The Joy of Forgetting: Faster Anytime Search via Restarting

Silvia Richter Griffith University & NICTA, Australia

Jordan T. Thayer & Wheeler Ruml

University of New Hampshire, US

ICAPS 2010

Outline

- Anytime Weighted A*
- Low *h*-Bias
- Restarting Weighted A*
- 2 Experiments in Planning
- 3 Experiments in Other Domains

4 Summary

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A^{*} Low *h*-Bias Restarting Weighted A^{*}

Outline

- Anytime Weighted A*
- Low *h*-Bias
- Restarting Weighted A*
- 2 Experiments in Planning
- 3 Experiments in Other Domains

4 Summary

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Anytime Planning for IPC 2008

IPC 2008 requirement: find best possible plan within 30 minutes. This suggested an anytime approach:

- Find a solution as quickly as possible (any solution is better than none).
 ~> greedy best-first search
- While there is still time, try to improve the solution.
 → weighted A* with decreasing weights

Interesting finding:

A series of independent runs of weighted A^* seemed to perform better than one continued search.

Continued WA *

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Basic algorithm:

- ② Update open list w.r.t. weight if necessary
- $\textcircled{O} Conduct WA^* search, using bound for pruning$
- Upon new best solution: report solution, goto 1.

Variants used in literature:

- Anytime A* (Zhou & Hansen 2001, 2004)
- ARA* (Likhachev et al. 2003)

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Example: Blocksworld Task 11-2

Plan lengths found over time:

- GBFS + iterated WA*: 72 50 46 36 34
- GBFS + continued WA*: 72 68 46 38 34

Plan qualities (best length / current length):

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

		S	
			g2
	g1		

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

h-values

less accurate the further from goal

less accurate on the left

		3.8	3.8	<u>3.8</u>	S	4.0	4.0
		3.4	3.4				3.0
	2.6	2.6	2.6	2.6	1.9	2.0	2.0
2.6	1.8	1.8	1.8	1.8	1.9	1.0	1.0
2.6	1.8	1.0	1.0	1.0	1.9	1.0	g2
	1.8	1.0	g1	1.0	1.9	1.0	1.0

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

f'-values, w=2

		10.6	9.	6	<u>8.6</u>	S	9.0	
		9.8	8	8				12.0
	9.2	8.2	8.	2	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.	6	7.6	7.8	7.0	8.0
10.2	8.6	7.0	7.	0	7.0	8.8	7.0	g2
	9.6	8.0	g	1	8.0	9.8	8.0	8.0

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

- f'-values, w=2
- **x** expanded states

		10.6	9.6	8.6 ×	S ×	9.0	
		9.8	8.8 ×				12.0
	9.2	8.2	8.2 ×	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.6 ×	7.6	7.8	7.0	8.0
10.2	8.6	7.0	7.0 ×	7.0	8.8	7.0	g2
	9.6	8.0	g1 ×	8.0	9.8	8.0	8.0

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

- f'-values, w=2
- x expanded states

○ states in open list

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-h Bias

f'-values, w = 2

must expand for optimal path

but many open states have lower f'-value

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

f'-values, w = 1.5 (reduced weight) \rightsquigarrow search less greedy

		8.7	(7.7)	6.7 ×	S ×	(7.0)	
		8.1	7.1 ×				10.5
	7.9	6.9	6.9 ×	6.9	6.85	8.0	9.0
8.9	6.7	6.7	6.7 ×	6.7	6.85	6.5	7.5
8.9	7.7	6.5	6.5 ×	6.5	7.85	6.5	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

f'-values, w = 1.5 (reduced weight) \rightarrow search less greedy

but effect still persists

		8.7	7.7	6.7 ×	S	7.0	
		8.1	7.1 ×				10.5
	7.9	6.9	6.9 ×	6.9	6.85	8.0	9.0
8.9	6.7	6.7	6.7 ×	6.7	6.85	6.5	7.5
8.9	7.7	6.5	6.5 ×	6.5	7.85	6.5	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-*h* Bias

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

The Problem: Low-h Bias

10 expanded states

29 generated states

between finding g1 and expanding right of S

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Restarted Search

starting from scratch w = 1.5

Experiments in Planning Experiments in Other Domains Summary Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Restarted Search

- 2 expanded state
- 5 generated states

before expanding right of S to find optimal path

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Insight

Continued search may be biased due to early mistakes:

- Greedy search: suboptimal area of search space
- Open list: many open states around previous goal
- Low h-value makes them look attractive
 ⇒ Biased search explores suboptimal area in depth

Restarts overcome early mistakes of greedy search

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Related Work

Restarts used with randomisation in CSPs:

- Local search (Selman et al. 1992)
- Systematic search (Gomes et al. 1998)
- Purpose: undo bad random decisions (parameter choices) ~> escape barren areas of search space

We propose restarts for a deterministic, A*-type algorithm

- Purpose: undo bad greedy decisions (low-h bias)
- "Counter-intuitive" to throw away effort in best-first search with open list
- But: choice of nodes in open list is biased

Anytime Weighted A* Low *h*-Bias Restarting Weighted A*

Restarting Weighted A*(RWA*)

RWA*: forget open list between iterations:

- Set weight and bound
- 2 Clear open list, (re-)start from initial state
- Onduct WA* search, using bound for pruning
- Upon new best solution: report solution, goto 1.

Re-use previous search effort by

- Not re-calculating h-values of states seen previously
- Remembering best known paths to states

Extra cost: re-expansions. But expansions often cheap compared to evaluations (planning: 20% vs. 80%)

Outline

Introduction

- Anytime Weighted A*
- Low *h*-Bias
- Restarting Weighted A*

Experiments in Planning

3 Experiments in Other Domains

4 Summary

Empirical Evaluation

- Implemented in Fast Downward, using FF heuristic
- Replaced greedy BFS with anytime algorithms:
 - RWA*
 - Anytime A*
 - ARA*
 - Beam-stack search
 - Window A*
- Planner-specific search enhancements used (preferred operators, deferred evaluation)
- All 1612 classical tasks, 31 domains of IPCs 1–5

Planning

WA* methods much better than others; RWA* best

Planning (cont.)

 $RWA^* > other WA^*$ methods in 40% of domains, rest on par

Planning (cont.)

Planning (cont.)

Without search enhancements, RWA* dominant by smaller margin

Planning (cont.)

Restarts change beginning of plan rather than end (Gripper #20):

Outline

Introduction

- Anytime Weighted A*
- Low *h*-Bias
- Restarting Weighted A*
- Experiments in Planning
- 3 Experiments in Other Domains

4 Summary

Robotic Arm

 $\label{eq:RWA} \mathsf{RWA}^* > \mathsf{other} \ \mathsf{WA}^* \ \mathsf{methods}.$ Beam-stack search and Window A* very good here.

Sliding-Tile Puzzle

 $\label{eq:RWA} \mathsf{RWA}^* \approx \mathsf{other} \mbox{ weight-decreasing WA}^* \mbox{ methods.}$ Window A* very good here.

A Controlled Experiment

Artificial search space

- Start state has approx. goal distance (agd)
- Random edge costs c
- agds of successors randomly differ from parent's by up to c
- States with agd 0 are goals
- Heuristic underestimates *agd* by certain percentage or less, where errors of parent and successors are correlated

Finding:

• Restarts helpful if systematic heuristic bias present (i. e., if successors have similar error as parent)

A Controlled Experiment (cont.)

Outline

Introduction

- Anytime Weighted A*
- Low *h*-Bias
- Restarting Weighted A*
- Experiments in Planning
- 3 Experiments in Other Domains

Summary

RWA* dominates other methods in planning

- In particular when search enhancements are used
- Restarts useful if greedy search is highly suboptimal
- E.g. if heuristics are systematically biased

On par in other domains

- RWA* always ≥ other WA* methods
 → even if restarts do not help, they do not hurt
- RWA* always performs fairly well → robust, while beam-stack search, Window A* vary strongly

Undoing search effort can be worthwhile in anytime algorithms

> Thank you! Questions?