
Wheeler Ruml (UNH) Search Algorithms as Agents – 1 / 40

Search Algorithms as Agents
— or —

There’s More to Life Than h(n)

Wheeler Ruml

and the UNH AI Group, esp. Jordan Thayer

(thanks to the NSF RI and DARPA CSSG programs for support)



The AI Vision

Heuristic Search

■ The AI Vision

■ Alg as Agent

■ What is Search?

■ Related Work

■ Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Wheeler Ruml (UNH) Search Algorithms as Agents – 2 / 40

world model

planner

search

agent

world

actions

sensing



Search Algorithms as Agents

Heuristic Search

■ The AI Vision

■ Alg as Agent

■ What is Search?

■ Related Work

■ Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Wheeler Ruml (UNH) Search Algorithms as Agents – 3 / 40

search strategy

open list

search algorithm

domain

expand

g, h values

children,



What is Search?

Heuristic Search

■ The AI Vision

■ Alg as Agent

■ What is Search?

■ Related Work

■ Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Wheeler Ruml (UNH) Search Algorithms as Agents – 4 / 40

acting under uncertainty to maximize utility



What is Search?

Heuristic Search

■ The AI Vision

■ Alg as Agent

■ What is Search?

■ Related Work

■ Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Wheeler Ruml (UNH) Search Algorithms as Agents – 4 / 40

acting under uncertainty to maximize utility
= all of AI



What is Search?

Heuristic Search

■ The AI Vision

■ Alg as Agent

■ What is Search?

■ Related Work

■ Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Wheeler Ruml (UNH) Search Algorithms as Agents – 4 / 40

acting under uncertainty to maximize utility
= all of AI

possible sources of information, ‘sensors’
how to exploit information, ‘aggregation’, ‘filtering’
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Rational search:

■ Othar Hansson
■ Andy Mayer

Metareasoning, ‘bounded optimality’:

■ Eric Wefald
■ Shlomo Zilberstein
■ Eric Horvitz
■ Stuart Russell

Anytime search:

■ Tom Dean
■ Mark Boddy
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optimal: minimize solution cost
must expand all with f(n) < f∗(opt)
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optimal: minimize solution cost
must expand all with f(n) < f∗(opt)

greedy: minimize solving time

bounded suboptimal: minimize time subject to relative cost
bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

utility function: maximize utility function of cost and time
eg, goal achievement time =

plan makespan + search time
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how to minimize solving time?
how to minimize number of expansions?
take the shortest path to a goal
for domains with costs, this is not h(n)

source #1 of 5: distance-to-go
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n

h = 4
d = 2

h = 5
d = 1

d∗cheapest(n) = 3

d∗nearest(n) = 2

dnearest is potentially independent of h,
can becomputed as h with unit costs

dcheapest often computable alongside h

d can be inadmissible
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n

h = 4
d = 2

h = 5
d = 1

d∗cheapest(n) = 3

d∗nearest(n) = 2

dnearest is potentially independent of h,
can becomputed as h with unit costs

dcheapest often computable alongside h

d can be inadmissible

Speedy Search: best-first search on d(n) (Thayer et al, SoCS-09)
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optimal)
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expand the node closest to a solution within the bound
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minimize solving time subject to relative cost bound (factor of
optimal)
weighted A* (f ′(n) = g(n) + w · h(n)) is simple but ad hoc

expand the node closest to a solution within the bound
known to not work!
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intuition: of all solutions within the bound, the nearest
should be the fastest to find

f(n) = g(n) + h(n)
bestf : open node with minimum f

two lists:
open: as usual, sorted on f(n)
focal: subset of open with f(n) ≤ w · f(bestf ), sorted on d(n)

A∗

ǫ : best-first search using focal
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intuition: of all solutions within the bound, the nearest
should be the fastest to find

f(n) = g(n) + h(n)
bestf : open node with minimum f

two lists:
open: as usual, sorted on f(n)
focal: subset of open with f(n) ≤ w · f(bestf ), sorted on d(n)

A∗

ǫ : best-first search using focal

Why doesn’t it work?
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open: as usual, sorted on f(n)
focal: subset of open with f(n) ≤ w · f(bestf ), sorted on d(n)

open

focal

f

d
often f

often d
best

f

best
d

best
fbest

d

f rises as search progresses (h is admissible)
bestd’s children don’t qualify for focal
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intuition: pursuing the shortest solution within the bound
should be fast

intuition′: an unbiased estimates of cost won’t always rise

source #2 of 5: unbiased cost estimates f̂(n)
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Every expansion gives evidence for heuristic’s error!

p

bc
f∗(p) = f∗(bc)

h∗(p) = h∗(bc) + c(p, bc)

ǫh = (h(bc) + c(p, bc))− h(p)
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Every expansion gives evidence for heuristic’s error!

p

bc
f∗(p) = f∗(bc)

h∗(p) = h∗(bc) + c(p, bc)

ǫh = (h(bc) + c(p, bc))− h(p)

ĥ(n) = h(n) + ǫh · d(n)
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Every expansion gives evidence for heuristic’s error!

p

bc
f∗(p) = f∗(bc)

h∗(p) = h∗(bc) + c(p, bc)

ǫh = (h(bc) + c(p, bc))− h(p)

ĥ(n) = h(n) + ǫh · d(n)

can do this for d(n) too. . .

ĥ(n) = h(n) + ǫh · d̂(n)

see Thayer et al (ICAPS-11) for details
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bestf : open node with minimum f

best
f̂
: open node with minimum f̂

three lists (!):
open: as usual, but sorted on f̂(n)
focal: subset of open with f̂(n) ≤ w · f̂(best

f̂
), sorted on d̂(n)

cleanup: same as open, but sorted on f(n)
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bestf : open node with minimum f

best
f̂
: open node with minimum f̂

three lists (!):
open: as usual, but sorted on f̂(n)
focal: subset of open with f̂(n) ≤ w · f̂(best

f̂
), sorted on d̂(n)

cleanup: same as open, but sorted on f(n)

best
d̂
: first node on focal
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bestf : open node with minimum f

best
f̂
: open node with minimum f̂

three lists (!):
open: as usual, but sorted on f̂(n)
focal: subset of open with f̂(n) ≤ w · f̂(best

f̂
), sorted on d̂(n)

cleanup: same as open, but sorted on f(n)

best
d̂
: first node on focal

estimated w-admissible node with minimum d̂
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bestf : open node with minimum f

best
f̂
: open node with minimum f̂

best
d̂
: estimated w-admissible node with minimum d̂

node to expand next:

1. pursue the shortest solution within the bound
2. pursue the estimated cheapest solution
3. raise the lower bound on optimal cost

in other words:

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

3. else bestf

find a solution provably within the bound as quickly as possible
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■ search algorithms as agents

■ more information sources

1. d(n): distance-to-go

2. f̂(n): expected cost (expansion experience)

■ more problem settings

◆ greedy search: Speedy

◆ bounded-suboptimal search: EES
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expand node with best reachable solution
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minimize cost subject to absolute time bound
anytime algorithms: series of solutions, eg, unknown deadline

while time remains
expand node with best reachable solution

best: expected cost
reachable: expected search time to goal
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how long to reach goal d̂(n) steps away?
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how long to reach goal d̂(n) steps away?

how long to go one step toward a goal?

estimate ∆e, time between a node’s generation and expansion
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how long to reach goal d̂(n) steps away?

how long to go one step toward a goal?

estimate ∆e, time between a node’s generation and expansion

just record current time in node when generating

source #3 of 5: search vacillation

dmax = time remaining /∆e
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1. while time remains and open is not empty
2. dmax ← estimate bound
3. s← pop bestf from open

4. if s is a goal
5. save if best so far

6. else if d̂(s) < dmax

7. expand s
8. else
9. add s to pruned

10. if open is empty, recover using pruned
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balance time and cost according to user’s utility function

Example: linear utility function

for solution of cost f produced after time t:

U(f, t) = −wf · f − wt · t
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balance time and cost according to user’s utility function

Example: linear utility function

for solution of cost f produced after time t:

U(f, t) = −wf · f − wt · t

Example: minimize goal achievement time

if cost = plan makespan,

U(f, t) = −f − t
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balance time and cost according to user’s utility function

Example: linear utility function

for solution of cost f produced after time t:

U(f, t) = −wf · f − wt · t

Example: minimize goal achievement time

if cost = plan makespan,

U(f, t) = −f − t

anytime algorithms?
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Requires a termination policy, assuming:

1. relevant solver features for predicting progress are known
2. training data available
3. new instance is similar in relevant aspects to training
4. relevant instance aspects are known
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Requires a termination policy, assuming:

1. relevant solver features for predicting progress are known
2. training data available
3. new instance is similar in relevant aspects to training
4. relevant instance aspects are known

Impossible to design optimally:

f = 5
d = 1

f = 4
d = 2

Must know the user’s trade-off!
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source #4 of 5: user’s true objective/utility function

best-first search according to utility:

U(n) = max
s under n

(−wf · f(s)− wt · t(s))
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source #4 of 5: user’s true objective/utility function

best-first search according to utility:

U(n) = max
s under n

(−wf · f(s)− wt · t(s))

convert d̂(n) to t(n)

approximate s under n by cheapest and nearest

■ need dcheapest , dnearest , hcheapest , hnearest
■ source #5 of 5: cost-to-go to nearest, hnearest
■ seems straightforward in many domains
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Different from anytime algorithms

■ no need for termination policy (training data, precomputation)
■ can spend all effort pursuing one solution
■ no fixed trade-off

time

cost

anytime solutions

utility

Bugsy
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Different from anytime algorithms

■ no need for termination policy (training data, precomputation)
■ can spend all effort pursuing one solution
■ no fixed trade-off

time

cost

anytime solutions

utility Bugsy
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grid pathfinding
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time only
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cost only

B — BUGSY
R — ARA* with termination policy learned off-line
A* — A*
S — Speedy
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search strategy

open list

search algorithm

domain

expand

g, h values

children,



Rational Search

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

■ Rational Search

■ Search

■ Summary

Wheeler Ruml (UNH) Search Algorithms as Agents – 37 / 40

model of space

meta-reasoner

open list

search algorithm

domain

expand

g, h values

children,
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Traditional:

1. initial state
2. goal predicate
3. expand — yields g(n)
4. h(n)
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Traditional:

1. initial state
2. goal predicate
3. expand — yields g(n)
4. h(n)

Possible:

5. d(n): distance-to-go
6. f̂(n): expected cost, inadmissible h (expansion experience)
7. ∆e: expansion delay, time to goal (expansion experience)
8. U(f, t): user’s utility function, true objective
9. hnearest(n): cost-to-go to nearest
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■ search algorithms as agents

◆ expansion as sensor reading instead of proof step!
◆ connections:

■ reinforcement learning
■ metareasoning
■ decision-making

■ more information sources
what else can we exploit? and how?

■ more problem settings

◆ greedy search: Speedy
◆ bounded-suboptimal search: EES
◆ contract search: DAS
◆ utility-based search: BUGSY
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tell your students to apply to grad school in CS at UNH!

■ friendly faculty
■ funding
■ individual attention
■ beautiful campus
■ low cost of living
■ easy access to Boston,

White Mountains
■ strong in AI, infoviz,

networking,
bioinformatics
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