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■ planning for robots!
■ responsiveness, safety: real-time with dynamic ‘obstacles’
■ kino-dynamic motion planning, not shortest path
■ heuristic search is general and powerful
■ human environments are generally forgiving



The Problem

Introduction

■ Motivation

■ The Problem

■ Execution

■ Heuristic Search

■ The Search Space

■ Two Approaches

■ The Literature

Real-time R*

RTA* for Robotics

Evaluation

Conclusion

Wheeler Ruml (UNH) Real-time Motion Planning – 3 / 26

Given at start:

■ map of static world
■ goal pose for agent
■ time bound per action

Given at each step:

■ agent’s estimated pose
■ probabilistic estimates for each dynamic obstacle’s future

Find:

■ within time bound
■ feasible action
■ that minimizes agent’s total cost to horizon
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while executing, plan for next action

.

.

.
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agent’s state: x, y, θ, s
obstacles move, so world state adds t
discretize space and time to yield motion primitives
cost= P (col) · costcol + cost time
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robot with two static obstacles
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overlay grid
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r
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expand static obstacles by robot’s radius
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robot now a single point
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applicable actions
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(pre-)compute touched cells
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remove actions with static collisions
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time-dependent obstacle probability distributions
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Motion Planning:
Take a search algorithm designed for motion planning, and

make it real-time.

Real-time Search:
Take a real-time search algorithm, and adapt it to motion

planning.
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Motion Planning:
“R* [provides] probabilistic guarantees on the suboptimality of

the overall solution [and] can scale to large complex planning
problems, can find solutions to such problems much more often
than weighted A* search, and can minimize the cost of the found
solutions much better than randomized motion planning
algorithms, developed specifically for continuous domains.” —
Likhachev and Stentz, AAAI, 2008

Real-time Search:
“We illustrate agent-centered search in nondeterministic

domains using robot-navigation tasks” — Koenig, AI Magazine,
2001

“State-of-the-art real-time search algorithms, like
LSS-LRTA*” — Hernandez ands Baier, JAIR, 2012
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■ Combines ideas from
heuristic search and
random sampling

■ Breaks search up into
smaller, easier subproblem

■ High-level nodes are
sampled randomly

■ Low-level search between
high-level nodes

Figure 1: R* Search

(Likhachev and Stentz, 2008)
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Figure 2: A* Search Figure 3: R* Search

■ samples continuous space sparsely

■ finds solutions faster than ARA*, lower cost than RRT

■ works well in high dimensions and with local minima
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Modifications:

1. Bounded lookahead: count high-level expansions more

2. Action selection: prefer nodes with low-level paths

3. Path caching: save high-level nodes only

4. Making easier subproblems: loose goal test

5. Limit work on “avoid” nodes: exponentially increasing bound

see paper for details
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■ A* until node expansion
limit.

■ Move toward best node on
open

■ Learn improved heuristic for all expanded nodes

◆ Compute shortest paths back from the frontier

(Koenig and Sun, 2009)
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theoretical: inadmissible g values

■ no good h for dynamic obstacles
■ estimated collisions noticed via g values
■ edge costs in graph are changing!
■ backed-up values inadmissible

practical: many possible paths

■ hard to back-up a higher
value

1000
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Modifications:

■ partition cost into static versus dynamic

f(n) = gs(n) + gd(n) + hs(n) + hd(n)

■ learn separate static and dynamic h values
■ all states at pose share hs value
■ decay hd values for completeness

see paper for details
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unusually wide variety of algorithms:

1. RTA*
2. LSS-LRTA*
3. PLRTA* - partitioned learning
4. R*
5. RTR* - real-time
6. RRT
7. TBL

two types of problems:

1. 36 random ‘frogger’ benchmarks
2. 6 handcrafted challenge problems
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36 random start/goal pairs, with prerecorded obstacles
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■ Dynamic motion planning is a challenging domain!
■ Real-time search with dynamic edge weights is important
■ non-trivial to use standard algorithms
■ PLRTA* is a simple hack — more work needed!
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tell your students to apply to grad school in CS at UNH!

■ friendly faculty
■ funding
■ individual attention
■ beautiful campus
■ low cost of living
■ easy access to Boston,

White Mountains
■ strong in AI, infoviz,

networking,
bioinformatics
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goal

backup,

wait,

proceed

slow

object

goal

go around

6 handcrafted benchmarks, qualitative evaluation

PLRTA*: 2 bad
TBL: 3 bad (missed deadline > 10 times per instance)
others: much worse
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