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Motivation

Introduction

The Problem

m Execution

m Heuristic Search
® The Search Space
m Two Approaches
® The Literature

Real-time R*

RTA* for Robotics

Evaluation " i,
T . gt <
e = " g 2

Conclusion

planning for robots!

responsiveness, safety: real-time with dynamic ‘obstacles’
kino-dynamic motion planning, not shortest path
heuristic search is general and powerful

human environments are generally forgiving
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The Problem

Given at start:

Introduction
m Motivation

m  map of static world
m Execution
|
®m Heuristic Search g_oal pose for agent_
m The Search Space M time bound per action
m Two Approaches
m The Literature Given at each step:

Real-time R*

m agent's estimated pose
m probabilistic estimates for each dynamic obstacle’s future

RTA* for Robotics

Evaluation

Conclusion Fl n d :

m  within time bound
m feasible action
m that minimizes agent’s total cost to horizon
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Execution Setting

while executing, plan for next action

Introduction
m Motivation

m e ool Robot Planner
m Heuristic Search e e e t

The Search Space Send State.
" St

[
m Two Approaches
® The Literature

Real-time R*

RTA* for Robotics \ send

Evaluation

Conclusion

execute a¢41

s Y.
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Heuristic Search

Introduction

m Motivation
m The Problem
m Execution

m Heuristic Search

® The Search Space
m Two Approaches
® The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

agent's state: x,vy,0, s

obstacles move, so world state adds ¢
discretize space and time to yield motion primitives

cost= P(col) - cost o + COSttime
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The Search Space

Introduction
® Motivation
® The Problem
m Execution

m Heuristic Search

B The Search Space

m Two Approaches
® The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

robot with two static obstacles
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The Search Space

Introduction
® Motivation
® The Problem
m Execution

m Heuristic Search

® The Search Space

m Two Approaches
® The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

l l

overlay grid
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The Search Space

Introduction
® Motivation
® The Problem
m Execution

m Heuristic Search

® The Search Space

m Two Approaches
® The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

r

—
expand static obstacles by robot’s radius
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The Search Space

Introduction
® Motivation
® The Problem
m Execution

m Heuristic Search

B The Search Space

® Two Approaches
® The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

robot now a single point
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The Search Space

Introduction
® Motivation
® The Problem
m Execution

m Heuristic Search

B The Search Space

® Two Approaches
m The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

applicable actions
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The Search Space

B The Search Space

(pre-)compute touched cells
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The Search Space

B The Search Space

remove actions with static collisions
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The Search Space

Introduction
m Motivation
m The Problem

m Execution

m Heuristic Search

B The Search Space

® Two Approaches
m The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

time-dependent obstacle probability distributions
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Two Approaches

Motion Planning:

Introduction

= Motivation Take a search algorithm designed for motion planning, and
®m The Problem . .

m Execution make it real-time.

® Heuristic Search

® The Search Space

Real-time Search:

= The biterature Take a real-time search algorithm, and adapt it to motion
planning.

Real-time R*

RTA* for Robotics

Evaluation

Conclusion
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The Heuristic Search Literature

Introduction

® Motivation

® The Problem

m Execution

m Heuristic Search
® The Search Space
m Two Approaches

m The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

Motion Planning:

“R* [provides| probabilistic guarantees on the suboptimality of
the overall solution [and] can scale to large complex planning
problems, can find solutions to such problems much more often
than weighted A* search, and can minimize the cost of the found
solutions much better than randomized motion planning

algorithms, developed specifically for continuous domains.” —
Likhachev and Stentz, AAAI, 2008

Real-time Search:
“We illustrate agent-centered search in nondeterministic

domains using robot-navigation tasks” — Koenig, Al Magazine,
2001

“State-of-the-art real-time search algorithms, like
LSS-LRTA*" — Hernandez ands Baier, JAIR, 2012
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Real-time R*

Real-time R¥*
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R* Search

Introduction

m Combines ideas from

Real-time R*

heuristic search and

m Advantages random sampling

m Overview

RTA* for Robotics m Breaks search up into
Evaluation smaller, easier subproblem
Conclusion

m High-level nodes are
sampled randomly

m Low-level search between
high-level nodes

(Likhachev and Stentz, 2008)

W

high-level nodes

low-level nodes

0.. O

Figure 1: R* Search
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R* Advantages
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Real-time R* QOverview

Modifications:

Introduction

Real-time R*

m R* 1. Bounded lookahead: count high-level expansions more

m Advantages

m Overview

RTA* for Robotics

2. Action selection: prefer nodes with low-level paths

Evaluation

3. Path caching: save high-level nodes only

Conclusion

4. Making easier subproblems: loose goal test

5. Limit work on “avoid” nodes: exponentially increasing bound

see paper for details

Wheeler Ruml (UNH) Real-time Motion Planning — 12 / 26



RTA* for Robotics

RTA* for Robotics
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Local Search Space Learning Real-Time A*

Introduction

Real-time R*

RTA* for Robotics

m LSS-LRTA™

m Challenges
m Partitioned Costs

Evaluation

Conclusion

A* until node expansion
limit.

Move toward best node on
open

LSS-LRTA*

)¢

best node on frontier

frontier

action to take

local search space

Learn improved heuristic for all expanded nodes

0 Compute shortest paths back from the frontier

(Koenig and Sun, 2009)
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The Challenge of Dynamic Motion Planning

theoretical: inadmissible g values

Introduction

Real-time R*

m Partitioned Costs

m  no good A for dynamic obstacles
RTA* for Robotics . - - . .
= LSS.LRTA® m estimated collisions noticed via g values
m edge costs in graph are changing!

|

backed-up values inadmissible

Evaluation

Conclusion

practical: many possible paths

m  hard to back-up a higher dq )

value
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Partitioned Costs

Modifications:

Introduction

Real-time R* m partition cost into static versus dynamic

RTA* for Robotics

m LSS-LRTA™

® Challenges f(n) — gS (n) _|_ gd(n) —I_ hs (n) _|_ hd(n)
Evaluation m |earn separate static and dynamic h values

Conclusion m all states at pose share hs value

m decay hg values for completeness

see paper for details
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Evaluation

Evaluation
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Evaluation

unusually wide variety of algorithms:

Introduction

Real-time R* 1 RTA*
RTA* for Robotics 2 LSS—LRTA*
3. PLRTA* - partitioned learning
m Random Bms. 4 R*
. gf:ﬁrfgcu"ed 5. RTR* - real-time
Conclusion 6 RRT
7. TBL

two types of problems:

1. 36 random ‘frogger’ benchmarks
2. 6 handcrafted challenge problems
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Random Benchmarks

®* Robot Simulator [ XX

Introduction

Real-time R*

RTA* for Robotics

Evaluation

m Evaluation

m Cost Incurred

m Scaling

Conclusion

36 random start/goal pairs, with prerecorded obstacles
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Cost Incurred

Introduction

60 seconds, 0 opponents
O

_ti *
Real-time R O

RTA* for Robotics 1000 —

Evaluation

m Evaluation
® Random Bms.

m Cost Incurred

m Scaling

Conclusion

actual cost

|+~ b s

RRT R* RTR* TBL PLR- LSS- RTA*®*
TA* LRT-
A*
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Cost Incurred

60 seconds, 1 opponents

Introduction

12000 — O
Real-time R*
@) @)
RTA* for Robotics
- @)
Evaluation
m Evaluation
® Random Bms.
o 1 ° ©
m Scaling 8
(P
Conclusion Tg 6000 — O
E ° 0 T
i @)
@)
RRT RTR* TBL PLR- LSS- RTA*%*
TA* LRT-
A*
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Cost Incurred

60 seconds, 4 opponents

Introduction

Real-time R* 30000 —

RTA* for Robotics

Evaluation

m Evaluation
® Random Bms.

m Cost Incurred

m Scaling

20000 — O

Conclusion

actual cost

10000 —

O

8

8 o

8 8 3
. .

RRT R* RTR* TBL PLR- LSS- RTA*

TA* LRT-
A*

§ EE

\J
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Cost Incurred

60 seconds, 6 opponents

Introduction

Real-time R* 30000 —

RTA* for Robotics

Evaluation

m Evaluation
® Random Bms.

OO O

+2 20000 —
m Scaling o
| : T
Conclusion ’T& |
]
+~
Q
(o]
10000 —

@)
@) O

8 . ST
b 4§ b
RRT R* RTR* TBL PLR- LSS- RTA*

TA* LRT-
A*
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Cost Incurred

60 seconds, 8 opponents

Introduction

@)
Real-time R* 30000 —
RTA* for Robotics
Evaluation n ')

m Evaluation
® Random Bms.

m Cost Incurred

m Scaling

20000 —

|
1OOOO_~I—‘8 8T
ng
| Ym b gﬁi

RRT R* RTR* TBL PLR- LSS- RTA*

TA* LRT-
A*

Conclusion

actual cost
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Cost Incurred

60 seconds, 10 opponents

Introduction

Real-time R* 30000 —

RTA* for Robotics _

Evaluation

m Evaluation
® Random Bms.

m Cost Incurred

m Scaling

20000 —

10000Jr‘ 8JF
L 8 O]

RRT R* RTR* TBL PLR- LSS- RTA*
TA* LRT-
A*

O

Conclusion

actual cost

000 O
w—|———— O O
——
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Scaling

Introduction

Real-time R*

RTA* for Robotics

Evaluation

m Evaluation
® Random Bms.
m Cost Incurred

actual cost

m Scaling

Conclusion

60 seconds, 0-10 opponents
=== RRT |
| === RTA*
100001 4 ' R*
1w TBL
1 nn RTR*
| == LSS-LRTA®
PLRTA*

5000

dynamic obstacles

RTR* better than R*
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Scaling

Introduction

Real-time R*

RTA* for Robotics

Evaluation

m Evaluation
® Random Bms.
m Cost Incurred

actual cost

m Scaling

Conclusion

60 seconds, 0-10 opponents
=== RRT |
| === RTA*
100001 4 ' R*
1w TBL
1 nn RTR*
| == LSS-LRTA®
PLRTA*

5000

dynamic obstacles

PLRTA* best
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Conclusion

Conclusion
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Conclusions

e diegior m  Dynamic motion planning is a challenging domain!

(Lot (5 m  Real-time search with dynamic edge weights is important
RTA* for Robotics m non-trivial to use standard algorithms

Evaluation m PLRTA* is a simple hack — more work needed!

Conclusion

m Conclusions
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The University of New Hampshire

tell your students to apply to grad school in CS at UNH!

Introduction

Real-time R*

RTA* for Robotics frlenfj ly faCU lty
Evaluation fU n d I ng
Conellisher individual attention

beautiful campus

low cost of living

easy access to Boston,
White Mountains

m strong in Al, infoviz,
networking,
bioinformatics
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Back-up Slides
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Handcrafted Scenarios

Introduction

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

sIow‘

object

@ /
N\

goaround ~TT------ -

—— - = —
e = = = = =

6 handcrafted benchmarks, qualitative evaluation

PLRTA*: 2 bad

TBL: 3 bad (missed deadline > 10 times per instance)
others: much worse
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