Heuristic Search for Large Problems with Real Costs

Matthew Hatem, Ethan Burns and Wheeler Ruml

with support from NSF (grant IIS-0812141) and DARPA (grant N10AP20029)

Matthew Hatem (UNH)

Introduction

Motivation

Outline

External Memory

PEDAL

Experiments

Conclusion

■ Problem: A* runs out of memory in ~ 10 minutes

Introduction

MotivationOutline

External Memory

PEDAL

Experiments

Conclusion

- Problem: A* runs out of memory in ~ 10 minutes
- Problem: IDA* fails with many duplicates and real costs

Introduction

- MotivationOutline

External Memory

PEDAL

Experiments

Conclusion

- Problem: A* runs out of memory in ~ 10 minutes
- Problem: IDA* fails with many duplicates and real costs

■ Solution: A* on disk ("external memory")

Introduction

Motivation

Outline

External Memory

PEDAL

Experiments

Conclusion

- Problem: A* runs out of memory in ~ 10 minutes
- Problem: IDA* fails with many duplicates and real costs

■ Solution: A* on disk ("external memory")

Problem: Previous methods assume integer costs

Introduction

- Motivation
- Outline
- External Memory

PEDAL

Experiments

Conclusion

- Problem: A* runs out of memory in \sim 10 minutes
- Problem: IDA* fails with many duplicates and real costs

■ Solution: A* on disk ("external memory")

- Problem: Previous methods assume integer costs
- Problem: Most previous methods use breadth-first search

Introduction

- Motivation
- Outline
- External Memory

PEDAL

Experiments

Conclusion

- Problem: A* runs out of memory in ~ 10 minutes
- Problem: IDA* fails with many duplicates and real costs

■ Solution: A* on disk ("external memory")

- Problem: Previous methods assume integer costs
- Problem: Most previous methods use breadth-first search
- Solution: PEDAL (this paper)
 - Best-first search order
 - ♦ Real costs
 - Provably I/O efficient
 - Exploits parallelism

Outline

Introduction

Motivation

Outline

External Memory

PEDAL

Experiments

Conclusion

- External memory search
- The problem with real costs
- PEDAL
- Results

Introduction

External Memory

- A* Search
- Buckets
- Expand Phase
- Merge Phase
- Layers
- Summary
- PEDAL
- Experiments
- Conclusion

External Memory Search

A* Search

External Memory

- A* SearchBuckets
- Expand Phase
- Merge Phase
- Layers
- Summary
- PEDAL
- Experiments
- Conclusion

- Open List: ordered set f(n) = g(n) + h(n)
- Closed List: random access!
- How to put this on disk?

A* Search

- Open List: ordered set f(n) = g(n) + h(n)
- Closed List: random access!
- How to put this on disk?

■ Two ideas: Buckets and Layers

Buckets

Introduction

External Memory

- A* Search
- Buckets
- Expand Phase
- Merge Phase
- Layers
- Summary

PEDAL

Experiments

Conclusion

- Use a hash function to partition the space
- Duplicate nodes will be in the same bucket

Buckets

- **External Memory**
- A* Search
- Buckets
- Expand Phase
- Merge Phase
- Layers
- Summary

PEDAL

Experiments

Conclusion

- Use a hash function to partition the space
- Duplicate nodes will be in the same bucket

Matthew Hatem (UNH)

Buckets

- Use a hash function to partition the space
- Duplicate nodes will be in the same bucket

Matthew Hatem (UNH)

Expand Phase

External Memory

- A* Search
- Buckets
- Expand Phase

Merge Phase

Layers

■ Summary

PEDAL

Experiments

Conclusion

Only one bucket need fit in RAM to expand

Matthew Hatem (UNH)

Expand Phase

Only one bucket need fit in RAM to expand

Matthew Hatem (UNH)

Expand Phase

Only one bucket need fit in RAM to expand

Matthew Hatem (UNH)

Introduction				
External Memory				
A* Search				
Buckets				
Expand Phase				
Merge Phase				
Layers				
Summary				
PEDAL				
Experiments	(
Conclusion				
		Next: Open: Closed:	Next: Open: Open: Closed:	

Matthew Hatem (UNH)

Matthew Hatem (UNH)

Matthew Hatem (UNH)

Matthew Hatem (UNH)

Matthew Hatem (UNH)

Layers

Introduction

External Memory

- A* Search
- Buckets
- Expand Phase
- Merge Phase
- Layers
- Summary
- PEDAL
- Experiments
- Conclusion

- Depth based layers give breadth-first search eg., Breadth-First Heuristic Search (Zhou, Hansen 2004)
- How do we perform best-first search?

Layers

Introduction

- External Memory
- A* Search
- Buckets
- Expand Phase
- Merge Phase
- Layers
- Summary
- PEDAL
- Experiments
- Conclusion

- Depth based layers give breadth-first search eg., Breadth-First Heuristic Search (Zhou, Hansen 2004)
- How do we perform best-first search?
 - Set an f limit and expand all nodes within the limit

Introduction

External Memory

- A* Search
- Buckets
- Expand Phase
- Merge Phase
- Layers
- Summary
- PEDAL
- Experiments
- Conclusion

- Divide the search space into buckets
- Duplicate detection is localized per bucket
- Duplicate detection is done in a separate phase
- \blacksquare Layer the search by f

Introduction

External Memory

PEDAL

Real Costs Prob.

Histogram Method

■ PEDAL

Experiments

Conclusion

PEDAL

Matthew Hatem (UNH)

Our solution is to inflate layers But how should we inflate layers?

Introduction		Bad
External Memory		
PEDAL		
Real Costs Prob.		
Histogram Method		
■ PEDAL	Closed List	Open List
Experiments		•
Conclusion	Expanded Nodes	

• Keep a distribution of all f-values on the frontier

■ Choose a value in this distribution to guarantee I/O efficiency

■ See paper for proof

Introduction	
muouuction	

- External Memory
- PEDAL
- Real Costs Prob.
- Histogram Method
- PEDAL
- Experiments

Conclusion

- Best-first:
 - layer search on f
- Real Costs:
 - dynamically inflate f layers for I/O efficiency
- Exploits Parallelism (see paper)
- Recursive expansions (see paper)

Introduction

External Memory

PEDAL

Experiments

Setup

■ 15-Puzzle

■ 15-Puzzle: IDA*

■ 15-Puzzle: BFHS

■ BFHS

Sqrt Puzzle

■ Sqrt Puzz:IDA*_{CR}

■ Sqrt Puzz: BFHS

Dockyard Robots

■ Doc. Rob: BFHS

Conclusion

Experiments

Matthew Hatem (UNH)

Setup

Introduction

External Memory

PEDAL

Experiments

- Setup■ 15-Puzzle
- 15-Puzzle: IDA*
- 15-Puzzle: BFHS
- BFHS
- Sqrt Puzzle
- Sqrt Puzz:IDA*_{CR}
- Sqrt Puzz: BFHS
- Dockyard Robots
- Doc. Rob: BFHS

Conclusion

- Three domains
- Dual quad-core
- 8GB of RAM
- 7 SATA disks

15-Puzzle

Introduction

External Memory

PEDAL

Experiments

Setup

- 15-Puzzle
- 15-Puzzle: IDA*
- 15-Puzzle: BFHS
- BFHS
- Sqrt Puzzle
- Sqrt Puzz:IDA*_{CR}
- Sqrt Puzz: BFHS
- Dockyard Robots
- Doc. Rob: BFHS

Conclusion

- Unit cost sliding tile puzzle
- Classic benchmark

■ Korf 100 (Korf 1985)

■ A* is unable to solve all 100 with Manhattan Distance

Matthew Hatem (UNH)

15-Puzzle:PEDAL vs. IDA* (Korf 1985)

15-Puzzle: PEDAL vs. Breadth-First Heuristic Search

Best-first is better than breadth-first

Conclusion

A* with proper tie breaking

Conclusion

BFHS must expand more nodes

External Memory

PEDAL

Experiments

- Setup
- 15-Puzzle
- 15-Puzzle: IDA*
- 15-Puzzle: BFHS
- BFHS
- Sqrt Puzzle
- Sqrt Puzz:IDA*_{CR}
- Sqrt Puzz: BFHS
- Dockyard Robots
- Doc. Rob: BFHS

Conclusion

- Move costs square root of tile number
- Simple real-valued version of well understood benchmark
- Easy to reproduce

Sqrt Puzzle

External Memory

PEDAL

Experiments

- Setup
- 15-Puzzle
- 15-Puzzle: IDA*
- 15-Puzzle: BFHS
- BFHS
- Sqrt Puzzle
- Sqrt Puzz:IDA*_{CR}
- Sqrt Puzz: BFHS
- Dockyard Robots
- Doc. Rob: BFHS

Conclusion

■ IDA* and BFHS did not solve any instances in time limit

• We compare against IDA_{CR}^* and novel variant of BFHS

Again duplicate checking and parallelism trump disk latency

Matthew Hatem (UNH)

Sqrt. 15-Puzzle: PEDAL vs. BFHS

Dockyard Robots

External Memory

PEDAL

Experiments

- Setup
- 15-Puzzle
- 15-Puzzle: IDA*
- 15-Puzzle: BFHS
- BFHS
- Sqrt Puzzle
- Sqrt Puzz:IDA*_{CR}
- Sqrt Puzz: BFHS
- Dockyard Robots
- Doc. Rob: BFHS

Conclusion

- From Ghallab, Nau, Traverso (2004)
- All actions have real costs
- Many duplicate states
- IDA* and IDA*_{CR} fail on all instances

Dockyard Robots: PEDAL vs. BFHS

PEDAL is the only viable alternative

Introduction

External Memory

PEDAL

Experiments

Conclusion

Summary

■ Advertising

■ Previous external-memory search:

- ◆ fails on domains with real costs
- suggests that breadth-first search is preferred

PEDAL:

- ♦ is best-first
- ◆ I/O efficient for real costs

Introduction

External Memory

PEDAL

Experiments

Conclusion

Summary

■ Advertising

■ Previous external-memory search:

- ◆ fails on domains with real costs
- suggests that breadth-first search is preferred

PEDAL:

- ♦ is best-first
- ◆ I/O efficient for real costs

External memory search doesn't have to be slow!

◆ faster than IDA* on standard 15-Puzzle!

Introduction

External Memory

PEDAL

Experiments

Conclusion

Summary

■ Advertising

■ Previous external-memory search:

- ◆ fails on domains with real costs
- suggests that breadth-first search is preferred

PEDAL:

- ♦ is best-first
- ◆ I/O efficient for real costs

External memory search doesn't have to be slow!

◆ faster than IDA* on standard 15-Puzzle!

General purpose best-first external memory algorithm

Introduction	
muouucuon	

External Memory

PEDAL

Experiments

Conclusion

■ Summary

Advertising

Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- low cost of living
- easy access to Boston,White Mountains
- strong in AI, infoviz, networking, systems, bioinformatics

Introduction

External Memory

PEDAL

Experiments

Conclusion

Back-up Slides

PEDAL CR vs.
Histogram
Recursive
Expansions

■ BFHS vs. PEDAL Non-Recursive

Back-up Slides

Matthew Hatem (UNH)

PEDAL CR vs. Histogram

Matthew Hatem (UNH)

Recursive Expansions

Matthew Hatem (UNH)

BFHS vs. PEDAL Non-Recursive

Matthew Hatem (UNH)