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Abstract

If the promise of computational modeling is to be fully realized in higher-
level cognitive domains such as language processing, principled methods
must be developed to construct the semantic representations used in such
models. In this paper, we propose the use of an established formalism
from mathematical psychology, additive clustering, as a means of auto-
matically constructing binary representations for objects using only pair-
wise similarity data. However, existing methods for the unsupervised
learning of additive clustering models do not scale well to large prob-
lems. We present a new algorithm for additive clustering, based on a
novel heuristic technique for combinatorial optimization. The algorithm
is simpler than previous formulations and makes fewer independence as-
sumptions. Extensive empirical tests on both human and synthetic data
suggest that it is more effective than previous methods and that it also
scales better to larger problems. By making additive clustering practical,
we take a significant step toward scaling connectionist models beyond
hand-coded examples.

1 Introduction

Many cognitive models posit mental representations based on discrete substructures. Even
connectionist models whose processing involves manipulation of real-valued activations
typically represent objects as patterns of 0s and 1s across a set of units (Noelle, Cottrell,
and Wilms, 1997). Often, individual units are taken to represent specific features of the
objects and two representations will share features to the degree to which the two objects
are similar. While this arrangement is intuitively appealing, it can be difficult to construct
the features to be used in such a model. Using random feature assignments clouds the
relationship between the model and the objects it is intended to represent, diminishing
the model’s value. As Clouse and Cottrell (1996) point out, hand-crafted representations
are tedious to construct and it can be difficult to precisely justify (or even articulate) the
principles that guided their design. These difficulties effectively limit the number of objects
that can be encoded, constraining modeling efforts to small examples. In this paper, we
investigate methods for automatically synthesizing feature-based representations directly
from the pairwise object similarities that the model is intended to respect. This automatic
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Table 1: An 8-feature model derived from consonant confusability data. With c = 0.024,
the model accounts for 91.8% of the variance in the data.

Wt. Objects with feature Interpretation
.350 fθ front unvoiced fricatives
.243 dg back voiced stops
.197 p k unvoiced stops (without t)
.182 b v∂ front voiced
.162 ptk unvoiced stops
.127 mn nasals
.075 dgv∂zz̆ voiced (without b)
.049 ptkfθss̆ unvoiced

approach eliminates the manual burden of selecting and assigning features while providing
an explicit design criterion that objectively connects the representations to empirical data.

After formalizing the problem, we will review existing algorithms that have been proposed
for solving it. We will then investigate a new approach, based on combinatorial optimiza-
tion. When using a novel heuristic search technique, we find that the new approach, despite
its simplicity, performs better than previous algorithms and that, perhaps more important,
it maintains its effectiveness on large problems.

1.1 Additive Clustering

We will formalize the problem of constructing discrete features from similarity information
using the additive clustering model of Shepard and Arabie (1979). In this framework,
abbreviated ADCLUS, clusters represent arbitrarily overlapping discrete features. Each of
the k features has a non-negative real-valued weight wk , and the similarity between two
objects i and j is just the sum of the weights of the features they share. If fik is 1 if object
i has feature k and 0 otherwise, and c is a real-valued constant, then the similarity of i and
j is modeled as

ŝij =
∑

k

wkfikfjk + c .

This class of models is very expressive, encompassing non-hierarchical as well as hierar-
chical arrangements of clusters. An example model, derived using the ewindclus-klb
algorithm described below, is shown in Table 1. The representation of each object is simply
the binary column specifying its membership or absence in each cluster. Additive cluster-
ing is asymmetric in the sense that only the shared features of two objects contribute to
their similarity, not the ones they both lack. (This is the more general formulation, as an
additional feature containing the set complement of the original feature could always be
used to produce such an effect.)

With a model formalism in hand, we can then phrase the problem of constructing feature
assignments as simply finding the ADCLUS model that best matches the given similarity
data using the desired number of features. The fit of a model (comprising F , W , and c) to
a matrix, S, can be quantified by the variance accounted for (VAF), which compares the
model’s accuracy to merely predicting using the mean similarity:

VAF = 1−

∑
i,j(sij − ŝij)

2

∑
i,j(sij − s̄)2

A VAF of 0 can always be achieved by setting all wk to 0 and c to s̄.



2 Previous Algorithms

Additive clustering is a difficult 0-1 quadratic programming problem and only heuristic
methods, which do not guarantee an optimal model, have been proposed. Many different
approaches have been taken:

Subsets: Shepard and Arabie (1979) proposed an early algorithm based on subset analy-
sis that was clearly superseded by Arabie’s later work below. Hojo (1983) also
proposed an algorithm along these lines. We will not consider these algorithms
further.

Non-discrete Approximation: Arabie and Carroll (1980) and Carroll and Arabie (1983)
proposed the two-stage indclus algorithm. In the first stage, cluster member-
ships are treated as real values and optimized for each cluster in turn by gradient
descent. At the same time, a penalty term for non-0-1 values is gradually in-
creased. Afterwards, a combinatorial clean-up stage tries all possible changes to
1 or 2 cluster memberships. Experiments reported below use the original code,
modified slightly to handle large instances. Random initial configurations were
used.

Asymmetric Approximation: In the sindclus algorithm, Chaturvedi and Carroll
(1994) optimize an asymmetric model with two sets of cluster memberships, hav-
ing the form ŝij =

∑
k wkfikgjk +c. By considering each cluster in turn, this for-

mulation allows a fast method for determining each of F , G, and w given the other
two. In practice, F and G often become identical, yielding an ADCLUS model.
Experiments reported below use both a version of the original implementation that
has been modified to handle large instances and a reimplemented version (re-
sindclus) that differs in its behavior at boundary cases (handling 0 weights,
empty clusters, ties). Models from runs in which F and G did not converge were
each converted into several ADCLUS models by taking only F , only G, their inter-
section, or their union. The weights and constants of each model were optimized
using constrained least-squares linear regression (Stark and Parker, 1995), ensur-
ing non-negative cluster weights, and the one with the highest VAF was used.

Alternating Clusters: Kiers (1997) proposed an element-wise simplified sindclus al-
gorithm, which we abbreviate as ewindclus. Like sindclus, it considers
each cluster in turn, alternating between the weights and the cluster memberships,
although only one set of clusters is maintained. Weights are set by a simple re-
gression and memberships are determined by a gradient function that assumes
object independence and fixed weights. The experiments reported below use a
new implementation, similar to the reimplementation of sindclus.

Expectation Maximization: Tenenbaum (1996) reformulated ADCLUS fitting in proba-
bilistic terms as a problem with multiple hidden factorial causes, and proposed
a combination of the EM algorithm, Gibbs sampling, and simulated annealing to
solve it. The experiments below use a modified version of the original implemen-
tation which we will notate as em-indclus. It terminates early if 10 iterations
of EM pass without a change in the solution quality. (A comparison with the orig-
inal code showed this modification to give equivalent results using less running
time.)

Unfortunately, it is not clear which of these approaches is the best. Most published com-
parisons of additive clustering algorithms use only a small number of test problems (or
only artificial data) and report only the best solution found within an unspecified amount
of time. Because the algorithms use random starting configurations and often return solu-
tions of widely varying quality even when run repeatedly on the same problem, this leaves
it unclear which algorithm gives the best results on a typical run. Furthermore, different



Table 2: The performance of several previously proposed algorithms on data sets from
psychological experiments.

indclus sindclus re-sindclus ewindclus
Name VAF IQR VAF IQR r VAF IQR r VAF IQR r

animals-s 77 75–80 66 65–65 8 78 79 –80 12 64 60–69 4
numbers 83 81–86 84 82 –86 5 78 75–81 7 82 79–85 5
workers 83 82–85 81 79–83 9 84 82–85 7 67 63–72 2

consonants 89 89–90 88 87–89 6 81 80–82 5 51 44–57 1
animals 71 69–74 66 66–66 9 66 66–66 13 72 71 –73 26

letters 80 80–80 78 78–79 7 68 65–72 5 74 73–75 17

Table 3: The performance of indclus and em-indclus on the human data sets.
indclus em-indclus

Name n k VAF IQR r VAF IQR

animals-s 10 3 80 80–80 23 80 80–80
numbers 10 8 91 90–91 157 90 89–90
workers 14 7 89 88–89 89 87 87–89

consonants 16 8 91 91–91 291 91 91–91
animals 26 12 71 69–74 1 N/A

letters 30 5 82 82–83 486 82 82–83

algorithms require very different running times, and multiple runs of a fast algorithm with
high variance in solution quality may produce a better result in the same time as a single run
of a more predictable algorithm. The next section reports on a new empirical comparison
that addresses these concerns.

2.1 Evaluation of Previous Algorithms

We compared indclus, both implementations of sindclus, ewindclus, and em-
indclus on 3 sets of problems. The first set is a collection of 6 typical data sets from
psychological experiments that have been used in previous additive clustering work (orig-
inally by Shepard and Arabie (1979), except for animals-s, Mechelen and Storms (1995),
and animals, Chaturvedi and Carroll (1994)). The number of objects (n) and the number of
features used (k) are listed for each instance as part of Table 3. The second set of problems
contains noiseless synthetic data derived from ADCLUS models with 8, 16, 32, 64, and 128
objects. In a rough approximation of the human data, the number of clusters was set to
2 log

2
(n), and as in previous ADCLUS work, each object was inserted in each cluster with

probability 0.5. A single similarity matrix was generated from each model using weights
and constants uniformly distributed between 1 and 6. The third set of problems was de-
rived from the second by adding gaussian noise with a variance of 10% of the variance of
the similarity data and enforcing symmetry. Each algorithm was run at least 50 times on
each data set. Runs that crashed or resulted in a VAF < 0 were ignored. To avoid biasing
our conclusions in favor of methods requiring more computation time, those results were
then used to derive the distribution of results that would be expected if all algorithms were
run simultaneously and those that finished early were re-run repeatedly until the slowest
algorithm finished its first run, with any re-runs in progress at that point discarded.1

1Depending as it does on running time, this comparison remains imprecise due to variations in
the degree of code tuning and the quality of the compilers used, and the need to normalize timings
between the multiple machines used in the tests.



Summaries of the time-equated results produced by each algorithm on each of the human
data sets are shown in Table 2. (em-indclus took much longer than the other algorithms
and its performance is shown separately in Table 3.) The mean VAF for each algorithm
is listed, along with the inter-quartile range (IQR) and the mean number of runs that were
necessary to achieve time parity with the slowest algorithm on that data set (r). On most
instances, there is remarkable variance in the VAF achieved by each algorithm.2 Overall,
despite the variety of approaches that have been brought to bear over the years, the origi-
nal indclus algorithm appears to be the best. (Results in which another algorithm was
superior to indclus are marked with a box.) Animals-s is the only data set on which its
median performance was not the best, and its overall distribution of results is consistently
competitive. It is revealing to note the differences in performance between the original and
reimplemented versions of sindclus. Small changes in the handling of boundary cases
make a large difference in the performance of the algorithm.

Surprisingly, on the synthetic data sets (not shown), the relative performance of the algo-
rithms was quite different, and almost the same on the noisy data as on the noise-free data.
(This suggests that the randomly generated data sets that are commonly used to evaluate
ADCLUS algorithms do not accurately reflect the problems of interest to practitioners.)
ewindclus performed best here, although it was only occasionally able to recover the
original models from the noise-free data.

Overall, it appears that current methods of additive clustering are quite sensitive to the
type of problem they are run on and that there is little assurance that they can recover the
underlying structure in the data, even for small problems. To address these problems, we
turn now to a new approach.

3 A Purely Combinatorial Approach

One common theme in indclus, sindclus, and ewindclus is their computation
of each cluster and its weight in turn, at each step fitting only the residual similarity not
accounted for by the other clusters. This forces memberships to be considered in a predeter-
mined order and allows weights to become obsolete. Inspired in part by recent work of Lee
(in press), we propose an orthogonal decomposition of the problem. Instead of computing
the elements and weight of each cluster in succession, we first consider all the member-
ships and then derive all the weights using constrained regression. And where previous
algorithms recompute all the memberships of one cluster simultaneously (and therefore in-
dependently), we will change memberships one by one in a dynamically determined order
using simple heuristic search techniques, recomputing the weights after each step. (An
incremental bounded least squares regression algorithm that took advantage of the previ-
ous solution would be ideal, but the algorithms tested below did not incorporate such an
improvement.) From this perspective, one need only focus on changing the binary mem-
bership variables, and ADCLUS becomes a purely combinatorial optimization problem.

We will evaluate three different algorithms based on this approach, all of which attempt to
improve a random initial model. The first, indclus-hc, is a simple hill-climbing strategy
which attempts to toggle individual memberships in an arbitrary order and the first change
resulting in an improved model is accepted. The algorithm terminates when no membership
can be changed to give an improvement. This strategy is reminiscent of a proposal by
Clouse and Cottrell (1996), although here we are using the ADCLUS model of similarity.
In the second algorithm, indclus-pbil, the PBIL algorithm of Baluja (1997) is used

2Table 3 shows one anomaly: no em-indclus run on animals resulted in a VAF ≥ 0. This also
occurred on all synthetic problems with 32 or more objects (although very good solutions were found
on the smaller problems). Tenenbaum (personal communication) suggests that the default annealing
schedule in the em-indclus code may need to be modified for these problems.



Table 4: The performance of the combinatorial algorithms on human data sets.

indclus-hc ind-pbil ewind-klb indclus
Name VAF IQR r VAF IQR VAF IQR r VAF IQR r

animals-s 80 80–80 44 74 71–74 80 80–80 74 80 80–80 47
numbers 90 90–91 24 87 85–88 91 91–91 18 90 89–91 59
workers 88 88–89 16 86 84–87 89 89–89 13 88 88–89 53

consonants 86 85–87 11 80 76–82 92 92–92 9 91 91–91 61
animals 71 70–72 8 66 65–69 74 74–74 6 74 74–74 36

letters 70 69–71 3 66 64–68 76 74–78 2 82 81–82 57

to search for appropriate memberships. This is a simplification of the strategy suggested
by Lee (in press), whose proposal also includes elements concerned with automatically
controlling model complexity. We use the parameter settings he suggests but only allow
the algorithm to generate 10,000 solutions.

3.1 KL Break-Out: A New Optimization Heuristic

While the two approaches described above do not use any problem-specific information be-
yond solution quality, the third algorithm uses the gradient function from the ewindclus
algorithm to guide the search. The move strategy is a novel combination of gradient ascent
and the classic method of Kernighan and Lin (1970) which we call ‘KL break-out’. It pro-
ceeds by gradient ascent, changing the entry in F whose ewindclus gradient points most
strongly to the opposite of its current value. When the ascent no longer results in an im-
provement, a local maximum has been reached. Motivated by results suggesting that good
maxima tend to cluster (Boese, Kahng, and Muddu, 1994; Ruml et al., 1996), the algo-
rithm tries to break out of the current basin of attraction and find a nearby maximum rather
than start from scratch at another random model. It selects the least damaging variable to
change, using the gradient as in the ascent, but now it locks each variable after changing
it. The pool of unlocked variables shrinks, thus forcing the algorithm out of the local max-
imum and into another part of the space. To determine if it has escaped, a new gradient
ascent is attempted after each locking step. If the ascent surpasses the previous maximum,
the current break-out attempt is abandoned and the ascent is pursued. If the break-out pro-
cedure changes all variables without any ascent finding a better maximum, the algorithm
terminates. The procedure is guaranteed to return a solution at least as good as that found
by the original KL method (although it will take longer), and it has more flexibility to
follow the gradient function. This algorithm, which we will call ewindclus-klb, sur-
passed the original KL method in time-equated tests. It is also conceptually simple and has
no parameters that need to be tuned.

3.2 Evaluation of the Combinatorial Algorithms

The time-equated performance of the combinatorial algorithms on the human data sets is
shown in Table 4, with indclus, the best of the previous algorithms, shown for com-
parison. As one might expect, adding heuristic guidance to the search helps it enor-
mously: ewindclus-klb surpasses the other combinatorial algorithms on every prob-
lem. It performs better than indclus on three of the human data sets (top panel), equals
its performance on two, and performs worse on one data set, letters. (Results in which
ewindclus-klbwas not the best are marked with a box.) The variance of indclus on
letters is very small, and the full distributions suggest that ewindclus-klb is the better
choice on this data set if one can afford the time to take the best of 20 runs. (Experiments



Table 5: ewindclus-klb and indclus on noisy synthetic data sets of increasing size.
ewindclus-klb indclus

n VAF IQR VAF IQR r
8 97 96–97 95 93–97 1

16 91 90–92 86 85–87 4
32 90 88–92 83 82–84 22
64 91 90–91 84 84–85 100

128 91 91–91 88 87–90 381

using 7 additional human data sets found that letters represented the weakest performance
of ewindclus-klb.)

Performance of a plain KL strategy (not shown) surpassed or equaled indclus on all
but two problems (consonants and letters), indicating that the combinatorial approach, in
tandem with heuristic guidance, is powerful even without the new ‘KL break-out’ strategy.

While we have already seen that synthetic data does not predict the relative performance
of algorithms on human data very well, it does provide a test of how well they scale to
larger problems. On noise-free synthetic data, ewindclus-klb reliably recovered the
original model on all data sets. It was also the best performer on the noisy synthetic data (a
comparison with indclus is presented in Table 5. These results show that, in addition to
performing best on the human data, the combinatorial approach retains its effectiveness on
larger problems.

In addition to being able to handle larger problems than previous methods, it is important to
note that the higher VAF of the models induced by ewindclus-klb often translates into
increased interpretability. In the model shown in Table 1, for instance, the best previously
published model (Tenenbaum, 1996), whose VAF is only 1.6% worse, does not contain s̆
in the unvoiced cluster.

4 Conclusions

We formalized the problem of constructing feature-based representations for cognitive
modeling as the unsupervised learning of ADCLUS models from similarity data. In an
empirical comparison sensitive to variance in solution quality and computation time, we
found that several recently proposed methods for recovering such models perform worse
than the original indclus algorithm of Arabie and Carroll (1980). We suggested a purely
combinatorial approach to this problem that is simpler than previous proposals, yet more
effective. By changing memberships one at a time, it makes fewer independence assump-
tions. We also proposed a novel variant of the Kernighan-Lin optimization strategy that
is able to follow the gradient function more closely, surpassing the performance of the
original.

While this work has extended the reach of the additive clustering paradigm to large prob-
lems, it is directly applicable to feature construction of only those cognitive models whose
representations encode similarity as shared features. (The cluster weights can be repre-
sented by duplicating strong features or by varying connection weights.) However, the
simplicity of the combinatorial approach should make it straightforward to extend to mod-
els in which the absence of features can enhance similarity. Other future directions include
using the output of one algorithm as the starting point for another, and incorporating mea-
sures of model complexity(Lee, in press).
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