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Introduction Anytime Weighted A*
Low

Anytime Planning for IPC 2008

IPC 2008 requirement: find best possible plan within 30 minutes.
This suggested an anytime approach:
@ Find a solution as quickly as possible
(any solution is better than none).
~ greedy best-first search
@ While there is still time, try to improve the solution.
~ weighted A* with decreasing weights

Interesting finding:

A series of independent runs of weighted A* seemed to perform
better than one continued search.
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Continued WA*

Basic algorithm:

@ Set weight and bound
bound = cost of best known solution, initially co

@ Update open list w. r. t. weight if necessary
© Conduct WA* search, using bound for pruning

@ Upon new best solution: report solution, goto 1.

Variants used in literature:
e Anytime A* (Zhou & Hansen 2001, 2004)
e ARA* (Likhachev et al. 2003)



Plan lengths found over time:
o GBFS + iterated WA*:
o GBFS + continued WA*:

Plan qualities (best length / current length):
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The Problem: Low-h Bias

greedy solution
optimal solution
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Introduction

Restarting

The Problem: Low-h Bias

h-values
less accurate the further from goal

less accurate on the left
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Restarting

The Problem: Low-h Bias

f'-values, w = 2
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Restarting

The Problem: Low-h Bias

f'-values, w = 2
x expanded states
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The Problem: Low-h Bias

f'-values, w = 2
x expanded states
(O states in open list
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The Problem: Low-h Bias

f'-values, w = 2
x expanded states
(O states in open list

must expand for optimal path
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The Problem: Low-h Bias

f'-values, w =2 .
must expand for optimal path

but many open states have lower f'-value
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The Problem: Low-h Bias

f'-values, w = 1.5 (reduced weight)

~> search less greedy
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The Problem: Low-h Bias

f'-values, w = 1.5 (reduced weight)

~> search less greedy
@
X

but effect still persists
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f'-values, w = 1.5 (reduced weight)
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f'-values, w = 1.5 (reduced weight)
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The Problem: Low-h Bias

f'-values, w = 1.5 (reduced weight)
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The Problem: Low-h Bias

f'-values, w = 1.5 (reduced weight)
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Anytime Weighted A™

Restarting Weighted A

The Problem: Low-h Bias

f'-values, w = 1.5 (reduced weight)
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The Problem: Low-h Bias

10 expanded states
29 generated states
between finding gl and expanding right of S
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Restarted Search

starting from scratch
w=15

Introduction
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Restarted Search

2 expanded state
5 generated states
before expanding right of S to find optimal path
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Introduction

Low h-
Restarting Weighted A*

Insight

Continued search may be biased due to early mistakes:
@ Greedy search: suboptimal area of search space
@ Open list: many open states around previous goal

@ Low h-value makes them look attractive
= Biased search explores suboptimal area in depth

Restarts overcome early mistakes of greedy search



Introduction Weighted A

Lo [ES
Restarting Weighted A*

Related Work

Restarts used with randomisation in CSPs:
@ Local search (Selman et al. 1992)
@ Systematic search (Gomes et al. 1998)

@ Purpose: undo bad random decisions (parameter choices)
~> escape barren areas of search space

We propose restarts for a deterministic, A*-type algorithm
@ Purpose: undo bad greedy decisions (low-h bias)

o "Counter-intuitive” to throw away effort in best-first search
with open list

@ But: choice of nodes in open list is biased
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Restarting Weighted A*(RWA*)

RWA*: forget open list between iterations:
@ Set weight and bound
@ Clear open list, (re-)start from initial state
© Conduct WA* search, using bound for pruning

@ Upon new best solution: report solution, goto 1.

Re-use previous search effort by
@ Not re-calculating h-values of states seen previously

@ Remembering best known paths to states

Extra cost: re-expansions. But expansions often cheap compared
to evaluations (planning: 20% vs. 80%)
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Experiments in Planning

Empirical Evaluation

@ Implemented in Fast Downward, using FF heuristic
@ Replaced greedy BFS with anytime algorithms:
o RWA*
Anytime A*
ARA*
Beam-stack search
Window A*
@ Planner-specific search enhancements used
(preferred operators, deferred evaluation)

@ All 1612 classical tasks, 31 domains of IPCs 1-5
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Experiments in Planning

Normalised Quality

WA*

RWA*
ARA*
Anytime A*
Beam
Window A*
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methods much better than

1000

others; RWA* best
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Planning (cont.)
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RWA* > other WA* methods in 40% of domains, rest on par
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Planning (cont.)

RWA*

Anytime A* WS  m—m
ARA* WS

Beam =

Window A*
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Experiments in Planning

Planning (cont.)

RWA*

Anytime A* WS  m—m
ARA* WS

Beam =

Window A*
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Without search enhancements, RWA* dominant by smaller margin
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Planning (cont.)

Restarts change beginning of plan rather than end (Gripper #20):

ARA*, Anytime A* RWA*
Plan length 165 163 161 165 165 125

Change index — 153 145 — 1563 1
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Experiments in Other Domains

Robotic Arm
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RWA* > other WA* methods.
Beam-stack search and Window A* very good here.



Experiments in Other Domains

Sliding-Tile Puzzle
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RWA™* ~ other weight-decreasing WA* methods.
Window A* very good here.
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A Controlled Experiment

Artificial search space
e Start state has approx. goal distance (agd)
@ Random edge costs ¢
@ agds of successors randomly differ from parent’s by up to ¢
@ States with agd 0 are goals

@ Heuristic underestimates agd by certain percentage or less,
where errors of parent and successors are correlated

Finding:
@ Restarts helpful if systematic heuristic bias present
(i.e., if successors have similar error as parent)
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A Controlled Experiment (cont.)

0.96 —r—rrrrr e

0.94

0.92

09 r

0.88 |

Normalised Quality

0.86

RWA*
ARAT / Anytime .A*

0.1 1 10

0.84 bl

Time (s)



Summary

Outline

Q Summary



Summary

Summary

RWA* dominates other methods in planning
@ In particular when search enhancements are used
@ Restarts useful if greedy search is highly suboptimal
@ E.g. if heuristics are systematically biased

On par in other domains

o RWA* always > other WA* methods
~> even if restarts do not help, they do not hurt

o RWA* always performs fairly well ~~ robust,
while beam-stack search, Window A* vary strongly

Undoing search effort can be worthwhile in anytime algorithms )




Summary

Thank you!

Questions?
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