Real-time Motion Planning with Dynamic Obstacles

Jarad Cannon, Kevin Rose, and Wheeler Ruml

(thanks to the NSF RI and DARPA CSSG programs for support)

Motivation

Introduction

- Motivation
- The Problem
- Execution
- Heuristic Search
- The Search Space
- Two Approaches
- The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

- planning for robots!
- responsiveness, safety: real-time with dynamic 'obstacles'
- kino-dynamic motion planning, not shortest path
- heuristic search is general and powerful
 - human environments are generally forgiving

The Problem

Introduction

- Motivation
- The Problem
- Execution
- Heuristic Search
- The Search Space
- Two Approaches
- The Literature
- Real-time R*
- RTA* for Robotics
- Evaluation
- Conclusion

Given at start:

- map of static world
- goal pose for agent
- time bound per action
- Given at each step:
 - agent's estimated pose
 - I probabilistic estimates for each dynamic obstacle's future

Find:

- within time bound
- feasible action
- that minimizes agent's total cost to horizon

Heuristic Search

-	
Introd	ILCTION
	action

Motivation

- The Problem
- Execution
- Heuristic Search
- The Search Space
- Two Approaches
- The Literature
- Real-time R*
- RTA* for Robotics
- Evaluation
- Conclusion

agent's state: x, y, θ, s obstacles move, so world state adds tdiscretize space and time to yield motion primitives $cost = P(col) \cdot cost_{col} + cost_{time}$

Introduction Motivation The Problem Execution Heuristic Search The Search Space Two Approaches The Literature Real-time R* RTA* for Robotics Evaluation Conclusion

expand static obstacles by robot's radius

- Motivation
- The Problem
- Execution
- Heuristic Search
- The Search Space
- Two Approaches
- The Literature
- Real-time R*
- RTA* for Robotics
- Evaluation
- Conclusion

robot now a single point

applicable actions

Evaluation

Conclusion

(pre-)compute touched cells

remove actions with static collisions

time-dependent obstacle probability distributions

Two Approaches

Introduction

Motivation

The Problem

Execution

Heuristic Search

■ The Search Space

Two Approaches

■ The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

Motion Planning:

Take a search algorithm designed for motion planning, and make it real-time.

Real-time Search:

Take a real-time search algorithm, and adapt it to motion planning.

Introduction

- Motivation
- The Problem
- Execution
- Heuristic Search
- The Search Space
- Two Approaches

The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

Motion Planning:

"R* [provides] probabilistic guarantees on the suboptimality of the overall solution [and] can scale to large complex planning problems, can find solutions to such problems much more often than weighted A* search, and can minimize the cost of the found solutions much better than randomized motion planning algorithms, developed specifically for continuous domains." — Likhachev and Stentz, *AAAI*, 2008

Real-time Search:

"We illustrate agent-centered search in nondeterministic domains using robot-navigation tasks" — Koenig, *AI Magazine*, 2001

"State-of-the-art real-time search algorithms, like LSS-LRTA*" — Hernandez ands Baier, *JAIR*, 2012

Introduction

Real-time R*

- R*
- Advantages
- Overview

RTA* for Robotics

Evaluation

Conclusion

Real-time R*

Wheeler Ruml (UNH)

Real-time Motion Planning – 9 / 26

R* Search

Introduction

Real-time R*

- R*
- Advantages
- Overview
- RTA* for Robotics

Evaluation

Conclusion

- Combines ideas from heuristic search and random sampling
- Breaks search up into smaller, easier subproblem
- High-level nodes are sampled randomly
- Low-level search between high-level nodes

Figure 1: R* Search

(Likhachev and Stentz, 2008)

R* Advantages

- samples continuous space sparsely
- finds solutions faster than ARA*, lower cost than RRT
- works well in high dimensions and with local minima

Intro	duction	
IIIU	auction	

Real-time R*

- R*
- Advantages

RTA* for Robotics

Evaluation

Conclusion

Modifications:

- 1. Bounded lookahead: count high-level expansions more
- 2. Action selection: prefer nodes with low-level paths
- 3. Path caching: save high-level nodes only
- 4. Making easier subproblems: loose goal test
- 5. Limit work on "avoid" nodes: exponentially increasing bound

see paper for details

Introduction

Real-time R*

RTA* for Robotics

LSS-LRTA*Challenges

■ Partitioned Costs

Evaluation

Conclusion

RTA* for Robotics

Wheeler Ruml (UNH)

Real-time Motion Planning – 13 / 26

Local Search Space Learning Real-Time A* (LSS-LRTA*)

(Koenig and Sun, 2009)

The Challenge of Dynamic Motion Planning

ntroduction	tł
Real-time R*	
RTA* for Robotics	
■ LSS-LRTA*	
Challenges	
Partitioned Costs	
Evaluation	
Conclusion	

heoretical: inadmissible g values

- I no good h for dynamic obstacles
- I estimated collisions noticed via g values
- edge costs in graph are changing!
- I backed-up values inadmissible

practical: many possible paths

 hard to back-up a higher value

Introduction Real-time R* RTA* for Robotics

■ LSS-LRTA*

■ Challenges

Partitioned Costs

Evaluation

Conclusion

Modifications:

partition cost into static versus dynamic

 $f(n) = g_s(n) + g_d(n) + h_s(n) + h_d(n)$

learn separate static and dynamic h values

- \blacksquare all states at pose share h_s value
- decay h_d values for completeness

see paper for details

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Evaluation

■ Random Bms.

■ Cost Incurred

■ Scaling

Conclusion

Evaluation

Wheeler Ruml (UNH)

Real-time Motion Planning – 17 / 26

Evaluation

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Evaluation

Random Bms.

- Cost Incurred
- Scaling

Conclusion

unusually wide variety of algorithms:

- 1. RTA*
- 2. LSS-LRTA*
- 3. PLRTA* partitioned learning
- 4. R*
- 5. RTR* real-time
- 6. RRT
- 7. TBL

two types of problems:

- 1. 36 random 'frogger' benchmarks
- 2. 6 handcrafted challenge problems

Random Benchmarks

36 random start/goal pairs, with prerecorded obstacles

Real-time Motion Planning – 20 / 26

Real-time Motion Planning – 20 / 26

Scaling

Wheeler Ruml (UNH)

Real-time Motion Planning – 21 / 26

Scaling

Wheeler Ruml (UNH)

Real-time Motion Planning - 21 / 26

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

■ Conclusions

Conclusion

Conclusions

Introduction
Real-time R*
RTA* for Robotic
Evaluation

Conclusion

Conclusions

- Dynamic motion planning is a challenging domain!
 - Real-time search with dynamic edge weights is important
 - non-trivial to use standard algorithms
 - PLRTA* is a simple hack more work needed!

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

Conclusions

tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- Iow cost of living
- easy access to Boston,
 White Mountains
- strong in AI, infoviz, networking, bioinformatics

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

Back-up Slides

Handcrafted Scenarios

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

6 handcrafted benchmarks, qualitative evaluation

PLRTA*: 2 bad TBL: 3 bad (missed deadline > 10 times per instance) others: much worse