound. BEEPS only relies on potential in what is hopefully an

exceptional case, while potential search relies on measurements of potential all the time. As

a result, the drawbacks of using potential are less severe for BEEPS.

6.3 Empirical Evaluation

6.3.1 Baseline Algorithms

To better understand the performance of the more advanced techniques for bounded cost

search presented here, we compare the algorithms to some natural baselines for the problem

of bounded cost search. These baselines work by taking algorithms for other search settings

and simply adapting the algorithms to work in the bounded cost setting.

We consider three baselines: A* with pruning, greedy search with pruning, and speedy

search with pruning. When we say “with pruning” what we mean is that whenever a node

is generated, it’s f -value is compared to the cost-bound C. Any node n with f(n) > C is

discarded because it cannot result in a solution within the desired cost bound.

Figure 6-3 shows the relative performance of the three previously described baseline

algorithms on several heuristic search benchmarks. On the y-axis, we report the time taken

to find a solution, or prove no solution exists, on a log scale. As with all previous evaluations,
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algorithms were run until memory was exhausted, or until ten minutes had passed. In the

plot shown, the x-axis is the cost-bound supplied to the algorithm. The cost bounds are

designed to start at a point where no instance under consideration contains a solution, and

then scale up well beyond the point where all instances contain solutions.

There are two general trends in the results shown in Figure 6-3. The first thing to note

is that for tight cost-bounds, ie low values of C, the bounded cost adaptation of A*, A*-BC

in the legends, is the ideal algorithm. In fact, we can easily see that bounded cost A* is

the best way of showing no solution exists within cost bound C. To prove that no solution

exists to the problem with cost no more than C, we must show that any solution to the

problem must have cost greater than C. To wit, we must raise the lower bound on the cost

of the optimal solution of the problem to be larger than C. Starting with the root, we must

expand all nodes whose f -value is no more than C. A* has the most efficient way of raising

the lower bound on optimal solution cost [14].

The second thing to note is that, when many solutions exist within the cost bound,

bounded cost speedy search, BC-Speedy in the legend, has the best performance. When

the bound is loose, the problem becomes that of simply finding any solution, as nearly all

solutions will be acceptable. When attempting to find any solution, the fastest way of doing

so is generally to search in order of the estimated number of actions remaining between a

node and a solution, exactly what speedy search does. In the following evaluation of bounded

cost search algorithms, we will only present the speedy baseline. As we see in Figure 6-3,

for the wide majority of bounds, it is the most effective baseline.

The reader may have noticed that three benchmark domains appear to be missing.

Specifically, we do not show results for life-cost grids, dock robots, or dynamic robots

with the baselines. That is because these search algorithms are incredibly brittle, as we

see in Figure 6-4, where we show the performance of the algorithms on the life-cost grid

benchmark. These problems are relatively simple, as they can be solved optimally in several

seconds (abound 5) by A* search.

We see, however, that speedy and greedy bounded cost searches have incredibly difficult
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Figure 6-4: The Baselines are Brittle.

times with these problems. They actually exhaust time on nearly all of the instances; that

is they run for ten minutes and still find no solution in the bound. Remember, part of

the reason greedy and speedy searches are so fast is that they will accept absolutely any

solution. In the bounded cost case, the solutions we can consider are constrained by C.

Greedy and speedy search will often encounter a node by a suboptimal path, and to ensure

completeness they must reconsider that node again every time it is reached by a better path.

Considering there are exponentially many paths to a given state, this can take a while. For

domains with many duplicate paths, like grids, dynamic robots, and dock robots, greedy

and speedy bounded cost searches will not work well unless the heuristic is very powerful.

A* bounded cost search has a similar problem, but for a different reason. Finding the

optimal solution to a problem is known to be incredibly difficult. This difficulty is actually

the entire justification for the dissertation. We cannot expect bounded cost A* to perform

well on problems that cannot be solved optimally in memory by A*, ie every domain used

in this paper save life-cost grid navigation.
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Figure 6-5: Performance of Bounded Cost Search Algorithms

6.3.2 Performance in Terms of Time to Solve

Figure 6-5 shows the relative performance of the bounded cost search algorithms on the

benchmark domains considered in this dissertation. On the x-axis, we show the cost-bound

that each algorithm was run with. The y-axis shows the mean time consumed by each

search algorithm on a log scale. We don’t show the performance of the simple baselines, as

they perform quite poorly. Instead, we show four algorithms designed from the ground up

for the bounded cost search problem, potential search (PTS in the legend), potential search

using an inadmissible cost-to-go estimate (PTSh)̂, bounded cost explicit estimation search

(BEES), and bounded cost explicit estimation search with potential (BEEPS).

The first plot in Figure 6-5 shows the relative performance of the algorithms on the

standard fifteen puzzle. The algorithms are difficult to differentiate on this plot. In Figure 6-

6, we will see that the differences that do exist between the algorithms are primarily a result
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of algorithm overhead. Although the algorithms are not easy to distinguish between, we

do see an important phenomena of bounded-cost search: a often observed easy-hard-easy

transition.

Early on, when C is much lower than the average optimal cost of a problem, problems

are very easy to prove unsolvable, and search is quite fast. Then, as C grows and approaches

the average cost of an optimal solution, it becomes quite difficult to prove that no solution

exists, or alternatively, that some optimal or near-optimal cost solution satisfies the cost-

bound C. This manifests as a large peak in the performance profiles of the algorithm.

Then, as C grows to be much larger than the average cost of an optimal solution, problems

once again become easy, although not as easy as those instances which were trivial to prove

unsolvable within C.

In the next domain in the plot, inverse cost fifteen puzzles, all algorithms follow this

general rule with the notable exception of the potential search algorithm. It starts off

solving many problems quite quickly, as no solution exists within C, However, once the

other algorithms have peaked and begun their descent, potential search fails to become fast

again. As we saw in previous chapters, search focused purely on cost-to-go, especially greedy

search on h, does not perform particularly well in the inverse cost tiles problems. Potential

search becomes greedy search on cost-to-go for large values of C, and so it never becomes

as fast as the algorithms that search on actions-to-go directly (ie BEES and BEEPS), nor

the algorithm that includes d indirectly (PTSh)̂. Of all the algorithms, BEES and BEEPS

are the fastest and are difficult to distinguish between.

The results in life-cost grids highlight the importance of an efficient search order for

portions of the space where solutions are difficult or impossible to find within the given

cost-bound. We again see the same easy-hard-easy transition as C moves from a point

where few solutions exist, towards the cost of optimal solutions to the problem, and then

finally beyond the cost of optimal solutions into a space where many solution exist within

C. However, for the smaller values of C, we see that potential search is far and away more

efficient than the other bounded cost search algorithms. This is because, as we previously
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noted, potential search has a very good search order for proving no solution exists. BEES

has an ideal approach, provided it correctly estimates that no solution exists within the

bound. It obviously does not guess correctly for this domain.

The heavy vacuum domain, seen in the bottom row, left most panel of Figure 6-5 returns

to the more standard shape of the tiles domains. That is, problems start out easy to solve,

then become harder to solve as C approaches the average cost of an optimal solution. As

C becomes larger, most of the algorithms speed up, eventually converging on the speed of

a greedy search, either on cost-to-go in the case of potential search and potential search on

inadmissible heuristics, or a greedy search on estimated actions-to-go in the case of BEES

and BEEPS. Just as was the case in the inverse tiles problems, search on actions-to-go ends

up being much faster than search on cost-to-go, and so BEES and BEEPS outperform the

other algorithms in this setting.

The next panel in the figure shows the performance of the algorithms on the dynamic

robot navigation problem. The results in this domain do not look at all like the results

in the other five domains. This is because the domain is quite different from our other

domains. We generate the instances with random start and goal locations, so there is a

wide range of optimal solution costs to these problems. This prevents us from getting the

well formed peaks seen in the other domains, as there is no C for which most problems have

an optimal or near optimal solution.

In the final panel of Figure 6-5, we have results on the dock robot domain and a return

to the easy-hard-easy pattern seen in most of the domains in our study. We note that the

peak is less pronounced in this data set than it is in the tiles puzzles. This is because there

is a wider range of optimal solution costs for the problems in this domain than there are for

the tiles domain. This results in a different point for the peak in each problem. Further,

we can’t come close to solving these problems optimally using the search techniques in this

paper, meaning many of the algorithms time out rather than returning a solution or showing

that none exists within C. That results in a more shelf-like appearance rather than a peak

in terms of running times and nodes generated.
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This data set is also interesting because both BEEPS and potential search on inadmissi-

ble heuristics perform better than BEES, in contrast to the other domains where BEES and

BEEPS are generally better than potential search with or without inadmissible heuristics.

This is because BEES is often estimating that no solution lies within the bound despite

there being a solution within the bound. BEES reverts to an A* search order when no

solution is estimated to be within the bound, as A* is the most efficient way of proving this

to be true. However, BEEPS falls back to potential search on inadmissible heuristics in this

case, and this is why the performance of these two algorithms align in this domain.

This points out the differing requirements of heuristic properties that bounded cost

algorithms like BEES and BEEPS have when compared to bounded suboptimal algorithms

like EES and Skeptical. EES and Skeptical can perform well so long as the inadmissible

heuristics provide a good relative ordering over the nodes, while BEES and BEEPS really

need accurate estimates of cost-to-go in order to determine if a solution exists within C or

not.

6.3.3 Performance in Terms of Nodes Generated

Figure 6-6 shows the performance of the bounded cost algorithms in the same domains as

those in Figure 6-5, but now we are examining performance as number of nodes generated

rather than time consumed. This removes algorithm overhead from the comparison, and

provides a direct comparison of the search strategies of the algorithms in the evaluation.

The results seen in the timing plots are relatively unchanged in the nodes generated

evaluation. We do see that the algorithms are essentially indistinguishable in two domains:

the sliding tiles puzzle and dynamic robot navigation.

6.4 Discussion

Consider the two best performing algorithms here, BEES and potential search. These

two algorithms take radically different approaches to the problem of bounded cost search.
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Figure 6-6: Performance of Bounded Cost Search Algorithms

Potential search explores nodes in order of their chances of containing a solution within the

bound beneath them. BEES makes a binary decision about a node leading to a solution

within the cost bound, and then explores this subset of all nodes in order of increasing

estimated actions-to-go.

Both approaches initially seem well founded. Pursuing nodes more likely to lead to

acceptable solutions seems ideal. Remember though, we don’t simply want to find a solution

in the cost bound. We want to find a solution within the cost bound quickly. The node

most likely to contain a solution beneath it may be talking about a solution thousands of

steps away, while a node that is marginally less likely to contain a solution beneath it may

be discussing a solution tens of steps away. Not taking the shorter, albeit less likely, node

in favor of the more certain bet seems unreasonable, and as the empirical results showed,

it is unreasonable.

BEES has a similar flaw. It makes a binary decision about within the cost bound or
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outside the cost bound, and then searches all of those nodes as if they were equal. If we

assume error in f̂ -values is similar across all nodes, then if we have two nodes n1 and n2

where f̂(n1) ≤ f̂(n2) ≤ C, n1 is obviously more likely to lead to a solution within the cost

bound than n2. However, BEES doesn’t use this information in any way. Anytime a search

algorithm doesn’t take advantage of information it has computed, we should immediately

wonder if there is some way to bring this information to bear efficiently.

Ideally, we would consider both likelihood of containing a solution beneath it and the

proximity of that solution together as a kind of expected effort measurement. Simple

combinations, like BEEPS, or simply multiplying d̂(n) by potential do little to improve

search performance, in some cases they harm it, and they also incur additional overhead over

the approach of BEES. This of course doesn’t preclude the usefulness of this information,

but we have yet to find an effective way to bring it to bear.

6.5 Summary

In this Chapter we discussed the bounded cost search problem, where we want to find a

solution within a user specified cost-bound C as quickly as possible. We examined two main

approaches to the problem, potential search and bounded cost explicit estimation search.

Potential search sorted nodes in an order determined by how likely they were to have a

solution within the cost bound. BEES, on the other hand, first constructed a set of nodes

estimated to be within the cost-bound and then sorted these based on estimates of the

remaining number of actions-to-go. The empirical evaluation revealed again that if we want

to have fast searches, we need to consider estimates of actions remaining to prefer solutions

that are easier to find. Simply put, we should be careful to optimize the problem we are

solving when applying heuristic search.
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CHAPTER 7

ANYTIME SEARCH

When abandoning cost-optimality as infeasible, there are still many ways we can retain

some measure of control over the search algorithms being used to find solutions. In the

previous two chapters we’ve discussed ways of managing the cost of solutions returned by

a solver, either by restricting solution cost to be within some bounded factor of optimal or

to be beneath some absolute user specified bound. We now consider an alternate setting,

where time, and not solution cost, is the value we want to retain some control over.

There are three primary ways we can retain control over the time used by heuristic

search. In the setting where we are willing to interleave finding a plan and executing that

plan, we can limit the amount of time taken by search per-action. Alternatively, we can

construct search algorithms that are designed to work under a fixed, known deadline, for

example half an hour. Finally, we could construct algorithms that work with an unknown

amount of time. This final setting, the anytime search setting [4], is the focus of this chapter.

We will begin by setting out the anytime search setting. In particular, we will take care to

differentiate it from the setting in which a deadline is known before hand. The literature has

shown that knowing the deadline before search begins should change our search strategy [15],

and we will discuss why that is the case here. After introducing the problem of anytime

search, we will discuss three general frameworks for converting bounded suboptimal search

algorithms like those discussed in Chapter 5 into anytime search algorithms. The strengths

and drawbacks of the frameworks will be the focus of this section, and we will show the

performance of Explicit Estimation Search in each of the frameworks as well. Finally, we

will discuss anytime search algorithms that are not obviously frameworks for converting
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other algorithms into anytime search algorithms. This section includes discussion of the

anytime explicit estimation search algorithm which attempts to minimize the time between

improving solutions in anytime search. Although we will not see that AEES is always the

best performing algorithm for anytime search, we will see that the algorithm with the least

time between improving solutions often is.

7.1 Anytime Search Setting

Anytime search is so named because an anytime search algorithm could be interrupted at

any time and be required to return its best known solution. Anytime search is designed to

solve problems under some unknown deadline. That is, we do know that there is a limit

on the amount of compute time that will be given to us, but we do not know what that

limit is. We could be asked to stop our algorithm at any point. In this setting, the desired

behavior for an algorithm is to find some solution quickly, and then produce a stream of

improved solutions until the cutoff arrives or until we can prove that we have the optimal

solution in hand.

This suggests the following approach: find any solution as quickly as possible, then find

the next improving solution as quickly as possible, and so on.

7.1.1 Ideal Performance of Anytime Search Algorithms

When discussing the performance of anytime algorithms, we need to make an important dis-

tinction between ideal performance and dominance. Dominance is when one anytime algo-

rithm always has a better solution in hand at a given time than another anytime algorithm.

More formally, for two anytime algorithms χ1 and χ2, let χ(t) be the solution returned by

the algorithm at time t. Then χ1 is said to dominate chi2 if, for all t, g(χ1(t)) ≤ g(χ2(t)).

In this chapter we will assume that the cost of no solution is infinite, ie g(chi(0)) = ∞.

Realistically, χ1 dominates χ2 if, when the algorithms are halted χ1 has the better solution.

Clearly, dominance is what we want of our anytime search algorithms. We want the
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best possible solution at time t for any conceivable anytime search algorithm. However,

it is incredibly difficult to optimize “better than every other algorithm”, especially when

many algorithms have yet to be constructed. As a result, we will now examine an alternate

measure of anytime search performance, minimizing regret.

In this context, regret will be the amount of “wasted” compute time. That is, when the

anytime search is interrupted, how long ago did it find its best solution. The time between

finding the returned solution and returning that solution is wasted in the sense that the

additional compute resources did not directly improve the quality of the incumbent solution.

The time may not actually be wasted, as it may improve the bound on solution quality or

show that large portions of the space contain no answers, but from the perspective of the

consumer of the returned solution, it is effort that resulted in no improvement, or more

colloquially a waste.

Regret can be formalized as follows. Let tstop be the time at which the algorithm was

halted, then

regret(χ, tstop) = tstop − (argmin
t≤tstop

χ(t) = χ(tstop)) (7.1)

This is exactly the difference in time between when the solution was returned and when the

solution we returned was found. While minimizing regret does not guarantee dominance,

it does minimize the amount of wasted compute cycles, which is a desirable trait.

Minimizing the regret for an algorithm under an unknown deadline is simple. As the

deadline could come at any time, we must simply minimize the time between improving

solutions which we will refer to as δt. Minimizing δt has a lot in common with the quantities

we were trying to optimize for in Chapters 5 and 6. There we wanted to find some solution

within the relative or absolute cost bound as quickly as possible. We were trying to minimize

the time between the initial, infinitely expensive incumbent and the time when we found

our acceptable solution. Minimizing time between solutions requires looking at the time it

will take to find a solution. Just as in bounded suboptimal and bounded cost search, we

will see that algorithms which take time to solution into account are rare in anytime search.
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7.1.2 Difference from Contract Search

It is important to differentiate between anytime search problems and contract or deadline

search problems if only because anytime search algorithms are often applied to deadline

search problems even though they are not ideally suited to the problem. The key difference

between anytime search and deadline search is that in the former we do not know when

the algorithm will be halted, however in the latter this information is part of the prob-

lem description. Deadlines are actually quite common in a variety of settings, but perhaps

the most common is competitions such as the bi-annual international planning competi-

tion. Here, competitors are given about half an hour per instance to solve a variety of

vary challenging planning problems, yet most algorithms take an anytime approach to the

problem.

The use of anytime search algorithms for deadline search problems conflicts with what

has been a central tenant of this thesis: use all available information. In this case, the

impending deadline is the available information not being used by the algorithms. Anytime

search algorithms should, as we just discussed, seek to minimize the time between solutions

in order to reduce potential regret. However, when the deadline is known, we should seek

to have the best solution possible in hand at that deadline. These two tasks differ, as we

just discussed.

There exist algorithms for the deadline search setting, for example deadline aware

search [15], but they are not the winning algorithms for the international planning com-

petition, anytime algorithms are. This speaks to the difficulty of designing good contract

search algorithms. We all know that we are trying to minimize solution cost within a given

deadline, but taking the deadline into account requires us to estimate how difficult it will

be to solve a problem. This is very hard to do. Even deadline aware search, which is cur-

rently the state-of-the-art, is actually an anytime algorithm because it frequently fails to

accurately predict when it will be able to reach a given solution. Improving these predictors

is an important and open problem.
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7.2 Three General Frameworks

We now turn from the definition of the problem of anytime search to the algorithms designed

to address it. Although anytime algorithms can take any form, they tend to be based on

best-first heuristic search algorithms and can loosely be classified into one of three frame-

works: the continued search framework, the repairing search framework, and the restarting

framework. All of the previously discussed algorithms have been best-first heuristic search

algorithms.

7.2.1 Continued Search

Continued search runs a bounded suboptimal search beyond the first encountered solution

was introduced by Hansen and Zhou [22]. If the search is continued it will produce a stream

of ever improving solutions, eventually finding the optimal solution. Continued search is

sensitive to the configuration of the underlying bounded suboptimal search. There will

naturally be some sensitivity to the underlying algorithm for all frameworks, but unlike

repairing or restarting search, continued search never reconsiders the initial configuration of

the underlying algorithm. As a result it is very reliant on pruning for performance. Thus,

it performs best in domains with strong admissible heuristics where greedy search produces

good solutions, and many nodes can be pruned once an incumbent solution is in hand. It

has difficulties in domains where there are many cycles because it cannot ignore improved

paths to an already visited state. Although the underlying bounded suboptimal algorithms

may be able to ignore duplicate states while still respecting a suboptimality bound [17],

ignoring these nodes during a continued anytime search would prevent us from converging

on optimal.

7.2.2 Repairing Search

Repairing search differs from continued searches in two ways. First, they have a special way

for handling duplicate nodes. When repairing search encounters a better path to a state
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Figure 7-1: Impact of Ignoring Duplicates

which it has already expanded, it places this state onto a list of inconsistent nodes rather

than immediately re-expanding it. These nodes will not be selected for expansion until the

next iteration of repairing search. While this may decrease the quality of the solution found

on any iteration of repairing search, it leads to improved performance in domains with many

cycles by decreasing the time it takes to find a solution on any iteration, as seen in Figure 7-

1. Here, we show the performance of A∗
ǫ [44] and weighted A* [45] on a grid pathfinding

problem. The y-axis represents the number of nodes generated while finding a solution on a

log scale. The x-axis represents the parameter that the algorithm was run with. Algorithms

with ’dd’ appended do not re-expand duplicate states, instead they ignore duplicate states

whenever they are encountered. While this can decrease solution quality, and even quality

bounds for some algorithms, ignoring duplicates allows both of these algorithms to solve

the problems while generating orders of magnitude fewer nodes. In the event that ignoring

duplicate nodes loosens the desired suboptimality bound, as it does in every algorithm but

weighted A*, the anytime nature of the framework will ensure that we still converge on an

optimal solution, but the speedup will still extend to every iteration of the search.
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Second, repairing searches rely on parameter schedules. These are typically constructed

by selecting a starting parameter and a decrement for the parameter, although they may

also be specified by hand. Every time a new solution is encountered the parameters are

updated. There are now two parameters that need tuning: the starting weight and the

decrement. Set the decrement to be too large, and the next iteration may never finish;

however, if the decrement is too small, the open list will be resorted a large number of

times, and this is also inefficient. Changing the parameters used by the search requires

updating the evaluation of every node the search is currently considering. While touching

every node will take time, it also allows for the immediate pruning of every node that cannot

lead to an improved solution. This considerably reduces the size of the open list and thus

reduces overhead.

An alternative to the above approach is to compute a new bound dynamically every time

a new incumbent solution is found. As we pointed out several times in Chapter 5, the node

with the smallest f -value, bestf , can be used to construct a lower-bound on the cost of an

optimal solution. Using this lower-bound, an upper-bound on solution suboptimality can be

computed as g(incumbent)
f(bestf )

as we discussed in the sections on optimistic and skeptical search.

Likhachev et al [37] point out that while we could compute such a bound dynamically, it is

likely to create jumps that are too large in the parameters used by the anytime search. We

have not observed this behavior in our searches, but we do evaluate on different benchmarks

than they did. This could be the reason for the difference. As we have already established,

the behavior of weighted A* differs from domain to domain, and thus what would constitute

a large jump in w would also differ from domain to domain.

7.2.3 Restarting Search

Restarting search is one of the simplest frameworks for anytime search. Restarting weighted

A* (RwA*) [48], the search strategy at the center of the award winning LAMA planning [51,

52], is an example of an algorithm in the restarting framework. RwA* runs a sequence

of weighted A* searches, each with a parameter picked from a hand-crafted parameter
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Figure 7-2: Comparison of Anytime Frameworks

schedule. The subsequent searches do not throw away all of the effort of previous searches,

they share information in the form of the incumbent solution, cached heuristic values, and

stored paths from the root to states. This way, when a new iteration of search encounters

a node previously explored, it must not re-compute the heuristic, an action that may be

expensive, and it can replace the current path to the node with a better one found in a

previous search iteration.

7.2.4 Comparison of Frameworks

So that we can get a better feel for the relative trade-offs between the various frameworks

discussed in this section, we perform an empirical evaluation of weighted A* run in each

of them. This is effectively an evaluation of the frameworks as they were proposed on the

benchmark domains considered in this thesis. All three frameworks are shown in Figure 7-2

across six benchmark domains. Anytime weighted A*, AwA* in the legend, is shown as the
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avatar of the continued search framework, anytime repairing A* is used for repairing search

and is labeled ARA* in the legend, and restarting weighted A* represents the restarting

framework and is labeled RwA* in the legends. The x-axis shows the cutoff time for the

algorithm on a log scale, and the y-axis shows the quality of the incumbent solution. We

present the mean of the solution quality on the y-axis, and show 95% confidence intervals.

Parameter Settings for Anytime Algorithms

Anytime weighted A*, anytime repairing A*, and restarting weighted A* all require a pa-

rameter with which to run. This is actually one of the largest drawbacks of these algorithms.

As we saw in Chapter 5, the performance of bounded suboptimal search algorithms can vary

between various suboptimality bounds, and the performance does not always improve with

looser bounds. This makes setting parameters for anytime search algorithms like those

discussed here a challenge.

We use w = 3 for anytime weighted A*, and the fixed parameter schedule 5,3,2,1.5,1

for anytime repairing A* and restarting weighted A*. Nothing is sacred about these values.

However, they do appear to work well in practice, and they mirror the values used in

previous evaluations of these algorithms [49, 69]. For some domains, other settings would

have worked better and other settings would have had worse performance. Those reported

here work fairly well across the board and provide a realistic view of what one might expect

from the various algorithms on the various domains.

Discussion of Results

Perhaps the most interesting thing about the results shown in Figure 7-2 is that no algorithm

dominates across all domains. Anytime repairing A* has the best performance, being the

dominant algorithm in half of the domains investigated here. In one domain, dynamic

robot navigation, restarting weighted A* is the clear choice, and in the inverse tiles puzzle,

continued search is clearly preferable. In the original tiles problem, repairing and restarting

search have similar performance, so similar that it is difficult to say which approach is best.
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The domains where ARA* has the largest advantage over other approaches, life cost

grids, dockyard robots and heavy vacuums, roughly in order of the size of ARA*’s advantage,

have a common feature: a large number of duplicates. ARA* has a special method for

handing duplicate states, so we should expect it to perform better in domains with a large

number of duplicate states. Similarly, in domains with very few duplicate states, like the

tiles puzzles and dynamic robot navigation, special handling of duplicates only harms the

performance of repairing search. It is spending time doing something that is unbeneficial.

In the domains investigated here, it is rare that restarting improves the performance of

the algorithms here. This is in contrast to domain independent planning, where restarting

can lead to substantial performance improvements by combating a problem called low-h-

bias. Low-h-bias is actually exactly the desired outcome of search algorithms like weighted

A*. By putting additional emphasis on the cost-to-go estimate, weighted A* prefers nodes

with low h-values to other nodes in the search space.

While this is the desired behavior for single-solution settings like bounded suboptimal

search, it’s not good behavior in anytime search. When finding a solution, we tend to

generate several nodes near that solution just because of how state space progression search

works. If poor decisions are made early on in the search, algorithms like anytime weighted

A* will only reconsider those decisions late in the search order because nodes near the root

have very high h-values relative to nodes near the goal. By restarting the search over from

the root every iteration, restarting search avoids this problem.

Dynamic robot navigation is the only domain where we see restarting search outper-

forming other approaches. It is also the only one of our benchmarks where decisions made

early on can be argued to be disproportionately important. In these domains, the robot

starts from a standstill and must navigate to a given goal location and heading. Note, speed

is not considered in the goal state. Since the goal of the problem is to minimize time to

solution, the early part of the search is very important. In these early states, the robot gets

up to speed, and how quickly it can get up to speed is often determined by decisions made

early on in the search. Using high weights causes continued search and repairing search not
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to reconsider these important early decisions.

To reiterate, unfortunately there does not appear to be a one-size-fits-all model for

anytime search frameworks. The appropriate decision lies partly with the domain being

searched and partly with the algorithm being used in the framework, as we are about to

discuss.

7.3 EES in Frameworks

Much of the previous work in anytime search can be seen as wrapping bounded suboptimal

search algorithms in additional functionality, as we just discussed. Previous work focused

on weighted A* almost exclusively when extending bounded suboptimal search algorithms.

Weighted A* is simple to implement and understand, and until relatively recently there

were not consistently better performing algorithms; it was a natural choice at the time

those anytime algorithms were published.

Now that we have improved bounded suboptimal search algorithms, it is natural to

wonder if we can construct improved anytime search algorithms by using EES instead of

weighted A* as the search inside of the previously described anytime search frameworks.

Very roughly, the answer to this question is yes, as shown in Figure 7-3.

7.3.1 Benefits of Frameworks

The different frameworks have different things to offer EES. Continued search simply con-

verts EES from a bounded suboptimal search into an anytime search, but this adds sub-

stantial utility to the approach as it adapts it for a new setting. However, the restarting

and the repairing frameworks add much more to EES.

Previously, EES could not discard duplicates during search without losing its guarantee

of bounded suboptimality. When combined in the repairing framework, EES can ignore

duplicates on any single iteration, save the final iteration where w = 1. This should improve

performance on domains with many duplicate states.
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Figure 7-3: EES in Anytime Search Frameworks

Restarting gives EES the potential to reuse learning done on a previous iteration. As

we discussed in Chapter 4.2, heuristics learned during search on one problem often transfer

well between instances of the same domain. Here though, we are still running search on

the same instance, so the heuristic should transfer perfectly. If we are using a global error

model, we can use the single-step error learned in the previous iteration of search as a base,

or just continue to build on what we’ve already learned as if search hadn’t started over

again.

7.3.2 Empirical Evaluation

Figure 7-3 shows the relative performance of anytime weighted A* (AwA*), anytime re-

pairing A* (ARA*), and restarting weighted A* (RwA*) compared to explicit estimation

search in the same three frameworks, continued EES, repairing EES, and restarting EES.

We show the solution quality returned by the algorithms as a function of the cutoff time,
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shown in log scale on the x-axis.

Again, it is unfortunately the case that no single framework dominates all others. In

fact, it is not the case that EES in any particular framework dominates weighted A* in all

frameworks. This is in part because no single framework dominates all other frameworks

on all domains, but there is another important factor at play: although EES is generally

better than previously proposed bounded suboptimal search algorithms, it is not always

better as a result of, among many other factors, overhead.

Consider Figure 7-4, where we look at the number of nodes considered by the search,

the y-axis, as a function of time, the x-axis, for one of the benchmark domains used in this

paper, the standard fifteen puzzle. We see that over the course of ten minutes, anytime

repairing A* is able to examine far many, many more nodes than Repairing EES. In some

domains, examining more nodes can lead the less involved techniques to find better solutions

by brute force. In others, even though the more deliberative technique considers far fewer

nodes, it considers the right ones and thus finds a better solution.
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The outcome seems to depend on how informed the inadmissible heuristics are and how

low the per-node overhead is for the domain in general. If weighted A* is not able to examine

many more nodes and get lucky, its speed will not pay off. In domains like dock robots, EES

performs better than other algorithms in the same frameworks because its deliberation pays

off and because the other algorithms cannot compensate by simply expanding a staggeringly

large number of nodes. In domains like the tiles puzzle, the learned heuristic is less accurate

than the base heuristic, and weighted A* can examine hundreds of thousands of nodes a

second. This leads to weighted A* in any given framework being better performing in this

domain.

As for general trends, while no single framework-based algorithm dominates all other

frameworks on all domains, we can see that the algorithms based on EES typically have

the best performance. They perform better than other approaches early on, as we see in

the inverse tiles puzzle and in the heavy vacuum domain. Further, as time progresses they

tend to have the best, or at least competitive, solutions in hand as we see in the same two

domains.

7.4 Alternate Approaches

There are anytime searches that are not frameworks for extending bounded suboptimal al-

gorithms into anytime searches. These include beam stack search, BULB, anytime window

A*, and branch and bound. Branch and bound performs poorly for all of the benchmarks

problems presented here excluding the TSP. The traveling salesman problem is the only

domain we examined with a fixed depth. As a result of this fixed depth, depth first ap-

proaches like branch and bound can find an incumbent solution quickly, and begin pruning

starting the process of converging on an optimal solution. When the safety net of a fixed

depth is removed, finding any solution with a depth first search is extremely challenging,

and converging on an optimal solution may happen, but it will take a remarkably long time.

For example for the 4-connected grid pathfinding problems we considered, A* will solve the
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problem in less than 2 seconds for all instances we considered, while branch and bound fails

to find any solution within the first five minutes. This isn’t simply a problem with one

domain, it happens in every domain in our evaluation save the TSP. As a result, we omit

discussion of it, instead focusing on the more general algorithms which can solve problems

of bounded and unbounded depth.

7.4.1 Beam Searches

Beam search is a memory limited search where a set number of nodes at each depth are

expanded. The beam is typically some form of ’leaky’ priority queue, where the best

elements that fit within the size limit are held. When a new element is added to the

beam, if the beam is at capacity, the worst element is discarded. Since nodes are discarded

before a solution is found, the search is incomplete, but it can be extended into a complete

anytime search in several ways.

Beam stack search [83], keeps track of the elements that are discarded from each beam at

each depth. Whenever a node is discarded, we make a note of it. When we have exhausted

all of the nodes at a certain depth, backtracking begins. When backtracking to a layer, we

see if any nodes were discarded. If no nodes were discarded from the beam, we continue

backtracking. If some nodes were discarded, we regenerate the beam by re-expanding all of

the nodes in the previous beam. This time, rather than only holding on to the best nodes,

we hold on to the best nodes that are at least as bad as the best previously discarded

node. When repopulating the beam, we still keep track of the best node that is discarded.

Eventually, we will exhaust all beams right up to the root layer, at which point we know

that the search has returned an optimal solution.

BULB [19] is a blending of limited discrepancy search [35] and beam search that aims

to correct the incompleteness of beam search. Limited discrepancy search is a tree based

search where we search from the start of the search space towards the leaves but limit

the number of times we can choose a node not recommended by the heuristic. Initially,

limited discrepancy search will proceed greedily towards a goal, but as the allowed number

245



Korf's 100 15 Puzzles

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

AwA*

RwA*

ARA*

BSS

Korf's 100 15 Puzzles - Inverse Cost

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

BSS

AwA*

RwA*

ARA*

Life Four-way Grids 35% Obstacles

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

AwA*

ARA*

RwA*

BSS

Vacuum Problem

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

AwA*

RwA*

ARA*

BSS

Dynamic Robot Navigation

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

1

0.5

0

AwA*

RwA*

ARA*

BSS

Dock Robot

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

BSS

ARA*

RwA*

AwA*

Figure 7-5: Comparison of Beam Stack Search with Framework Algorithms

of discrepancies increases, more of the space is explored until eventually the entire space

is considered. It can also be extended to graph search. Rather than maintaining fA∗-

boundaries as beam stack search, BULB increases the number of discrepancies allowed

during an iteration, and eventually it will exhaust the search space. Wilt et al [79] that

beam stack search is consistently better than BULB, so we restrict ourselves to beam stack

search in the following evaluation.

Figure 7-5 show a comparison of beam stack search (BSS in the legend) with anytime

weighted A*, anytime repairing A*, and restarting weighted A* across six benchmark do-

mains. As before, the x-axis shows the time consumed by the algorithm (on a log scale)

and the y-axis shows the mean solution quality as computed in the IPC.

Generally, beam stack search has worse anytime performance than the weighted A*

based framework algorithms. There are a few very interesting exceptions. These are the

inverse fifteen puzzle and the dock robot puzzle, where beam stack search is better than
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the framework algorithms, and dynamic robot navigation, where beam stack search is much

worse than the framework algorithms. In all three cases, the performance differences are a

result of the pruning performed by beam search.

In dynamic robots, there is a disconnect between the heuristic and the goal predicate

that causes many states with h(n) = 0 when they are not actually goals. Since we do not

break ties on being a goal, beam search will often run circles around the goal state, causing

it to perform poorly in this domain. In contrast, the heuristic is apparently often good at

identifying a hand full of promising states in inverse tiles and dock robots, and beam search

excels in these two domains as a result.

In the inverse tiles puzzle and in dock robots we note that none of the algorithms report

high mean quality scores despite quality being relative to the best solution returned by any

of the algorithms. What’s happening here is that beam search is occasionally returning

great solutions to these problems within the time limit, but more frequently it is returning

no solution to the problems within the cutoff. The good solutions it does find brings the

average for all algorithms down, however not solving many of the problems brings the

average quality of beam search down as well.

7.4.2 Window A*

Anytime window A* [1] is an extension of window A* where window A* is run with itera-

tively increasing window sizes. Window A* is an incomplete search where A* is run on a

sliding window of nodes in the search space, instead of on an open list consisting of every

node ever generated but not yet expanded. Restricting the comparisons between nodes to

nodes a similar distance away from the root makes the comparisons fairer while searching

on a restricted set of nodes typically improves the speed with which we can find solutions.

Pseudo code for the algorithm is provided in Figures 7-6 7-7 and 7-8. We will now describe

each piece in turn.

To understand the behavior of anytime window A*, we need to start by discussing the

behavior of window A*. As we previously discussed, the intuition behind window A* is that

247



insert(c, Open, Closed, Suspend)

1. if c /∈ (Open ∪ Suspend ∪ Closed)

2. then Open ← {c} ∪ Open

3. else if c ∈ Open ∪ Suspend & f(c) < previous estimated path cost

4. then update c in Open & Suspend

5. else if c ∈ Closed & f(c) < previous estimated path cost

6. then replace c in Closed

7. Open ← {c} ∪ Open

Figure 7-6: Node Insertion Strategy for Window A* and d–Fenestration

nodes at different places in the search tree aren’t really comparable because the heuristic

isn’t equally well informed throughout the search. In order to ensure a fairer comparison,

window A* restricts its search to a set of nodes at a similar depth. Pseudo code is provided

in Figure‘7-7.

We can see that the algorithm behave much like A* in line 5. It expands nodes in best-

first order as determined by the standard f node evaluation function. However, window A*

will only consider a node for consideration if it is within the current window. In line 7, we

test to see if the depth of the node is within distance of the deepest node ever expanded.

If it is too shallow, the comparison will be too unfair in favor of the shallow node, and we

delay the node for expansion until a later time (lines 8 and 9).

If a node is within the window, and it is deeper than any node ever expanded by the

search, we will increase the current depth or level of the search (line 11). In this way, the

deepest level will always progress forward, forcing window A* to abandon nodes near the

root of the search and instead consider nodes further away from the root. Nodes that are

placed into the suspend list aren’t considered in this iteration of window A*, but might be
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window A*(Open, Closed, Suspend, BestSol, Depth, WindowSize)

1. CurDepth ← −1

2. while Open 6= ∅

3. select n ∈ Openlist with minimum f -value

4. Closed ← {n} ∪ Closed

5. if f(n) ≤ g(BestSol) then return BestSol

7. else if Depth(n) CurDepth − WindowSize

8. then Closed ← Closed /{n}

9. Suspend ← {n} ∪ Suspend

10. continue

11 if Depth(n) > CurDepth then CurDepth ← Depth(n)

12. if isGoal(n)

13. then BestSol ← n

14. return BestSol

15. else for each successor c of n do

16. insert(c,Open, Closed, Suspend)

17. return BestSol

Figure 7-7: Window A*
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Anytime Window A*(root)

1. Closed ← ∅

2. WindowSize ← 0

3. Openlist ← {root} ∪ Openlist

4. BestSol ← inf

5. do

6. Suspend ← ∅

7. WindowSize ← WindowSize +1

8. BestSol ←WindowA∗(Open, Closed, Suspend, BestSol, Level, WindowSize )

9. Closed ← Closed ∪ Open

10. Open ← Suspend

11. while Suspend 6= ∅

12. return BestSol

Figure 7-8: Anytime Window A*
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considered by subsequent calls to window A* if it is used in an anytime framework, as we

will now discuss.

Figure 7-8 shows the general layout of the anytime window A* algorithm. Generally,

what the algorithm does in call the window A* algorithm shown in Figure 7-7 with progres-

sively larger window sizes. Thus, fewer and fewer nodes will be suspended at each iteration

because the window size will be larger, eventually encompassing the entire search tree that

A* would have expanded when solving the problem, guaranteeing the optimality.

Rather than starting the search over from the root at each iteration like a restarting

search might do, anytime window A* seeds the open list with those nodes that were sus-

pended during the previous iteration. This allows anytime window A* to save effort from

previous iterations for use in subsequent searches. It also means that some nodes will be

immediately pruned from the next iteration if, for example, the node with the best f -value

is very deep in the search space. Search ends when, after an iteration, the suspend list is

empty. This signals that all nodes with f -values less than that of the current solution have

been explored, and thus the optimal solution is in hand.

d-Fenestration

When we say that window A* assumes nodes at a similar depth are similarly informed,

what we mean is that it assume their heuristics are similarly accurate. Large heuristics

belong to nodes that are very far away from the goal, and therefore seem more likely to be

inaccurate than nodes with small heuristic values. It has been previously noted that the

depth of a node does not directly translate into the distance of that node from a goal, even

in best first search [68]. We use an estimate of distance to goal, d, to form the window of

window A* rather than the node depth, a technique we call d-Fenestration1.

1It’s a play on words. Defenestration means to throw someone or something out of a window. The word

originates from the Latin “de” meaning down or away from and “fenestra”, a window or opening. In this

case, we are basing the windowing scheme of window A* on the actions-to-go estimate, d. Hence the name.

Seriously, it’s very clever and I’d hate for you to miss out on the joke if you bothered to read this far.
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d–Fenestration(Open, Closed, Suspend, BestSol, WindowSize)

1. mind ←∞

2. while Open 6= ∅

3. select n ∈ Openlist with minimum f -value

4. Closed ← {n} ∪ Closed

5. if f(n) ≤ g(BestSol) then return BestSol

7. else if d(n) > mind+ WindowSize

8. then Closed ← Closed /{n}

9. Suspend ← {n} ∪ Suspend

10. continue

11 if d(n) > mind then mind ← d(n)

12. if isGoal(n)

13. then BestSol ← n

14. return BestSol

15. else for each successor c of n do

16. insert(c,Open, Closed, Suspend)

17. return BestSol

Figure 7-9: d–Fenestration
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Using d instead of depth requires a minor change to the algorithm, shown in Figure 7-9.

Unlike depth, which grows over the course of a search, d should decrease as new nodes are

generated. This may not always be true since d is a heuristic estimate of the distance to

a goal for most of the domains in our evaluation. We are interested in the smallest d that

the search has ever seen rather than the largest depth. This changes how we determine if a

node is within the current window. Nodes are within the window if they have d values that

are up to the window size larger than the smallest d we’ve ever seen, as opposed to up to

the window size shallower than the deepest node we have ever seen.

The largest changes to the algorithm are in the direction of the comparisons used to

determine if a node is within the current window. Where Window A* looked to see if a

node had depth that was not too shallow, d–Fenestration looks to make sure nodes have a

similar number of estimated actions-to-go, ie d(n) is not too large relative to mind and the

window size.

It’s interesting to note that on the domains where window A* was proposed, the two

formulations are equivalent. Window A* was originally proposed for domains where the

depth of the solution was known before search began, specifically the 0-1 knapsack problem

and the traveling salesman problem. In these domains, there are a fixed number of decisions

to be made, and therefor all solutions exist at the same depth. In these settings, nodes at

the same depth also have the same d-values, and d(n) = d∗(n) as the depth of solutions is

known.2

Scaling Windows

Selecting an appropriate window size for the iterations of anytime window A* is key in ob-

taining reasonable performance. For some domains, such as the knapsack problem, window

A* is guaranteed to find a solution for any window size. All nodes have solutions beneath

2This mirrors the relationship of dynamically weighted A* and revised dynamically weighted A*, as we

discussed in a previous chapter. Dynamically weighted A* was proposed on a fixed-depth problem, and so

the issue of nodes having a differing number of actions-to-go went unaddressed until recently.
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Figure 7-10: Use Distance Instead of Depth in Window A*

them, so it is impossible for the window to only contain nodes with no solution beneath

them. There are also no cycles in the standard encoding, so it is impossible for the algorithm

to see nodes it has already generated via a better path, meaning the window can never be

exhausted. When these properties do not hold there are many window sizes that find no

solution. Typically these are smaller windows, so the question of how to grow the window

to the appropriate size naturally arises.

To solve this problem, we grow the window rapidly so long as no solution is found, and

become more cautious in growing the window as solutions begin to stream in. We maintain

two values, a window step size and a current window size, both initialized to 1. At every

iteration, we add the window step size to the current window size to produce a new window.

In every iteration where no solution is found, the window step size increases by one, but if

we do find a solution, the step size is set back to one. So long as no solution is found, the

size of the window continues to grow rapidly until the first solution is encountered. Then,

254



Korf's 100 15 Puzzles

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

AWA* Scale

d-Fenestration

d-Fenestration Scale

AWA*

Korf's 100 15 Puzzles - Inverse Cost

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

d-Fenestration

d-Fenestration Scale

AWA* Scale

AWA*

Life Four-way Grids 35% Obstacles

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

d-Fenestration

d-Fenestration Scale

AWA* Scale

AWA*

Vacuum Problem

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

d-Fenestration Scale

d-Fenestration

AWA* Scale

AWA*

Dynamic Robot Navigation

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

1

0.5

0

d-Fenestration Scale

d-Fenestration

AWA* Scale

AWA*

Dock Robot

Log10 raw cpu time
20-2

S
o
lu
ti
o
n
 Q
u
a
li
ty

0.8

0.4

0

d-Fenestration

AWA* Scale

AWA*

d-Fenestration Scale

Figure 7-11: The Impact of Scaling Window Sizes in Anytime Window A* and d–

Fenestration.

we back off and increase the window size slowly until the solution stream dries up. We

also considered using a geometric progression for window step size, but found this was too

aggressive in pilot experiments.

Figure 7-11 evaluates the effectiveness of scaling the window size in window based

searches using the technique we just described. We perform an evaluation in both the base

window A* algorithm as well as the new d–Fenestration variant. There is an interesting

general trend to be seen here. While window scaling consistently improves the performance

of the base window A* search algorithm, it also consistently harms the anytime profile of

d–Fenestration.

We suspect that the following is happening: Recall that window A* bases the sameness

of nodes based on their distance from the root, and so in many cases it is making an incorrect

assumption about the proximity of nodes at the same depth being about the same distance
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away from the goal, as we covered in the discussion of revised dynamically weighted A* in

Chapter 5. By increasing the size of the window quickly, window A* with scaling gets to

a point where it can make fair comparisons faster. The scaling is likely counteracting the

negative effects of the bad assumption. Compare this to d–Fenestration, which does not

assume that nodes at the same depth are approximately the same distance away from the

goal. Thus, increasing the window size too quickly can only cause d–Fenestration to do too

much work in a given iteration, thus harming its anytime profile.

7.5 A Direct Approach

While we can improve upon the performance of anytime algorithms simply by replacing the

bounded suboptimal search algorithm at their core with EES, this is against the philosophy

behind EES. When solving a search problem, we should look at exactly what it is we’re

trying to optimize, and then construct a search algorithm that optimizes what we want to

do directly. As we saw in bounded suboptimal search, and as we will soon see in bounded

cost search, this tends to lead to a large improvement over algorithms that are not designed

specifically to solve the problem at hand.

The first question then is what is the goal of anytime search. Previously we argued

that an algorithm that could be interrupted at any time should minimize the time between

improvements to the incumbent solution. This reduces the amount of regret, or wasted

computation, that the algorithm experiences for any particular cutoff.

The pseudo code in Figure 7-12 presents an algorithm, Anytime EES [66], that is de-

signed to minimize the time between improving incumbent solutions. In line 3 of AEES

in Figure 7-12 we see AEES and EES have the same definition of best, and thus expand

nodes in the same order. selectNode pursues the nearest solution estimated to be within

the suboptimality bound, provided we can currently prove this node is actually within the

bound (line 1 of selectNode). Selecting best
d̂
is pursuing the next fastest-to-find solution.

best
d̂
is estimated to both be within bound and have the fewest actions (and thus node
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AEES(root)

1. open← {root}, cost←∞, w ←∞

2. while open 6= {}

3. let n = selectNode(open,w) in

4. if f(n) ≥ cost then continue

5. else if goalp(n) then newIncumbent(n,w, cost, open)

6. else expand(n, open, cost)

7. open← open− {n}

8. for each child c of n

9. if f(c) < cost then open← open ∪ {c}

newIncumbent(n,w, cost,open)

1. if g(n) < cost

2. then let bestf = argminn∈open f(n) in

3. cost← g(n)

4. w ← cost
f(bestf )

selectNode(open,w)

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

3. else bestf

Figure 7-12: Anytime Explicit Estimation Search
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expansions) between it and a goal. All other nodes are selected in an effort to make best
d̂

pursuable, either by raising our lower-bound on optimal solution cost or by adding new

nodes to the pool from which best
d̂
is selected.

EES and AEES differ in what happens when a goal node is encountered (line 5 of

AEES). EES would simply return the solution. AEES is an anytime search algorithm that

must eventually converge on an optimal solution. When AEES finds a goal, it updates the

cost of the incumbent solution and lowers the suboptimality bound w before continuing

search.

Rather than supplying a schedule of suboptimality bounds, we compute one online.

During search, we can compute a dynamic bound on the suboptimality of the incumbent

solution. Rather than supplying a sequence of suboptimality bounds, we need only compute

the dynamic bound when the algorithm needs the next parameter, typically when a new

solution is encountered.

In AEES, a dynamic bound can be computed as g(incumbent)
f(bestf )

. f(bestf ) provides a lower

bound on the cost of an optimal solution to our problem, and so this equation computes an

upper bound on the suboptimality of the current incumbent solution. We use this dynamic

bound to set w for the next iteration of AEES. This technique has also been used to augment

parameter schedules used by anytime search [37, 22, 69].

While we can construct examples where an algorithm that improves the incumbent

solution fastest does not have the best solution in hand for many cutoffs, the empirical

evaluation performed in Thayer, Benton, and Helmert [66] and reproduced and extended

in part below shows that in practice this rarely happens. In fact, in this evaluation it was

with a single exception the case that the algorithm that had the smallest time between

improving solutions also tended to have the best solution in hand at any given item.

Figure 7-13 shows the performance of AEES relative to three other state-of-the-art

anytime search algorithms: d–Fenestration, Anytime Nonparametric A*, and beam stack

search. Anytime Nonparametric A* (ANA*) [77] is a continued search that can be seen

as an anytime variant of potential search [64], discussed in the previous chapter. Anytime
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Figure 7-13: AEES Versus Leading Anytime Search Approaches

nonparametric A* expands the node with maximal e(n) = G−g(n)
h(n) . This is equivalent

to expanding the node with minimal e′(n) = h(n)
G−g(n) , where G is the cost of the current

incumbent solution, initially ∞.

As before, we note that there is no clearly dominating algorithm for all domains and all

potential time cutoffs. We do however see several general trends. It is rare that AEES is

the worst performing algorithm for any cutoff, with the one exception being the first second

of search on the dynamic robot domain. Similarly, it is rare that beam stack search is not

the worst performing algorithm, with the exception being in life-cost grid navigation where

beam stack search is better than d–Fenestration.

In the standard 15 puzzle instances (leftmost panel, top row of Figure 7-13, we see that

most of the algorithms have performance that is quite similar to one another. d–Fenestration

is marginally better than the other algorithms throughout, but not by a substantial amount.

However, when we change the cost-function of the domain, as we do in the inverse
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tiles problem (center panel of the top row), we see that the performance of the algorithms

dramatically changes. Now, AEES and d–Fenestration are the only two competitive algo-

rithms, with d–Fenestration being the better of the two algorithms. These two algorithms

have similar performance because they are the only two approaches under evaluation which

take advantage of actions-to-go estimates to guide search. AEES relies on d̂ to select nodes

that appear to be close to a goal, while d–Fenestration uses d to restrict the comparison

of nodes between those nodes that are likely to be similarly informed, ie those nodes that

are a similar number of actions away from the goal. AEES sidesteps the issue of similarly

informed comparisons by relying on inadmissible heuristics that are not inherently biased

based on the distance of a node from the goal.

The rightmost panel of the top row of Figure 7-13 shows the relative performance of

the algorithms on the life-cost grid navigation problem. As we’ve previously discussed,

the grid problems are unique among all domains studied in this paper in that they have

the largest number of duplicate nodes of any domain considered. Thus, algorithms that

specially handle duplicate states or that are more likely to reach a node by an optimal path

tend to perform better in these domains.

The large number of duplicate states makes it unsurprising that both beam stack search

and d–Fenestration perform poorly for this domain. Both beam search algorithms and

window search algorithms are known to have difficulty in domains with a large number of

tight cycles. The relative performance of ANA* and AEES is more difficult to explain. We

refer back to Figure 6-5, where we saw that potential search was far more efficient on grid

problems than BEES was, in part because it had an expansion order that was more similar

to that of A* and thus it re-opened fewer nodes. AEES often expands nodes in order of

their proximity to a goal, and this has nothing to do with the cost of that node. Thus it

is more likely to expand a node by a suboptimal path, thus requiring a re-expansion, than

nonparamteric A*.

In the left and rightmost panels of the bottom row, we see two domains where AEES is

far and away better than other state of the art anytime search algorithms. The heavy vac-
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Domain / Alg. AEES ANA* d–Fenestration Beam Stack Search

Tiles 47 71 49 131

Inv. Tiles 104 277 59 179

Life 12 51 136 17

Vacuum 24 95 72 198

Dyn. Robot 2 2 110 200

Dock 126 379 357 280

Table 7.1: Average time between solutions in seconds

uum domain and the dock yard robot domain have two interesting commonalities: search on

an actions-to-go heuristic is often substantially faster than search on a cost-to-go heuristic,

and both domains have inconsistent admissible estimates of cost to go. AEES is the only

algorithm out of those considered in this evaluation that uses both inadmissible estimates of

cost-to-go and actions-to-go. The reason that the inadmissible cost-to-go estimates are in-

teresting in this context is that they are not guaranteed to be consistent, and thus EES, and

algorithms based on it, have inadvertently been designed to handle inconsistent heuristics.

This is in contrast to many other algorithms that are designed and tested on benchmarks

with admissible estimates of cost-to-go.

That leaves the dynamic robot domain for discussion, shown in the center panel of

the bottom row of Figure 6-5. This is another domain where anytime explicit estimation

search has good, but not dominating, performance. Both anytime nonparametric A* and

d–Fenestration have strong performance in this domain as well. We will see in the following

evaluation that anytime nonparametric A* and AEES find solutions to this problem with

about the same frequency, and this may in part explain their similar performance.

Table 7.1 reports the mean time between solutions for the algorithms shown in Figure 7-

13 for the domains used throughout this dissertation. The algorithm with the smallest time

between solutions in a given domain has its value bolded, while the algorithm with the
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longest time between improvements in a domain has its value italicized. A brief glance at

the table will reveal that the algorithm with the smallest time between solutions is often

the best performing algorithm. We now discuss this phenomena in more detail.

In the tiles domain, we see in Table 7.1 that AEES has the smallest time between

solutions, followed closely by d–Fenestration and LAMA-11. Looking at the results in

Figure 7-13, we see that these algorithms are all closely clumped together, and thus have

similarly good solutions in had at any given time.

In the inverse tiles problem, we see that d–Fenestration has the smallest time between

solutions and it is indeed the best performing algorithm. This observation clearly repeats

itself in the heavy vacuum problem and the dock robot domain, although there AEES is

the better performing algorithm instead.

In life-cost grids, we see that AEES and beam stack search, and anytime nonparametric

A* have the smallest times between solutions. Further, these are the three best-performing

algorithms for this domain; early on, AEES has the best performance, but after around a

second of computation, nonparametric A* pulls ahead. Beam stack search has comparable

performance to these two approaches throughout.

If we look at the table as a whole, we see that the only domain for which AEES doesn’t

have the smallest delay between improving solutions is the inverse tiles problem. Looking

at Figure 7-13, we also see that this is the only domain where another search algorithm

has better performance than AEES throughout the entire duration of cutoffs examined.

It appears that there is a very strong correlation between small times between improving

solutions and good anytime search performance, as we previously hypothesized there would

be.

Unfortunately, it is not perfectly clear why this correlation exists. As we previously

noted, finding many improving solutions rapidly is not going to cause improved performance

if those improvements are very incremental. This can happen, look at the performance of

beam stack search in life cost grids, for example, however it appears to be rare. Heuristics,

by large, appear to help search, and finding incumbents allows us to prune away unpromising
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avenues earlier.

7.6 Discussion

Windowing is meant to make the comparison of nodes fairer by restricting the comparison

to nodes at about the same depth. The idea here is that nodes a similar distance away

from the goal should be similarly informed. This is very much like the idea behind dynam-

ically weighted A*, and it has the same flaw: nodes at the same depth may be radically

different distances away from the goal. d–Fenestration approaches this problem in the same

way that revised dynamically weighted A* tries to approach it, by defining similarity by

estimated number of actions to the goal. As we saw, this led to a remarkable improvement

in performance.

Why then do we not treat windowing as a general framework, like continued, repairing,

and restarting search? Much like low-h bias is unique to algorithms that weight cost-to-go

estimates to produce suboptimal search strategies, not all algorithms are prone to making

unfair comparisons between nodes. One of the main strengths of inadmissible heuristics is

that we can expect them to behave consistently over the entirety of the search space.

We have not yet discussed two alternate ways of controlling the amount of time con-

sumed by a search: search under a known deadline and search with a limited amount of

computation per action. Both are fine techniques for limiting the amount of time avail-

able to search, and they both nicely line up with a real application: competitions and

robotics. Although both areas are interesting, time is finite, and this work doesn’t contain

any new algorithms in these settings. Possible enhancements and algorithms are discussed

in Chapter 8.

7.7 Summary

In this chapter we discussed one particular setting for heuristic search under a time bound,

the anytime search setting. We put forth a possible definition for the optimal behavior of

263



anytime search. This definition had been considered, albeit less formally, by other previous

authors. We showed that algorithms which optimized this particular performance metric,

minimizing wasted search time, also tended to have the best performance in the more

classical sense, that is dominant performance. We offered, and have, no explanation for the

relationship between these two values other than the intuition that algorithms which make

better use of their time often have better solutions in hand when the deadline does arrive.

This chapter covered one search algorithm that is rarely discussed in the literature

or deployed in practice: Window-based anytime searches and particularly d–Fenestration.

These algorithms are not often employed because they can be quite brittle. When they

work well, they work incredibly well, however when they work poorly, they are particularly

bad.

Such an assessment ignores an unfortunate truth that came to light several times

throughout this chapter and dissertation. There is rarely a best algorithm in heuristic

search in general, but this is particularly true of anytime search. There are domains for

which beam stack search is the best approach despite performing terribly in many of the

domains under evaluation, and this holds for d–fenestration and AEES as well. The ques-

tion of “Which algorithm performs best in general?” is difficult to answer, and perhaps it

is unimportant if we can easily answer “Which algorithm will perform best here?”.
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CHAPTER 8

CONCLUSIONS AND FUTURE

WORK

This thesis was separated into two major sections. In the first section, we discussed sources

of information not typically considered by optimal heuristic search algorithms: inadmissible

estimates of cost and actions-to-go from a node to a goal. The second section of the thesis

considered suboptimal search in a variety of settings: bounded suboptimal, bounded cost,

and anytime search.

In the first section, we discussed two major techniques for constructing inadmissible

sources information. The first involved looking at the domain and constructing inadmissible

heuristics based on observations of an expert: the way in which the admissible heuristic

is derived, hand-crafted estimators, etc. While such inadmissible heuristics are useful,

constructing sources of information by hand doesn’t scale well. Thus, we looked at ways of

deriving inadmissible heuristics automatically.

Previous work had considered learning heuristics from data written down before any

search begins, or from data available in between the solving of multiple instances when

solving a large set of instances. We chose to purse the orthogonal approach of learning during

the search itself. In order to ensure the technique had the largest possible applicability, we

restricted ourselves to information that was ubiquitously available during best-first heuristic

search, namely the behavior of the heuristic across a single expansion. By looking at single

expansions, we could measure and correct for error in the base heuristic, thus improving it.
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The second section of the thesis focused on algorithms for suboptimal search. We talked

about three major settings for suboptimal search: bounded suboptimality, bounded cost,

and anytime search. In each setting, we proposed a new state of the art algorithm, explicit

estimation search, bounded-cost explicit estimation search, and anytime explicit estimation

search. These algorithms have two major things in common: they attempt to optimize the

goal of the setting directly, and they take advantage of the additional sources of information

discussed in the first portion of the thesis.

The first point is the most important. All of the previous work could be modified to

take additional information into account, but as we saw in the evaluation, simply taking the

information into account did not improve the performance beyond what we could achieve

with EES, BEES, and AEES. This is because those three algorithms attempt to solve the

problem at hand as directly as possible give the information readily available. “As directly

as possible” because we must acknowledge the fact that we are not minimizing time directly;

we are searching for short solutions and this approach tends to minimize solving time.

Although addressing the problem directly, or nearly directly, is important, we are only

able to do so because we rely on the additional sources of information. Thus, their im-

portance cannot be discounted. Without inadmissible estimates of cost and actions-to-go,

neither EES nor BEES would have been able to predict which nodes would lie within the

desired bound. Without good estimators of actions-to-go, none of the search algorithms

discussed here would be able to reason about the proximity of a goal.

The bigger picture of the thesis is that it provides the start of a theory of suboptimal

search. In the thesis, we outline three major settings for suboptimal search. We discuss the

goal of each area and discuss what ideal performance would be. We then go on to discuss

what sorts of information are needed to achieve ideal performance. Finally we consider what

available information approximates those sources, and construct state of the art algorithms

using this new information.
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8.1 Major Lessons

This dissertation covers a lot of ground with respect to the field of suboptimal search,

but there are three main points that I feel bear repeating at the end here. These are

that suboptimal search is different than optimal search, we should make use of as much

information as possible during search, and before working on an algorithm, we should first

consider what it is we’re optimizing. We now discuss each of these in a bit more detail.

8.1.1 Suboptimal Search is Different

The goals of suboptimal search and optimal search are different. Optimal search seeks to

prove that no solution exists better than the one returned; finding the solution itself is almost

a secondary consideration. Suboptimal search, on the other hand, is primarily concerned

with finding any solution. Proving that solution has certain properties is almost a secondary

consideration, especially when we consider difficulty. Proving a solution is optimal is hard

even if our heuristics are nearly perfect [25], while proving bounded suboptimality can be

easy in certain restricted circumstances [13].

Suboptimal search has different goals than optimal search, and this means we should

really be considering sources of information and search strategies that are different from

those used by optimal search algorithms. We saw this again and again throughout the

dissertation. Techniques like weighted A*, which simply adapt the ideas of optimal search

to a suboptimal setting do not work as well as algorithms that are designed explicitly for the

suboptimal setting. Their wide adoption is largely the result of their ease of implementation

and the amount of time they have existed unopposed.

8.1.2 Use Available Information

The performance of algorithms like EES, BEES, and AEES shows empirically the impor-

tance of taking advantage of the information available to the search algorithm. By consid-

ering information that was readily available, estimates of actions-to-go and the observable
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error in the cost and actions-to-go heuristics give, these algorithms are able to out perform

the previous sate of the art in their respective areas of suboptimal search.

At first glance, the idea that we wouldn’t use information available during search to

improve algorithm performance seems ridiculous. However, there are many reasons why it

wasn’t immediately obvious that we were overlooking information. Many heuristic search

papers focus on unit cost benchmarks, and in a unit cost domain there is no difference be-

tween cost-to-go and actions-to-go, and therefore no need for an additional set of heuristics.

Treating heuristics as sensors and using expansions as observations is an analogy that is

not easily made when we forget about the agent in single agent search and instead focus on

considering a sequence of potential solutions. It’s not surprising that many failed to make

this connect before simply because of how we tend to talk about the problems.

While I am very fond of the search algorithms proposed in the second half of the disser-

tation, I have no doubt that the online learning technique put forth in the first part of the

dissertation is the larger contribution. The algorithms will eventually be surpassed by new

variants that are able to more directly minimize time under a constrain, probably by con-

sidering time directly rather than a proxy like d̂. However, the idea that expansions provide

information on the performance of a heuristic that we can leverage to improve heuristics

and search performance is, I think, very important.

Suboptimal search is a very large area, but it is only a fraction of state space search,

and all state space algorithms can likely benefit from the insight that we can learn from

the performance of heuristics during search. The idea is larger than any of EES, BEES,

or AEES in the sense of the affected area. Heuristics search algorithms have heuristics by

definition, and many of them expand nodes generating successor states from which error

can be observed.

8.1.3 Consider What You’re Optimizing

Individually, EES, BEES, and AEES are each a nice ideas that contribute to the furtherance

of each of their respective areas of suboptimal search. However, they are all bound by a
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single underlying idea that is more important than any one of the algorithms: we should be

mindful of what we are trying to optimize when designing best first search algorithms. All

three try to reduce solving time subject to some constraint, be it a relative cost bound, an

absolute cost bound, or the cost of the last solution. A large portion of their improvement

over the previous state of the art can be attributed to their addressing solving time as

directly as possible.

8.2 Future Work

There are several things that are related to the topics discussed in the dissertation that

were not explored in sufficient depth. There is also an area relevant to all of the topics in

the dissertation that goes largely undiscussed.

8.2.1 Deadline Search

While Chapter 7 addressed one way of controlling the time allotted to a search algorithm,

anytime search, it did not consider the setting in which we know the deadline a priori.

As we previously touched on, search should make an effort to take advantage of all the

information available to it. In this case, the impending deadline is imparting information

that should be taken advantage of by search.

Some algorithms have already started looking at this information, for example deadline

aware search [15]. There is, however an open question or two relating to deadline search.

We don’t really have a strong handle on how to take the impending deadline into account.

Deadline aware search uses the deadline to try and prune away avenues of search that

cannot lead to a solution within the remaining deadline, but this is not obviously the right

approach. In fact, it is the most conservative approach imaginable.

This highlights another open problem, how do we estimate if a goal is reachable within

the deadline? Deadline aware search uses measurements like vacillation and search velocity

to try and estimate the size of the sub-tree that will be expanded form one node on the
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path to a goal. The effectiveness of these techniques is still unexamined, but even if they

were perfect, they don’t seem to be answering the right question.

Current techniques for estimating tree size don’t consider the quality of solution we’re

looking for beneath a give node. Search velocity makes no distinction, and vacillation

distinguishes between the optimal cost solution and the solution with the fewest actions

remaining. This is a step in the right direction, but it is not all the way there. What

we really want is a full spectrum, a function of the form “if I am willing to invest X

time (or expansions), then I can achieve a solution of cost Y ”. Given such a function, we

could directly optimize the desired goal of search under a deadline. It is unclear how to

construct such a heuristic, but tree size estimation of the kind investigated by Korf, Reid,

and Edelkampf [36] will likely inform or inspire the approach.

8.2.2 Real-time Search

We also do not consider a second alternative to controlling time during search, the setting of

real-time search. In real time search, our goal is to be as certain as possible at the end of the

allotted time that we are committing to the correct next action. This is left intentionally

ambiguous, as we may be trying to optimize a wide variety of criteria in real-time search:

cost, safety, number of actions, etc. The idea is that we want to be sure that we are

committing to the right action; the actual metric by which the solution will be measured is

a secondary concern.

Current heuristics don’t give us the kind of information that we need to solve the

problem. They only tell us about cost or distance to go from a node to goal. They don’t

often tell us much about our certainty in the estimate. That is the more important value

here, as we want to be sure we’ve made the right decision, not estimate what the final value

of our solution will be. This desire is a direct result of the interleaved nature of real-time

search.

The idea of collapsing confidence intervals is not new to heuristic search. This is the

fundamental idea behind algorithms like decision theoretic A* [57] and Monte Carlo tree
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search approaches like UCT [32]. To the best of my knowledge, neither has been applied

directly to real-time search, though both seem like they could be easily adapted. Existing

best first search algorithms, like A∗
ǫ [43] could also probably be adapted to this setting. They

are well suited to it in that they already consider a set of similar (ie hard to disambiguate

between) nodes for search on a secondary criteria.

8.2.3 Dealing with Very Large Problems

In the course of the dissertation, we never bother to discuss very large problems. That isn’t

to say the problems we look at are particularly small, but they all can be solved in memory

using at least one of the algorithms discussed in the dissertation. The largest drawback of

best-first heuristic search is that it does not scale well. For a give algorithm and domain,

it is almost always possible to specify an input that cannot be solved without needing far

more memory than is available on a modern machine. Since the problems we tend to solve

with search are often hard in the formal sense, this is unlikely to change.

How to perform suboptimal search on disk or across multiple machines in parallel is an

open problem not addressed by this work, with open challenges. The largest is that best

first search is, in a very real sense, embarrassingly sequential. Best has a definition that

doesn’t lend itself well to parallelism. However, as Burns et al [9] point out, we only need

to approximate a best first order in search to have the behavior of a best first search and

the advantage of parallelism. Hatem et al [24] showed that we can also make use of disk to

deal with particularly large spaces in best first search.

8.3 Conclusions

The thesis of this dissertation was that the performance of suboptimal search algorithms

can be improved by taking advantage of information that, while widely available, has been

overlooked. This information took two major forms: new heuristics and problem state-

ments. The heuristics were either derived from observations about the search space, the
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performance of heuristics, or both. The larger contribution though, was noticing that sub-

optimal search differed substantially from optimal search in terms of the desired outcome.

This means that simply adapting optimal search techniques, or search techniques from other

suboptimal settings, is unlikely to produce ideal performance. Both feed into the foundation

of suboptimal search: a formal definition of what we are trying to do, and an analysis of

what information is needed to do it.
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[53] Gabi Röger and Malte Helmert. The more the merrier: Combining heuristic estimators

for satisficing planning. In ICAPS-10, pages 246–249, 2010.

[54] Wheeler Ruml and Minh B. Do. Best-first utility-guided search. In Proceedings of

IJCAI-07, pages 2378–2384, 2007.

[55] Stuart Russell and Peteer Norvig. Artificial Intelligence: A Modern Approach. 2003.

[56] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, Upper Saddle River, New Jersey, second edition, 2003.

[57] Stuart Russell and Eric Wefald. Do the Right Thing: Studies in Limited Rationality.

MIT Press, 1991.

[58] Aleksander Sadikov and Ivan Bratko. Solving 20x20 puzzles. In Computer games work-

shop 2007, Amsterdam, June 15-17, 2007, pages 157–164, Amsterdam, The Nether-

lands, The Netherlands, 2007.

[59] Mehdi Samadi, Ariel Felner, and Jonathan Schaeffer. Learning from multiple heuristics.

In Proceedings of the Twenty-Third Conference on Artificial Intelligence, Summer 2008.

[60] Mehdi Samadi, Maryam Siabani, Ariel Felner, and Robert Holte. Compressing pattern

databases with learning. In Proceedings of the 18th European Conference on Artificial

Intelligence, 2008.

278



[61] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, July 1959.

[62] Sudeshna Sarkar, P.P. Chakrabarti, and Sujoy Ghose. A framework for learning in

search-based systems. In IEEE Transactions on Knowledge and Data Engfineering,

volume 10, pages 563–575, July/August 1998.

[63] Robert Sedgewick. Algorithms in C. Addison-Wesley Professional, Boston, MA, 1992.

[64] Roni T. Stern, Rami Puzis, and Ariel Felner. Potential search: A bounded cost search

algorithm. In Proceedings of ICAPS-11, 2011.

[65] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3:9–44, 1988.

[66] Jordan T. Thayer, J. Benton, and Malte Helmert. Better parameter-free anytime search

by minimizing time between solutions. 2011.

[67] Jordan T. Thayer and Wheeler Ruml. Faster than weighted A*: An optimistic ap-

proach to bounded suboptimal search. In Proceedings of the Eighteenth International

Conference on Automated Planning and Scheduling, Fall 2008.

[68] Jordan T. Thayer and Wheeler Ruml. Using distance estimates in heuristic search. In

Proceedings of the Nineteenth International Conference on Automated Planning and

Scheduling, 2009.

[69] Jordan T. Thayer and Wheeler Ruml. Anytime heuristic search: Frameworks and

algorithms. In Symposium on Combinatorial Search, July 2010.

[70] Jordan T. Thayer and Wheeler Ruml. Finding acceptable solutions faster using in-

admissible information. Technical Report 10-01, University of New Hampshire, April

2010.

279



[71] Jordan T. Thayer and Wheeler Ruml. Bounded suboptimal search: A direct approach

using inadmissible estimates. In Proceedings of IJCAI-11, 2011.

[72] Jordan T. Thayer and Wheeler Ruml. Learning inadmissible heuristics during search.

In Proceedings of the Twenty-First International Conference on Automated Planning

and Scheduling, 2011.

[73] Jordan T. Thayer, Wheeler Ruml, and Ephrat Bitton. Fast and loose in bounded

suboptimal heuristic search. In Proceedings of the First International Symposium on

Search Techniques in Artificial Intelligence and Robotics (STAIR-08), 2008.

[74] Jordan T. Thayer, Wheeler Ruml, and Jeff Kreis. Using distance estimates in heuristic

search: A re-evaluation. In Proceedings of the Second Symposium on Combinatorial

Search, 2009.

[75] Jordan T. Thayer, Roni Stern, Ariel Felner, and Wheeler Ruml. Faster bounded-cost

search using inadmissible estimates. In Proceedings of the Twenty-second International

Conference on Automated Planning and Scheduling, 2012.

[76] Rcihard Valenzano, Nathan Sturtevant, Jonnathan Schaeffer, Karen Buro, and Aki-

hiro Kishimoto. Simultaneously searching with multiple settings: An alternative to

parameter tuning for suboptimal single-agent search algorithms. In Proceedings of the

Twentieth International Conference on Automated Planning and Scheduling, 2010.

[77] Jur van den Berg, Rajat Shah, Arthur Huang, and Kenneth Y. Goldberg. ANA∗:

Anytime nonparametric A∗. In Proc. AAAI 2011, pages 105–111, 2011.

[78] Christopher Wilt and Wheeler Ruml. Cost-based heuristic search is sensitive to the

ratio of operator costs. In Proceedings of the Fourth Symposium on Combinatorial

Search, July 2011.

280



[79] Christopher Wilt, Jordan Thayer, and Wheeler Ruml. A comparison of greedy search

algorithms. In Proceedings of the Third Symposium on Combinatorial Search, July

2010.

[80] Yuehua Xu, Alan Fern, and Sungwook Yoon. Discriminative learning of beam-search

heuristics for planning. In Proceedings of the Twentieth International Joint Conference

on Artificial Intelligence, 2007.

[81] Takayuki Yoshizumi, Teruhisa Miura, and Toru Ishida. A* with partial expansion for

large branching factor problems. In Proceedings of AAAI-2000, pages 923–929, 2000.

[82] Rong Zhou and Eric A. Hansen. Multiple sequence alignment using Anytime A*. In

Proceedings of AAAI-02, pages 975–976, 2002.

[83] Rong Zhou and Eric A. Hansen. Beam-stack search: Integrating backtracking with

beam search. In Proceedings of ICAPS-05, 2005.

281


