Fast and Loose in Bounded Suboptimal Heuristic Search

Jordan Thayer and Wheeler Ruml

UNIVERSITY of NEW HAMPSHIRE

{jtd7, ruml} at cs.unh.edu

Ephrat Bitton Berkeley

ebitton at berkeley.edu

Finding optimal solutions is prohibitively expensive.

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search - 2 / 35

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search – 3 / 35

Weighted A* is a popular method for doing that.

Jordan Thayer (UNH)

- Finding optimal solutions is prohibitively expensive.
- Its nice to limit suboptimality.
- Weighted A* is a popular method for doing that.
 - This talk: two algorithms which are often better.

Talk Outline

Introduction

Weighted A^*

- Weighted A^*
- Bounding
- Performance
- Clamped Adaptive
- Optimistic Search
- Conclusion

Background Weighted A*

- Strict Approach: Clamped Adaptive Correct for underestimating h(n)Bound correction to ensure w-admissibility
- Loose Approach: Optimistic Search Greedily search for a solution Enforce suboptimality bound afterwards

 A^* is a best first search ordered on f(n) = g(n) + h(n)

Weighted A* Respects a Bound

Weighted A^* is a Popular Choice

Talk Outline

Introduction

Weighted A^*

Clamped Adaptive

- Improving wA^*
- Correcting h(n)
- $\blacksquare w\text{-}\mathsf{Admissibility}$
- Performance
- Optimistic Search

Conclusion

Background Weighted A*

Strict Approach: Clamped Adaptive

Correct for underestimating h(n)Bound correction to ensure *w*-admissibility

Loose Approach: Optimistic Search Greedily search for a solution Enforce suboptimality bound afterwards

Improving Weighted A^*

Introduction
Weighted A^*
Clamped Adaptive
\blacksquare Improving wA^*
Correcting $h(n)$

- \blacksquare w-Admissibility
- Performance

Optimistic Search

Conclusion

If h were perfect, solutions would be found in linear time. How do we improve h(n)?

By correcting for the error in h(n)

■ We'll ensure *w*-admissibility shortly.

Consider the single expansion:

Recall that f(n) = g(n) + h(n)

Track a running average of err_h . $\hat{f}(n) = g(n) + \hat{h}(n)$ $\hat{h}(n) = h(n) \cdot (1 + err_h)$

Jordan Thayer (UNH)

Consider the single expansion:

Recall that
$$f(n) = g(n) + h(n)$$

Track a running average of err_h . $\hat{f}(n) = g(n) + \hat{h}(n)$ $\hat{h}(n) = h(n) \cdot (1 + err_h)$ $\hat{h}(n)$ is inadmissible.

Clamping enforces w-admissibility.

Admissibility of Clamping: Weighted A*

Admissibility of Clamping: Clamped Adaptive

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search – 14 / 35

Empirical Evaluation

Introduction	
Weighted A^*	
Clamped Adaptive	
Improving wA^*	
$\blacksquare \text{ Correcting } h(n)$	
\blacksquare w-Admissibility	
Performance	
Optimistic Search	
Conclusion	

Grid world path finding

 Four-way and Eight-way Movement
 Unit and Life Cost Models
 25%, 30%, 35%, 40%, 45% obstacles

 Temporal Planning

 Blocksworld, Logistics, Rover, Satellite, Zenotravel

See the paper for details.

Fast Bounded Suboptimal Search – 16 / 35

Fast Bounded Suboptimal Search – 17 / 35

Fast Bounded Suboptimal Search – 18 / 35

Fast Bounded Suboptimal Search – 19 / 35

Introduction
Weighted A^*
Clamped Adaptive
Improving wA^*
$\blacksquare \text{ Correcting } h(n)$
$\blacksquare w\text{-}Admissibility$
Performance
Optimistic Search
Conclusion

Clamped Adaptive:

- On-line heuristic correction seems promising Performance varies Does well for small bounds Fails to become greedy No parameter tuning needed
- Clamping for admissibility of inadmissible heuristics

Talk Outline

Introduction

Weighted A^*

Clamped Adaptive

Optimistic Search

- Loose Bounds
- Solution Quality
- $\blacksquare w\text{-}\mathsf{Admissibility}$
- Performance

Conclusion

Background Weighted A*

Strict Approach: Clamped Adaptive Correct for underestimating h(n)Bound correction to ensure w-admissibility

Loose Approach: Optimistic Search Greedily search for a solution Enforce suboptimality bound afterwards

Weighted A* Respects a Bound

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search – 22 / 35

Weighted A^* Respects the Bound and Then Some

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search – 23 / 35

Solution Quality v. Bound

Enforcing the Bound

Weighted A^*

Clamped Adaptive

Optimistic Search

Loose Bounds

■ Solution Quality

 \blacksquare w-Admissibility

Performance

Conclusion

 $f(f_{min}) \le f(p)$

p is the deepest node on an optimal path to opt

 f_{min} provides a lower bound on solution cost. Determine f_{min} by priority queue sorted on f

Optimistic Search: Run a greedy search Expand f_{min} until $w \cdot f_{min} \ge f(sol)$

Introduction	
introduction	

Weighted A^*

Clamped Adaptive

Optimistic Search

Loose Bounds

Performance

Conclusion

Solution Quality
 w-Admissibility

This Paper:

- Grid world path finding
 Four-way and Eight-way Movement
 Unit and Life Cost Models
 25
- Temporal Planning
 Blocksworld, Logistics, Rover, Satellite, Zenotravel

To Appear in ICAPS:

- Traveling Salesman
 Unit Square
 Pearl and Kim Hard
- Sliding Tile Puzzles
 Korf's 100 15-puzzle instances

See papers for details.

Fast Bounded Suboptimal Search – 27 / 35

Fast Bounded Suboptimal Search – 28 / 35

Fast Bounded Suboptimal Search – 29 / 35

Conclusion

Introduction	
millouuclion	

Weighted A^*

Clamped Adaptive

Optimistic Search

Conclusion

Conclusion

Advertising

Clamped Adaptive:

- On-line heuristic correction seems promising.
- No parameter tuning needed.

Optimistic Search:

- Performance is predictable.
 - Current results are good, could be improved.

We have two algorithms that can outperform weighted A^*

We can use arbitrary heuristics for w-admissible search.

Introduction

Weighted A^*

Clamped Adaptive

Optimistic Search

Conclusion

Conclusion

Advertising

Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- Iow cost of living
- easy access to Boston,White Mountains
- strong in AI, infoviz, networking, systems, bioinformatics

Fast Bounded Suboptimal Search – 32 / 35

Fast Bounded Suboptimal Search – 33 / 35

Duplicate Dropping can be Important

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search – 34 / 35

Sometimes it isn't

Jordan Thayer (UNH)

Fast Bounded Suboptimal Search – 35 / 35