Search Algorithms as Agents — or — There's More to Life Than h(n)

Wheeler Ruml

and the UNH AI Group, esp. Jordan Thayer

(thanks to the NSF RI and DARPA CSSG programs for support)

The AI Vision

Search Algorithms as Agents

- The Al Vision
- Alg as Agent
- What is Search?
- $\blacksquare \mathsf{Related} \ \mathsf{Work}$
- Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

acting under uncertainty to maximize utility

- The Al Vision
- Alg as Agent
- What is Search?
- $\blacksquare \mathsf{Related} \ \mathsf{Work}$
- Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

acting under uncertainty to maximize utility = all of Al

■ The AI Vision

■ Alg as Agent

What is Search?

Related Work

Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

acting under uncertainty to maximize utility = all of Al

possible sources of information, 'sensors' how to exploit information, 'aggregation', 'filtering'

Heuristic	Search
-----------	--------

The AI VisionAlg as Agent

■ What is Search?

Related Work

Problem Settings

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Rational search:

- Othar Hansson
- Andy Mayer

Metareasoning, 'bounded optimality':

- Eric Wefald
- Shlomo Zilberstein
- Eric Horvitz
- Stuart Russell

Anytime search:

- Tom Dean
- Mark Boddy

Heuristic Search	optimal:	minimize solution cost
The Al Vision	-	must expand all with $f(n) < f^*(opt)$
■ Alg as Agent		$\frac{1}{j} = \frac{1}{j} = \frac{1}$
■ What is Search?		
Related Work		
Problem Settings		
Greedy Search		
Bounded Search		
Contract Search		
Utility Functions		
Conclusion		

Heuristic Search The Al Vision Alg as Agent What is Search?	optimal: mi
Related WorkProblem Settings	greedy: min
Greedy Search Bounded Search Contract Search	bounded sub bound (f
Utility Functions Conclusion	bounded cos
	contract: m
	utility function

imal: minimize solution cost must expand all with $f(n) < f^*(opt)$

greedy: minimize solving time

ounded suboptimal: minimize time subject to relative cost bound (factor of optimal)

Greedy Search

- Direct Approach
- Distance-to-Go
- Speedy Results

Bounded Search

Contract Search

Utility Functions

Conclusion

Greedy Search

Heuristic Search

Greedy Search

Direct Approach

Distance-to-Go

■ Speedy Results

Bounded Search

Contract Search

Utility Functions

Conclusion

how to minimize solving time?

Heuristic Search

Greedy Search

Direct Approach

Distance-to-Go

■ Speedy Results

Bounded Search

Contract Search

Utility Functions

Conclusion

how to minimize solving time? how to minimize number of expansions?

Heuristic Search

Greedy Search

Direct Approach
 Distance-to-Go

Distance-to-Go

Speedy Results

Bounded Search

Contract Search

Utility Functions

Conclusion

how to minimize solving time? how to minimize number of expansions? take the shortest path to a goal

incuristic Scareir	Н	euristic	Search
--------------------	---	----------	--------

Greedy Search

Direct Approach

■ Distance-to-Go

Speedy Results

Bounded Search

Contract Search

Utility Functions

Conclusion

how to minimize solving time? how to minimize number of expansions? take the shortest path to a goal for domains with costs, this is not h(n)

Heuristic Search
Greedy Search
Direct Approach
Distance-to-Go
Speedy Results
Bounded Search
Contract Search
Utility Functions

Conclusion

how to minimize solving time? how to minimize number of expansions? take the shortest path to a goal for domains with costs, this is not h(n)

source #1 of 5: distance-to-go

Distance-to-Go Estimates

Greedy Search

- Direct Approach
- Distance-to-Go
- Speedy Results

Bounded Search

Contract Search

Utility Functions

Conclusion

Ļ

Distance-to-Go Estimates

Conclusion

$$d^*_{cheapest}(n) = 3$$
$$d^*_{nearest}(n) = 2$$

 $d_{nearest}$ is potentially independent of h, can becomputed as h with unit costs

 $d_{cheapest}$ often computable alongside h

d can be inadmissible

Distance-to-Go Estimates

$$d^*_{cheapest}(n) = 3$$
$$d^*_{nearest}(n) = 2$$

```
d_{nearest} is potentially independent of h, can becomputed as h with unit costs
```

 $d_{cheapest}$ often computable alongside h

```
d can be inadmissible
```

Speedy Search: best-first search on d(n) (Thayer et al, SoCS-09)

Speedy Results

Speedy Results

Greedy Search

Bounded Search

■ Direct Approach

 $\blacksquare A_{\epsilon}^*$

 $\blacksquare \mathsf{A}_{\epsilon}^* \text{ 's Flaw}$

Estimated Cost

■ Learning Cost

- EES
- EES Order
- EES Results

■ The Story So Far

Contract Search

Utility Functions

Conclusion

Bounded-Suboptimal Search

Heuristic Search	m
Greedy Search	op
Bounded Search	
Direct Approach	
$\blacksquare A^*_{\epsilon}$	
■ A [*] _ϵ 's Flaw	
Estimated Cost	
Learning Cost	
■ EES	
■ EES Order	
■ EES Results	
■ The Story So Far	
Contract Search	
Utility Functions	
Conclusion	

minimize solving time subject to relative cost bound (factor of optimal)

Heuristic Search
Greedy Search
Bounded Search
Direct Approach
$\blacksquare A_{\epsilon}^*$
$\blacksquare A_{\epsilon}^{*}$'s Flaw
Estimated Cost
Learning Cost
EES
■ EES Order
■ EES Results
■ The Story So Far
Contract Search

Utility Functions

Conclusion

minimize solving time subject to relative cost bound (factor of optimal) weighted A* $(f'(n) = g(n) + w \cdot h(n))$ is simple but ad hoc

Heuristic Search	
Greedy Search	
Bounded Search	
Direct Approach	
$\blacksquare A_{\epsilon}^*$	
$\blacksquare A_{\epsilon}^{*}$'s Flaw	
Estimated Cost	
Learning Cost	
EES	
■ EES Order	

- EES Results
- The Story So Far

Contract Search

Utility Functions

Conclusion

minimize solving time subject to relative cost bound (factor of optimal) weighted A* ($f'(n) = g(n) + w \cdot h(n)$) is simple but ad hoc

expand the node closest to a solution within the bound

Heuristic Search
Greedy Search
Bounded Search
Direct Approach
$\blacksquare A_{\epsilon}^*$
$\blacksquare A_{\epsilon}^{*}$'s Flaw
Estimated Cost
■ Learning Cost
■ EES
■ EES Order
■ FES Results

■ The Story So Far

Contract Search

Utility Functions

Conclusion

minimize solving time subject to relative cost bound (factor of optimal) weighted A* $(f'(n) = g(n) + w \cdot h(n))$ is simple but ad hoc

expand the node closest to a solution within the bound known to not work!

A_{ϵ}^{*} (Pearl and Kim, IEEE PAMI 1982)

Heuristic Search
Greedy Search
Bounded Search
Direct Approach
$\Box A_{\epsilon}^{*}$
$\blacksquare A_{\epsilon}^*$'s Flaw
Estimated Cost
Learning Cost
■ EES
■ EES Order
■ EES Results
■ The Story So Far
Contract Search
Utility Functions
Conclusion

intuition: of all solutions within the bound, the nearest should be the fastest to find

A_{ϵ}^{*} (Pearl and Kim, IEEE PAMI 1982)

intuition: of all solutions within the bound, the nearest should be the fastest to find

f(n) = g(n) + h(n) $best_f$: open node with minimum f

```
two lists:

open: as usual, sorted on f(n)

focal: subset of open with f(n) \le w \cdot f(best_f), sorted on d(n)
```

 A_{ϵ}^* : best-first search using *focal*

A_{ϵ}^{*} (Pearl and Kim, IEEE PAMI 1982)

intuition: of all solutions within the bound, the nearest should be the fastest to find

f(n) = g(n) + h(n) $best_f$: open node with minimum f

```
two lists:

open: as usual, sorted on f(n)

focal: subset of open with f(n) \le w \cdot f(best_f), sorted on d(n)
```

 A_{ϵ}^* : best-first search using *focal*

Why doesn't it work?

\mathbf{A}_{ϵ}^* 's Flaw (Thayer et al, SoCS-09)

\mathbf{A}_{ϵ}^* 's Flaw (Thayer et al, SoCS-09)

A_{ϵ}^* 's Flaw (Thayer et al, SoCS-09)

Estimated Cost

Heuristic Search
Greedy Search
Bounded Search
■ Direct Approach
$\blacksquare A_{\epsilon}^*$
$\blacksquare A_{\epsilon}^*$'s Flaw
Estimated Cost
■ Learning Cost
■ EES
EES Order
■ EES Results
■ The Story So Far
Contract Search
Utility Functions
Conclusion

intuition: pursuing the shortest solution within the bound should be fast

intuition': an unbiased estimates of cost won't always rise

Estimated Cost

Heuristic Search	ir
Greedy Search	
Bounded Search	in
Direct Approach	
$\blacksquare A_{\epsilon}^*$	
$\blacksquare A_{\epsilon}^*$'s Flaw	
Estimated Cost	
Learning Cost	SC
EES	
EES Order	
EES Results	
■ The Story So Far	
Contract Search	
Utility Functions	
Conclusion	

ntuition: pursuing the shortest solution within the bound should be fast

intuition': an unbiased estimates of cost won't always rise

```
source #2 of 5: unbiased cost estimates \widehat{f}(n)
```


■ The Story So Far

Contract Search

Utility Functions

Conclusion

Every expansion gives evidence for heuristic's error!

 $f^*(p) = f^*(bc)$ $h^*(p) = h^*(bc) + c(p, bc)$ $\epsilon_h = (h(bc) + c(p, bc)) - h(p)$

Contract Search

Utility Functions

Conclusion

Every expansion gives evidence for heuristic's error!

$$f^*(p) = f^*(bc)$$

$$h^*(p) = h^*(bc) + c(p, bc)$$

$$\epsilon_h = (h(bc) + c(p, bc)) - h(p)$$

$$\widehat{h}(n) = h(n) + \overline{\epsilon_h} \cdot d(n)$$

Every expansion gives evidence for heuristic's error!

 $f^*(p) = f^*(bc)$ $h^*(p) = h^*(bc) + c(p, bc)$ $\epsilon_h = (h(bc) + c(p, bc)) - h(p)$

$$\widehat{h}(n) = h(n) + \overline{\epsilon_h} \cdot d(n)$$

can do this for d(n) too...

$$\widehat{h}(n) = h(n) + \overline{\epsilon_h} \cdot \widehat{d}(n)$$

see Thayer et al (ICAPS-11) for details
Heuristic Search	
Greedy Search	
Bounded Search	
■ Direct Approach	
$\blacksquare A_{\epsilon}^*$	
$\blacksquare A_{\epsilon}^{*}$'s Flaw	
■ Estimated Cost	
■ Learning Cost	
EES	
■ EES Order	
■ EES Results	
■ The Story So Far	
Contract Search	
Utility Functions	
Conclusion	

 $best_f$: open node with minimum f $best_{\widehat{f}}$: open node with minimum \widehat{f}

Heuristic Search	best
Greedy Search	best
Bounded Search	
Direct Approach	
 A[*]_e A[*]_e 's Flaw ■ Estimated Cost 	thre
■ Learning Cost	0
EES	fc
■ EES Order	
EES Results	CI
The Story So Far	
Contract Search	
Utility Functions	

Conclusion

H

G B

 t_f : open node with minimum f $t_{\,\widehat{f}}$: open node with minimum \widehat{f}

e lists (!): pen: as usual, but sorted on $\widehat{f(n)}$ ocal: subset of open with $\widehat{f}(n) \leq w \cdot \widehat{f}(best_{\widehat{f}})$, sorted on $\widehat{d}(n)$ *leanup*: same as *open*, but sorted on f(n)

Heuristic Search	$best_f$: op
Greedy Search	$best_{\widehat{f}}$: op
Bounded Search Direct Approach A_{ϵ}^{*} A_{ϵ}^{*} 's Flaw Estimated Cost Learning Cost EES	three lists open: a focal: s
 EES Order EES Results 	cleanup
 The Story So Far Contract Search Utility Functions Conclusion 	$best_{\widehat{d}}$: firs

```
en node with minimum f
en node with minimum \widehat{f}
```

s (!): as usual, but sorted on $\widehat{f}(n)$ subset of open with $\widehat{f}(n) \leq w \cdot \widehat{f}(best_{\widehat{f}})$, sorted on $\widehat{d}(n)$ p: same as *open*, but sorted on f(n)

st node on *focal*

Heuristic Search	$best_f$: ope
Greedy Search	$best_{\widehat{f}}$: ope
Bounded Search	J
Direct Approach	
 A[*]_e A[*]_e's Flaw Estimated Cost 	three lists
Learning Cost	
EES	<i>tocal</i> : s
EES Order	alaamuu
EES Results	cieanup
The Story So Far	
Contract Search	
Utility Functions	heat of fire
Conclusion	$\frac{\partial est}{d}$. Ins

```
best_f: open node with minimum f best_{\widehat{f}}: open node with minimum \widehat{f}
```

ree lists (!): *open*: as usual, but sorted on $\widehat{f}(n)$ *focal*: subset of open with $\widehat{f}(n) \leq w \cdot \widehat{f}(best_{\widehat{f}})$, sorted on $\widehat{d}(n)$ *cleanup*: same as *open*, but sorted on f(n)

```
{}^{st}_{\widehat{d}}: first node on focal estimated w-admissible node with minimum \widehat{d}
```

EES Expansion Order

Heuristic Search	b
Greedy Search	b
Bounded Search	1
Direct Approach	0
$\blacksquare A_{\epsilon}^*$	
• A_{ϵ} 's Flaw • Estimated Cost	n
■ Learning Cost	
EES	1
EES Order	2
■ EES Results	-
■ The Story So Far	3
Contract Search	
Utility Functions	:.
Conclusion	
	1

```
pest_f: open node with minimum f
post_{\widehat{f}}: open node with minimum \widehat{f}
```

 $pest_{\widehat{d}}$: estimated w-admissible node with minimum \widehat{d}

node to expand next:

- pursue the shortest solution within the bound
- pursue the estimated cheapest solution
- raise the lower bound on optimal cost 3.

n other words:

- if $\widehat{f}(best_{\widehat{d}}) \leq w \cdot f(best_f)$ then $best_{\widehat{d}}$
- else if $\widehat{f}(best_{\widehat{f}}) \leq w \cdot f(best_f)$ then $best_{\widehat{f}}$ 2.
- 3. else best_f

find a solution provably within the bound as quickly as possible

EES Results

Wheeler Ruml (UNH)

Search Algorithms as Agents – 20 / 40

EES Results

Wheeler Ruml (UNH)

Search Algorithms as Agents – 21 / 40

EES Results

Wheeler Ruml (UNH)

Search Algorithms as Agents – 22 / 40

The Story So Far

- Heuristic Search
- Greedy Search
- Bounded Search
- Direct Approach
- $\blacksquare A_{\epsilon}^*$
- $\blacksquare A_{\epsilon}^*$'s Flaw
- Estimated Cost
- Learning Cost
- EES
- EES Order
- EES Results
- The Story So Far
- Contract Search
- Utility Functions
- Conclusion

- search algorithms as agents
- more information sources
 - 1. d(n): distance-to-go
 - 2. $\widehat{f}(n)$: expected cost (expansion experience)
- more problem settings
 - greedy search: Speedy
 - bounded-suboptimal search: EES

Heuristic Search

Greedy Search

Bounded Search

Contract Search

■ Direct Approach

Vacillation

DAS

■ DAS Results

Utility Functions

Conclusion

Contract Search

Heuristic Search	
Greedy Search	
Bounded Search	
Contract Search	
Direct Approach	
Vacillation	
■ DAS	
■ DAS Results	
Utility Functions	
Conclusion	

minimize cost subject to absolute time bound

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Direct Approach

Vacillation

DAS

DAS Results

Utility Functions

Conclusion

minimize cost subject to absolute time bound anytime algorithms: series of solutions, eg, unknown deadline

Heuristic Search	Heuristic	Search
------------------	-----------	--------

Greedy Search

Bounded Search

Contract Search

Direct Approach

Vacillation

DAS

DAS Results

Utility Functions

Conclusion

minimize cost subject to absolute time bound anytime algorithms: series of solutions, eg, unknown deadline

while time remains expand node with best reachable solution

A Direct Approach

Heuristic Search	mınımıze
Greedy Search	anytime
Bounded Search	
Contract Search	
Direct Approach	while tim
Vacillation	
■ DAS	expan
■ DAS Results	
Utility Functions	hast, ou
Conclusion	Dest. ex
	reachable

e cost subject to absolute time bound algorithms: series of solutions, eg, unknown deadline

ne remains d node with best reachable solution

pected cost e: expected search time to goal

Vacillation

Heuristic	Search

Greedy Search

Bounded Search

Contract Search

■ Direct Approach

Vacillation

DAS

■ DAS Results

Utility Functions

Conclusion

how long to reach goal $\widehat{d}(n)$ steps away?

Vacillation

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Direct Approach

Vacillation

DAS

DAS Results

Utility Functions

Conclusion

how long to reach goal $\widehat{d}(n)$ steps away?

how long to go one step toward a goal?

estimate $\overline{\Delta e}$, time between a node's generation and expansion

Vacillation

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Direct Approach

Vacillation

DAS

DAS Results

Utility Functions

Conclusion

how long to reach goal $\widehat{d}(n)$ steps away?

how long to go one step toward a goal? estimate $\overline{\Delta e}$, time between a node's generation and expansion just record current time in node when generating

source #3 of 5: search vacillation

 $d_{max} = \text{time remaining} / \overline{\Delta e}$

Heuristic Search	1 w
Greedy Search	
Boundad Saarah	Ζ.
	3.
Contract Search	Л
Direct Approach	4.
Vacillation	5.
DAS	0.
DAS Results	6.
Jtility Functions	7.
Conclusion	8.
	9.

1. while time remains and *open* is not empty 2. $d_{max} \leftarrow \text{estimate bound}$ 3. $s \leftarrow \text{pop } best_f \text{ from } open$ 4. if s is a goal 5. save if best so far 6. else if $\hat{d}(s) < d_{max}$ 7. expand s8. else 9. add s to pruned 10. if open is empty, recover using pruned

DAS Results

Wheeler Ruml (UNH)

Search Algorithms as Agents – 28 / 40

DAS Results

Wheeler Ruml (UNH)

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

■ Utility Fns

■ Anytime Algs

BUGSY

Properties

■ BUGSY Results

Conclusion

Search with a Utility Function

Heuristic	Search
-----------	--------

Greedy Search

Bounded Search

Contract Search

Utility Functions

Utility Fns

■ Anytime Algs

- BUGSY
- Properties

BUGSY Results

Conclusion

balance time and cost according to user's utility function Example: linear utility function for solution of cost f produced after time t:

$$U(f,t) = -w_f \cdot f - w_t \cdot t$$

Heuristic	Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

Utility Fns

■ Anytime Algs

BUGSY

Properties

BUGSY Results

Conclusion

balance time and cost according to user's utility function Example: linear utility function for solution of cost f produced after time t: $U(f,t) = -w_f \cdot f - w_t \cdot t$

Example: minimize goal achievement time if cost = plan makespan,

U(f,t) = -f - t

Wheeler Ruml (UNH)

Search Algorithms as Agents – 31 / 40

Heuristic Search	
Greedy Search	
Bounded Search	
Contract Search	
Utility Functions	
Utility Fns	
Anytime Algs	
BUGSY	
Properties	
BUGSY Results	
Conclusion	

balance time and cost according to user's utility function Example: linear utility function for solution of cost f produced after time t: $U(f,t) = -w_f \cdot f - w_t \cdot t$

Example: minimize goal achievement time if cost = plan makespan,

$$U(f,t) = -f - t$$

anytime algorithms?

Wheeler Ruml (UNH)

ricariotic ocaron

- Greedy Search
- Bounded Search
- Contract Search
- Utility Functions
- Utility Fns
- Anytime Algs
- BUGSY
- Properties
- BUGSY Results
- Conclusion

Requires a termination policy, assuming:

- 1. relevant solver features for predicting progress are known
- 2. training data available
- 3. new instance is similar in relevant aspects to training
- 4. relevant instance aspects are known

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

■ Utility Fns

Anytime Algs

BUGSY

Properties

BUGSY Results

Conclusion

Requires a termination policy, assuming:

- 1. relevant solver features for predicting progress are known
- 2. training data available
- 3. new instance is similar in relevant aspects to training
- 4. relevant instance aspects are known

Impossible to design optimally:

Must know the user's trade-off!

Wheeler Ruml (UNH)

Best-first Utility-guided Search, Yes! (BUGSY, IJCAI-07)

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

■ Utility Fns

■ Anytime Algs

BUGSY

Properties

BUGSY Results

Conclusion

source #4 of 5: user's true objective/utility function

best-first search according to utility:

$$U(n) = \max_{s \text{ under } n} \left(-w_f \cdot f(s) - w_t \cdot t(s) \right)$$

Best-first Utility-guided Search, Yes! (BUGSY, IJCAI-07)

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

■ Utility Fns

■ Anytime Algs

BUGSY

Properties

BUGSY Results

Conclusion

source #4 of 5: user's true objective/utility function

best-first search according to utility:

$$U(n) = \max_{s \text{ under } n} \left(-w_f \cdot f(s) - w_t \cdot t(s) \right)$$

convert $\widehat{d}(n)$ to t(n)

approximate \boldsymbol{s} under \boldsymbol{n} by cheapest and nearest

 \blacksquare need $d_{cheapest}$, $d_{nearest}$, $h_{cheapest}$, $h_{nearest}$

- source #5 of 5: cost-to-go to nearest, $h_{nearest}$
- seems straightforward in many domains

Properties

Heuristic Search Greedy Search **Bounded Search** Contract Search **Utility Functions** ■ Utility Fns Anytime Algs BUGSY Properties BUGSY Results Conclusion

Different from anytime algorithms

- no need for termination policy (training data, precomputation) can spend all effort pursuing one solution
- no fixed trade-off

Properties

Different from anytime algorithms

- no need for termination policy (training data, precomputation) can spend all effort pursuing one solution
- no fixed trade-off

BUGSY Results

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Rational Search

- Search
- Summary

Conclusion

Rational Search

Search Algorithms as Agents – 37 / 40

Rational Search

Wheeler Ruml (UNH)

The Search Problem

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Rational Search

Search

■ Summary

Traditional:

- 1. initial state
- 2. goal predicate
- 3. expand yields g(n)
- 4. h(n)

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Rational Search

Search

Summary

Traditional:

- 1. initial state
- 2. goal predicate

3. expand — yields
$$g(n)$$

4. h(n)

Possible:

- 5. d(n): distance-to-go
- 6. $\widehat{f}(n)$: expected cost, inadmissible h (expansion experience)
- 7. $\overline{\Delta e}$: expansion delay, time to goal (expansion experience)
- 8. U(f,t): user's utility function, true objective
- 9. $h_{nearest}(n)$: cost-to-go to nearest
Summary

- Heuristic Search
- Greedy Search
- Bounded Search
- Contract Search
- Utility Functions
- Conclusion
- Rational Search
- Search
- Summary

- search algorithms as agents
 - expansion as sensor reading instead of proof step!
 - connections:
 - reinforcement learning
 - metareasoning
 - decision-making
- more information sources what else can we exploit? and how?
- more problem settings
 - greedy search: Speedy
 - bounded-suboptimal search: EES
 - contract search: DAS
 - utility-based search: BUGSY

Heuristic Search

Greedy Search

Bounded Search

Contract Search

Utility Functions

Conclusion

Rational Search

Search

Summary

tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- Iow cost of living
- easy access to Boston,
 White Mountains
- strong in AI, infoviz, networking, bioinformatics