
Safe Temporal Planning for Urban Driving

Bence Cserna and William J. Doyle and Tianyi Gu and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

bence, doyle, gu, ruml at cs.unh.edu

Abstract
A self-driving car must always have a plan for safely coming
to a halt. Often, finding these safe plans is treated as an after-
thought. In this paper, we demonstrate that techniques explic-
itly designed for safety can yield higher quality plans and
lower latency than conventional planners in an urban driv-
ing setting. We adopt ideas from a previously-proposed safe
online real-time heuristic search method to the spatiotempo-
ral state lattices used when planning for autonomous driv-
ing. We experimentally compare our proof-of-concept imple-
mentation to conventional methods and find significantly im-
proved performance while still maintaining passenger com-
fort and safety.

Introduction
A central goal of artificial intelligence is the construction
of autonomous systems. It is becoming more common that
these systems interact closely with humans. Perhaps the
most intimate way that humans can interact with an au-
tonomous system is to climb inside it and put their lives in
the hands of its control system. Interestingly, it is exactly
such systems, in the form of self-driving automotive mo-
bility systems, that are predicted to become widespread in
the coming decades. It is crucial that the AI systems that de-
cide on the actions of autonomous vehicles be designed with
safety as a fundamental aspect.

Self-driving vehicle technology has many potential ben-
efits for individuals, such as reduced collisions, improved
mobility, and reclaiming time spent driving. They also have
the potential for broad benefits to society and the environ-
ment, such as reduced car ownership, space devoted to park-
ing, and the number of vehicles required. However, there are
still significant problems to be surmounted to achieve this vi-
sion. For example, in addition to avoiding actual collisions,
for this technology to be successfully adopted, individuals
need to feel subjectively safe and comfortable while using
an autonomous vehicle. In this paper, we address the prob-
lem of planning trajectories for autonomous vehicles, taking
into account both objective safety, given the predicted tra-
jectories of nearby vehicles and pedestrians, and subjective
passenger comfort.
Background
Trajectory planning for urban driving has proven to be a
complex problem because of the inherently dynamic envi-
ronment. A typical driver can encounter hundreds of other

vehicles and many more pedestrians. Not only does the plan-
ner need to consider the spatial location of each part of this
environment but their temporal evolution needs to be built
into the planning techniques that are employed. These two
aspects need to be intelligently combined to produce high
quality and computationally feasible algorithms to address
the urban driving problem.

Hierarchical methods are state-of-the-art for addressing
the difficulty of autonomous urban driving (Paden et al.,
2016). At the highest level, a vehicle must be able to select
a route from a road network based upon its current position
in that network and the desired destination of the passenger.
This network can be represented as a graph with millions of
weighted edges. Traditional offline algorithms such as A*
are computationally infeasible, as planners are expected to
run at a rate of ten times per second. Once a route has been
identified, the vehicle must select a sequence of behaviors
to use along that route. These behaviors correspond to situa-
tions such as ‘highway cruising’ or ‘stopping at a stop sign’
and identify the pertinent rules of the road with respect to
other aspects of the environment, such as pedestrians and
other drivers. Next, a motion planning algorithm will decide
the vehicle trajectory used to achieve the next behavior. This
motion plan then becomes a reference trajectory for a low-
level controller to achieve using throttle and steering inputs
while correcting for errors and inaccuracies from the vehicle
model. These four components of route planning, behavior
selection, motion planning, and control comprise the hierar-
chical approach to autonomous driving.

Our work addresses urban driving at the level of motion
planning: we want to send trajectories to the vehicle con-
troller such that the motions are comfortable for passengers
while simultaneously ensuring that they are safe. We define
a safe trajectory as one that reaches a safe state. In urban
driving, a safe state is one in which the vehicle is stopped
(Shalev-Shwartz, Shammah, and Shashua, 2017).1 We as-
sume that the vehicle replans frequently, thus only the first
part of a safe trajectory will be executed in most cases before
a new trajectory is computed to replace the current plan.

The planner also needs to take into account the comfort of

1For highway driving, a safe state might be one where the car
is pulled over at the side of the road. We do not address this in this
paper.



its passengers. Specific ranges of acceleration, when applied
to the autonomous vehicle, create an uncomfortable riding
experience. Allowing a high amount of acceleration to be
chosen by the planner and executed on the vehicle leads to
passenger discomfort due to the physical stress the human
body undergoes when the vehicle quickly accelerates.

McNaughton et al. (2011) devise acceleration profiles for
a spatiotemporal lattice. These profiles can be used to con-
struct a constraint on the planner to maintain the acceleration
of the autonomous vehicle within comfortable ranges. Our
work addresses these two crucial aspects of the urban driv-
ing problem. We construct a planner that can remain safe
while limiting the control of the vehicle for the passengers
to be comfortable.

In this paper, we study a general online method for guar-
anteeing that the planner will find a series of safe actions for
the agent to execute. We dynamically allow the agent to plan
for its current goals and devise a way to balance the safety
of the trajectories the agent is executing while being as close
to the edge of non-safe action execution as possible. We de-
fine a general problem setting for the use of this technique
and study the use of it in the domain of simple urban driv-
ing. We empirically test this method on a simulated vehicle
with inertia and find that the new techniques dramatically
outperform the conventional ones.

Previous Work
A state lattice (Pivtoraiko, Knepper, and Kelly, 2009) is a
discretization of a continuous state space. A Spatiotemporal
state lattice (Ziegler and Stiller, 2009) is the result of com-
bining a traditional state lattice with time and velocity di-
mensions. The urban driving domain requires the planner to
be able to consider both time and space while planning. The
state lattice gives us a method for searching through a static
environment; however, adding in time and velocity to the
state space lattice can lead to an exponential blowup of the
size of the search space. Even assuming a modest number
of possible accelerations applied to a vehicle, the state space
can contain nearly 12 million trajectory edges that would
need to be evaluated during each planning iteration (Piv-
toraiko, Knepper, and Kelly, 2009). On the other hand, it is
a difficult task to compose search heuristics for the complex
cost function of urban driving. For example, McNaughton
et al. (2011) applied exhaustive search on a spatiotemporal
state lattice.

CL-RRT (Kuwata et al., 2009) is a real-time motion plan-
ning algorithm that can guarantee safety. To deal with dy-
namic obstacles, in each planning iteration, the algorithm
cleans the motion tree by removing the invalid tree nodes
and saving unconnected subtrees into a stand-by forest. A
random state is sampled by biasing the nearest tree in the
forest or the goal. If the new sampled state is in one of the
subtrees, then it will try to connect the nearest state on the
current motion tree to the sampled state by solving a bound-
ary value problem. Otherwise, it will perform the conven-
tional RRT extend routine. They guarantee safety by ensur-
ing that the vehicle is stopped and safe at the end of the
trajectory. We will refer to these approaches as plan-to-stop.
However, the random feasible solution that is constructed by

Algorithm 1: SafeTLP
Input: sroot

1 perform BEST-FIRST SEARCH on lattice to find a
potentially unsafe trajectory T from sroot to a partial
goal

2 scurrent ← T.last
3 while scurrent exists do
4 perform BEST-FIRST SEARCH on dsafe

from the node scurrent to sgoal
5 if sgoal is found then
6 cache the safe partial path from scurrent to sgoal
7 return 〈sroot . . . scurrent〉〈scurrent . . . sgoal〉
8 else
9 scurrent ← scurrent .predecessor in P

10 BEST-FIRST SEARCH to find a safe trajectory T from
sroot to sgoal

11 return T

the RRT could be a highly sub-optimal plan (Karaman and
Frazzoli, 2011).

SafeRTS (Cserna et al., 2017) is a real-time search algo-
rithm that can guarantee safety. It explicitly tries to prove
nodes are safe and finds a plan to a safe node. SafeRTS
searches for a partial real-time plan that has a frontier node
with the most promising f value and guarantees that plan
could be lead to a safe node in the lattice. The authors intro-
duce a safety heuristic, dsafe(n), that estimates the distance
through the state space from a given node n forward to the
nearest safe state. As an online search algorithm, SafeRTS
distributes the expansion allowance between exploring the
best f state and attempting to prove its safety. The safety
proof performs a best-first search on dsafe .

Safe Temporal Lattice Planning
We now turn to applying Cserna et al. (2017)’s notion of safe
planning to spatiotemporal state lattice planning. The plan-
ner’s goal state is a location a predefined distance along the
current route with a zero velocity. Our technique, Safe Tem-
poral Lattice Planning (SafeTLP), first performs a best-first-
search from the root state sroot until a partial goal state is
expanded (line 1 of Alg. 1). A partial goal state is a state that
matches the location of the goal state but may not have the
correct speed. The priority function of the best-first search
prioritizes states with lower distance-to-goal, earlier goal
achievement time, and higher speed.

This naı̈ve solution is inherently unsafe as it does not con-
sider upcoming obstacles and dead-ends states beyond the
explored spaces or partial goal. To ensure safety SafeTLP
proves that a prefix of the naı̈ve trajectory is safe by con-
structing a safe trajectory starting with this prefix. The al-
gorithm first attempts to prove that the last state of the tra-
jectory is safe (line 4). If the safety proof is not success-
ful, SafeTLP falls back to the preceding state on the trajec-
tory(line 9). The last few states in the naı̈ve trajectory may
be skipped if a maximum allowed deceleration would not
allow the agent to come to a full stop from these states.



Sroot
Partial Goals

Safe Goal

Fast State

Sroot SA SB

D

Partial Goals

Safe Goal

Fast Statea b c

Figure 1: SafeTLP search graph example.

As we attempt to prove safety, we store every node en-
countered in a special safety closed list. If reencountered
during a subsequent attempt, such nodes are not expanded
as we have already attempted to prove safety from them.

Similar to SafeRTS’s dsafe heuristic , SafeTLP prioritizes
states that are closer to the goal state. The safety proof ex-
pands the search tree under the state scurrent (Cserna et al.,
2017) with expansion ordered based on the distance to goal
and speed (the lower, the better). If the safety open list be-
comes empty, the proof is unsuccessful and scurrent is la-
beled as unsafe. Upon the expansion of the goal node, the
safety search terminates and returns the trajectory leading to
the goal from scurrent . scurrent is now proven safe and its
naı̈ve partial plan is augmented by the discovered safe tra-
jectory to the goal to form a complete safe plan from the
agent’s current state to a goal state (line 7).

We use Fig. 1 to demonstrate the behavior of SafeTLP.
SafeTLP first expands a search tree (blue on Fig. 1) from
sroot that optimizes for velocity until it reaches a state in
the partial goal set. In our example the sequence of a, b, and
c trajectory segments represents a trajectory that leads to a
partial goal state spartial goal . Then SafeTLP attempts to find
a safe trajectory to sgoal from each intermediate state identi-
fied by the 〈a, b, c〉 trajectory starting from the state closest
to the partial goal. First, it attempts to prove that spartial goal

is safe, then it falls back to Sb, Sa, and lastly to sroot . These
proofs are independent search trees marked with orange on
Fig. 1. The proof searches are optimized on dsafe . In our
example the safety proof from spartial goal and Sb fails and
only succeeds from Sa. SafeTLP constructs a safe trajectory
to sgoal by appending the prefix 〈a〉 trajectory that leads to
Sa with the trajectory segment sequence D.

Theorem 1 SafeTLP is guaranteed to find a safe plan if one
exists in the state space.

Proof: If all safety proofs initiated from the states on the
naı̈ve path (line 5 of Alg. 1) fail, SafeTLP will perform a
best-first search from the agent’s current state (line 10). Be-
cause best-first search does not prune states from the search
tree and the state space is finite, this search will eventually
find paths from sroot to every other reachable state. Best-
first search is exhaustive and complete in finite state spaces,
thus eventually it will identify a path to a safe state if one
exists. 2

ve
lo
ci
ty

distance

naive
SafeTLP
plan-to-stop

(a) (b)
Figure 2: (a): An cartoon sketch of algorithm behavior for
spatiotemporal planning. (b): Distance-velocity projection
of the plan-to-stop search tree. The horizontal axis repre-
sents space and the vertical axis velocity. Note that the tem-
poral aspect of the states is not captured by the projection.

Theorem 2 In the worst case, SafeTLP expands no more
than twice as many states as the naı̈ve plan-to-stop method
expands in the worst case.

Proof: Recall that, due to the safety closed list, any node
will be expanded at most once by a safety proof attempt. If
all the safety proofs fail, then SafeTLP will perform best-
first search initiated from the agent’s current state. This ex-
haustive search will expand every state at most once, as the
standard closed list of best-first search will prevent duplicate
expansions. Thus any state will be expanded at most twice
(once by a safety proof attempt and once by the exhaustive
search). The naı̈ve method expands each node at most once.
2

In motivating our approach, we present three different ap-
proaches in Figure 2a. The abstract diagram shows the dis-
tance towards the goal along the horizontal axis and the ve-
locity of the vehicle along the vertical axis. Ideally, we want
an algorithm which allows the vehicle to travel as fast as
possible towards the goal while guaranteeing that there is an
alternate course of actions to travel to a safe state in the case
of an emergency or unexpected situation.

The basic naı̈ve approach, shown in orange, performs a
best-first search towards the goal. By optimizing distance-
to-goal, this search tends to accelerate the vehicle until it
reaches the maximum velocity and then maintain that speed.
This technique is clearly not safe as it does not guarantee a
way for the vehicle to reach a safe state in case of an emer-
gency. However, it does fulfill the task of accelerating the
vehicle to a very high speed. On the other hand, the cur-
rent state-of-the-art is a more exhaustive approach, shown
in green and labeled plan-to-stop. This performs an exhaus-
tive breadth-first search expanding all the possible trajecto-
ries for the vehicle to undertake with the goal of completely
stopping the vehicle at the end as shown in Fig. 2b. This ap-
proach is able to find a safe way of reaching the goal at the
price of many node expansions and a slow velocity for the
vehicle. To be able to plan to slow down at the current plan-
ning horizon, it needs to plan to have a lower average veloc-
ity than the naı̈ve approach would find. In essence, we have
devised a hybrid approach that performs a best-first search
to find a trajectory leading to a very high speed, and then
performs a search on safety to find a series of safe actions
leading us towards the goal safely represented by the blue
line. In this fashion, we guarantee that even though we are



1 2 3 4

comfortable acceleration 0.8 1.0 1.2 1.5
comfortable deceleration 0.8 1.0 1.2 1.5

aggressive deceleration 1.6 1.8 2.0 2.2

Table 1: Acceleration limit sets (m/s2). Inferred from Pow-
ell and Palacı́n (2015), Martin and Litwhiler (2008), and
Hoberock (1977)

103

104

105

Ex
pa

nd
ed

 N
od

es

Plan to Stop SafeTPL

(a)

Plan to Stop SafeTPL

Pl
an

ni
ng

 T
im

e 
[s

]

0

1

2

3

4

5

(b)

Plan to Stop SafeTPL

3

4

5

6

7

8

Av
er

ag
e 

Ve
lo

ci
ty

 [m
/s

]

(c)
Figure 3: (a): Distribution of the number of expanded nodes
during search. (b):Planning time distribution. (c): Average
vehicle velocity distribution.

accelerating the vehicle very quickly towards the goal, there
will be a series of actions the vehicle can take to reach a safe
state in the event of an emergency or unexpected action. This
purpose-designed hybrid algorithm combines the low num-
ber of expansions of the best-first search’s high-velocity ac-
tions with the guarantee of safety of the exhaustive search.
Ultimately, this approach yields a high-quality solution that
is both fast and guaranteed to be safe.

Empirical Evaluation
We demonstrate planning in simplified spatiotemporal lat-
tice. The goal is 100 meters away from the start position of
the vehicle. The road is discretized by half meters, so 200
states in total on the distance dimension of the lattice. From
each state, the vehicle can apply three actions: accelerate,
maintain the velocity, and decelerate. The following studies
Powell and Palacı́n (2015), Martin and Litwhiler (2008), and
Hoberock (1977) show that 0.8 to 1.5 m/s2 are comfortable
acceleration values for urban driving, and people can toler-
ate up to 2.2 m/s2 without injury. Following this, we design
four sets of comfortable acceleration and deceleration pairs,
along with the aggressive deceleration that would be allowed
to apply in our approach. Table 1 shows the acceleration and
deceleration sets we used in our experiment. We fixed the
maximum velocity limit at 15 m/s. We vary the starting ve-
locity from 0 to 5 m/s with 0.2 increment.

Figure 3a shows the number of expanded node for the al-
gorithms to find a safe trajectory. As we can see, SafeTLP
expands many (about three magnitudes) fewer nodes than
plan-to-stop. This is because plan-to-stop performs an ex-
haustive search of the state space while SafeTLP explicitly
reasons about the optimal safe solution. Figure 3b shows the
planning time. As expected, SafeTLP consumes much less
time than plan-to-stop to find a safe plan. In a real appli-
cation setting, fast planning enables the planner to run in a
higher frequency, thereby enabling the vehicle to react to the

environment more quickly and thus be safer.
Figure 3c present violin plots showing the distribution

of the average velocity for each test instances. As we can
see, SafeTLP produces higher performance trajectories than
plan-to-stop.

Conclusion
We have introduced a new and more effective method for
safe action selection in spatiotemporal planning. Previous
methods are extremely conservative in how they guarantee
safety by expanding drastically more nodes than is required.
Our planner can quickly generate comfortable and safe plans
online. We demonstrate that planning time is drastically re-
duced while simultaneously being able to achieve a higher
average velocity for the vehicle. In combining techniques
from real-time heuristic search and spatiotemporal planning,
we introduced a method for selecting safe and fast plans
quickly. We hope this work encourages further development
in the applicability of safe real-time and online search.

References
Cserna, B.; Doyle, W.; Ramsdell, J.; and Ruml, W. 2017.

Avoiding dead ends in real-time heuristic search. In Pro-
ceedings of AAAI-18, 1306–1313.

Hoberock, L. L. 1977. A survey of longitudinal acceleration
comfort studies in ground transportation vehicles. J. Dyn.
Sys., Meas., and Control 99(2):76–84.

Karaman, S., and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. IJRR 30(7):846–894.

Kuwata, Y.; Teo, J.; Fiore, G.; Karaman, S.; Frazzoli, E.; and
How, J. P. 2009. Real-time motion planning with appli-
cations to autonomous urban driving. IEEE Transactions
on Control Systems Technology 17(5):1105–1118.

Martin, D., and Litwhiler, D. 2008. An investigation of
acceleration and jerk profiles of public transportation ve-
hicles. In ASEE, Conference Proceedings.

McNaughton, M.; Urmson, C.; Dolan, J. M.; and Lee, J.-
W. 2011. Motion planning for autonomous driving with
a conformal spatiotemporal lattice. In ICRA-2011, 4889–
4895.

Paden, B.; Čáp, M.; Yong, S. Z.; Yershov, D.; and Frazzoli,
E. 2016. A survey of motion planning and control tech-
niques for self-driving urban vehicles. IEEE Transactions
on Intelligent Vehicles 1(1):33–55.

Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. Journal of Field Robotics 26(3):308–333.

Powell, J., and Palacı́n, R. 2015. Passenger stability within
moving railway vehicles: limits on maximum longitudinal
acceleration. Urban Rail Transit 1(2):95–103.

Shalev-Shwartz, S.; Shammah, S.; and Shashua, A. 2017.
On a formal model of safe and scalable self-driving cars.
arXiv preprint arXiv:1708.06374.

Ziegler, J., and Stiller, C. 2009. Spatiotemporal state lat-
tices for fast trajectory planning in dynamic on-road driv-
ing scenarios. In IROS-2009, 1879–1884.


