Iterative-deepening Search with On-line Tree Size Prediction

Ethan Burns and Wheeler Ruml

UNIVERSITY of NEW HAMPSHIRE

{eaburns, ruml} at cs.unh.edu

Thanks to the NSF and the DARPA CSSG program for support

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 1 / 30

Take Away

ntroduction	
Take Away	
Search	
∎ IDA*	
■ IDA* Growth	
■ IDA* Problems	
Real Values	
The Problem	

Previous Work

Online Learning

```
Empirical Evaluation
```

On-line learning for shortest-path search

- Conventional IDA* uses a cost bound parameter
- Simple bound setting can fail on trivial problems
 - Learn a model of search space and adjust the bound online

Learning search space structure to control algorithms on-line works for shortest-path search, too!

Tree Search: Optimization $y = 2, x = \{2, 5\}, ...$ $x \leftarrow 2$ $x \leftarrow 5$ $x \leftarrow 5$ x

- I Nodes: partial assignment
- Edges: assign values

Heuristic Search: Planning $loc = \langle 1, 2 \rangle$ right down left up Nodes: world states Edges: actions

Tree Search: Optimization $y = 2, x = \{2, 5\}, ...$ $x \leftarrow 2$ $x \leftarrow 5$ $x \leftarrow 5$ $x \leftarrow 5$

- Bounded depth
- Depth-first branch-and-bound

Heuristic Search: Planning $loc = \langle 1, 2 \rangle$ right left down up Unbounded depth How do bound the we search?

- Nodes have lower bounds
- Incumbent provides upper bound for pruning

Heuristic Search: Planning $loc = \langle 1, 2 \rangle$

- Artificial upper bound to limit the tree
- Increase bound when search fails

Introd	luction
muou	uction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- Online Learning
- **Empirical Evaluation**

- Compute a lower bound at each node: f
- Use depth-first search and an upper bound to limit the tree
- Raise the bound and restart when the search fails

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- Online Learning
- **Empirical Evaluation**

- Compute a lower bound at each node: f
- Use depth-first search and an upper bound to limit the tree
- Raise the bound and restart when the search fails

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- Online Learning
- **Empirical Evaluation**

- Compute a lower bound at each node: f
- Use depth-first search and an upper bound to limit the tree
- Raise the bound and restart when the search fails

Introduction	

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- Online Learning
- **Empirical Evaluation**

- Compute a lower bound at each node: f
- Use depth-first search and an upper bound to limit the tree
- Raise the bound and restart when the search fails

Introd	luction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- **Online Learning**
- **Empirical Evaluation**

- Compute a lower bound at each node: f
- Use depth-first search and an upper bound to limit the tree
- Raise the bound and restart when the search fails

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- Online Learning
- **Empirical Evaluation**

- Compute a lower bound at each node: f
- Use depth-first search and an upper bound to limit the tree
- Raise the bound and restart when the search fails

Introduction	Compute a lower bound at each node: <i>f</i>
 ■ Take Away ■ Search ■ IDA* 	Use depth-first search and an upper bound to limit the tree
 IDA* Growth IDA* Problems 	Raise the bound and restart when the search fails
 Real Values The Problem Previous Work 	\bullet
Online Learning	
Empirical Evaluation	

Ethan Burns (UNH)

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 4 / 30

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 4 / 30

Introduction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion overhead is small

Introduction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- **Online Learning**
- **Empirical Evaluation**

If the new bound yields exponential growth then the re-expansion overhead is small

f < 10 🔘

Introd	luction
1111100	uction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion overhead is small

f < 10 🔘

Introduction	
Take Away	
Search	
■ IDA*	
□ IDA* Growth	
■ IDA* Problem	
Real Values	
■ The Problem	

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion overhead is small

f < 10 🔘 f < 11 🔘 🔘

f < 12 🔿 🔿 🔿 🔿

Ethan Burns (UNH)

f < 10 🔘

|--|

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- **Online Learning**
- **Empirical Evaluation**

If the new bound yields exponential growth then the re-expansion overhead is small

f < 1100 f < 120000 f < 1300000000

Introduction ■ Take Away ■ Search ■ IDA*	If the n overhea
 IDA* Growth IDA* Problems ■ Real Values 	f < 10
■ The Problem Previous Work	f < 11
Online Learning Empirical Evaluation	f < 12
	f < 13
	f < 14

new bound yields exponential growth then the re-expansion ad is small

 \bigcirc

 $\bigcirc \bigcirc$

0000

Introduction

Take Away

Search

■ IDA*

■ IDA* Growth

IDA* Problems

Real Values

■ The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields little growth then the re-expansion overhead dominates

Ethan Burns (UNH)

Introduction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- **Online Learning**
- **Empirical Evaluation**

If the new bound yields little growth then the re-expansion overhead dominates

f < 10 🔘

Introd	uction
1111100	uction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields little growth then the re-expansion overhead dominates

f < 10 O O O O

Introd	luction
introa	uction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- **Online Learning**

```
Empirical Evaluation
```

If the new bound yields little growth then the re-expansion overhead dominates

f < 10 O O O O

f < 12 0 0 0 0 0 0 0

Introd	luction
introa	uction

- Take Away
- Search
- IDA*
- IDA* Growth
- IDA* Problems
- Real Values
- The Problem
- **Previous Work**
- **Online Learning**

```
Empirical Evaluation
```

If the new bound yields little growth then the re-expansion overhead dominates

f < 10 🔘

f < 11 0 0 0 0

f < 10 🔘

Introduction	
Take Away	
Search	
■ IDA*	
■ IDA* Growth	
■ IDA* Problems	
Real Values	
■ The Problem	
Previous Work	
Online Learning	
Empirical Evaluation	

If the new bound yields little growth then the re-expansion overhead dominates

Take Away Search	Real value
IDA* IDA* Growth	
IDA* Problems	f < 1.112
Real Values	
The Problem	f < 1.198
Online Learning	f < 1.281
	f < 1.321
	f < 1.418

Real valued costs tend to have sub-exponential growth

How Do We Set The Bound?

- If the bound is set too low there is too much re-expansion overhead (original IDA*)
- If the bound is set too high then the tree becomes intractably large

How Do We Set The Bound?

- If the bound is set too low there is too much re-expansion overhead (original IDA*)
- If the bound is set too high then the tree becomes intractably large

Answer: learn a model of the space on-line

Introduction

Previous Work

■ IDA*CR

Problems

Online Learning

Empirical Evaluation

Previous Work

Ethan Burns (UNH)

IDA* with Controlled Re-expansion (IDA*_{CR}, Sarkar et al., 1991)

Introduction

Previous Work

□ IDA*_{CR}

Problems

Online Learning

Empirical Evaluation

Goal: Try to select an f bound for the next iteration that doubles the number of nodes

IDA* with Controlled Re-expansion (IDA*_{CR}, Sarkar et al., 1991)

Introd	uction
muou	uction

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

Goal: Try to select an f bound for the next iteration that doubles the number of nodes

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Ethan Burns (UNH)
Log Alexand	
Introd	liction
111000	action

Previous Work

- IDA*CR
 Problems
- Online Learning
- **Empirical Evaluation**

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

1	
Introducti	on
menouuou	••••

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Introduction	

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Introd	liction
	action

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Introv	duiction.	
IIIIIO	JUCLION	

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Introd	uction
muou	uction

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

1	
Introducti	on
menouuou	••••

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Introduction	
Previous Work	

■ IDA^{*}CR ■ Problems

Online Learning

Empirical Evaluation

Goal: Try to select an f bound for the next iteration that doubles the number of nodes

Histogram of f values of pruned nodes

These nodes are candidates for the next iteration

Introduction	

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

Goal: Try to select an f bound for the next iteration that doubles the number of nodes

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

Goal: Try to select an f bound for the next iteration that doubles the number of nodes

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Introd	uction
muou	uction

Previous Work

- IDA*CR
 Problems
- Online Learning

Empirical Evaluation

Goal: Try to select an f bound for the next iteration that doubles the number of nodes

- Histogram of f values of pruned nodes
 - These nodes are candidates for the next iteration

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 10 / 30

Two Problems with IDA*_{CR}

1. What if there are too few pruned nodes?

_____0

Empirical Evaluation

Two Problems with IDA*_{CR}

1. What if there are too few pruned nodes?

Two Problems with IDA*_{CR}

1. What if there are too few pruned nodes?

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 11 / 30

Introduction

Previous Work

Online Learning

■ IDA*_{IM}

Empirical Evaluation

IDA* with Online Learning

Introduction

Previous Work

Online Learning

□ IDA*_{IM}

Empirical Evaluation

Learn how costs change during previous iterations of search Incremental: allows for extrapolation

Introduction

Previous Work

Online Learning ■ IDA*_{IM}

Empirical Evaluation

- Learn how costs change during previous iterations of search Incremental: allows for extrapolation
- Between iterations, use the model to build a histogram
 f(i+1) = f(i) + \Delta f

See the paper for extensive details

Introduction

Previous Work

Online Learning ■ IDA*_{IM}

Empirical Evaluation

- Learn how costs change during previous iterations of search Incremental: allows for extrapolation
- Between iterations, use the model to build a histogram
 f(i+1) = f(i) + \Delta f

See the paper for extensive details

The model is flexible:

- Can predict a bound to give a desired number of nodes
- Can predict a number of nodes within a given bound

Introduction

Previous Work

Online Learning

Empirical Evaluation

■ Sliding Tile

■ Sqrt Puzzle

■ Vacuum Maze

■ Uniform Tree

■ Conclusion

Empirical Evaluation

Sliding Tile Puzzle

Introduction

Previous Work

Online Learning

Empirical Evaluation

■ Sliding Tile

■ Sqrt Puzzle

Vacuum Maze

- Uniform Tree
- Conclusion

- A classic planning benchmark
- Easy to implement
- Models constrained logistics
- Exponential growth: IDA* performs well

Controlling IDA* Search: On-line learning

Goal: Double growth between iterations

All algorithms give correct behavior but differ in overhead

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction -16/30

Square Root Sliding Tile Puzzle

Introduction

Previous Work

Online Learning

Empirical Evaluation

■ Sliding Tile

Sqrt Puzzle

Vacuum Maze

- Uniform Tree
- Conclusion

- New action cost: each move costs \sqrt{t} , for each tile t
- Real-value edge costs
- Non-exponential growth: IDA* performs poorly

Controlling IDA* Search: On-line learning

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction - 18 / 30

Vacuum Maze

Introduction

Previous Work

Online Learning

Empirical Evaluation

■ Sliding Tile

Sqrt Puzzle

Vacuum Maze

- Uniform Tree
- Conclusion

- Find and cleanup pieces of dirt in a maze
- TSP combined with maze navigation
- Non-exponential growth: IDA* performs poorly
- Very few pruned successors: simple model performs poorly

Controlling IDA* Search: On-line learning

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction - 20 / 30

Synthetic Uniform Tree

Introduction
Previous Work
Online Learning
Empirical Evaluation
Sliding Tile

- Sqrt Puzzle
- Vacuum Maze
- Uniform Tree
- Conclusion

- Each node has 3 children with costs 1, 20 and 100Solution is at depth 22
- Solution is path is random 1 and 20 cost branches
- Non-exponential growth: IDA* performs poorly
- Lots of cheap actions: simple model performs poorly

Controlling IDA* Search: On-line learning

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction - 22 / 30

Conclusion

Introduction

Previous Work

Online Learning

Empirical Evaluation

■ Sliding Tile

Sqrt Puzzle

- Vacuum Maze
- Uniform Tree
- Conclusion

Tree search for Planning

Infinite tree: requires a cost bound

How do we set the bound?

New incremental model:

Works with real-value costs

Can be trained on-line

IDA*_{IM}:

- Uses the incremental model to choose bounds
- Performs well on all domains tested

On-line learning to control search applies to shortest-path search, too!

Introd	lliction
	action

Previous Work

Online Learning

Empirical Evaluation

■ Sliding Tile

■ Sqrt Puzzle

■ Vacuum Maze

■ Uniform Tree

Conclusion

Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- easy access to Boston
- strong in AI, infoviz, networking

Introduction

Previous Work

Online Learning

Empirical Evaluation

Additional Slides

■ Off-line Training

■ IDA*_{IM}

■ The Model

Additional Slides

Off-line Training

Introduction
Previous Work
Online Learning
Empirical Evaluation
Empirical Evaluation
Additional Slides
Off-line Training
■ IDA*IM

■ The Model

- The model can be used off-line too: estimate node expansions to solve a problem
- Previous technique is off-line only
 - Previous technique works with integer costs only

When restricted to integer costs, how does our new approach compare?

Predicting Algorithm Behavior: Off-line Training

Predict the number of nodes visited

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 27 / 30

Introduction

Previous Work

Online Learning

Empirical Evaluation

Additional Slides

■ Off-line Training

■ IDA*IM

■ The Model

Learn how costs change during previous iterations of search Incremental: allows for extrapolation

Introduction

- Previous Work
- Online Learning
- **Empirical Evaluation**

Additional Slides

■ Off-line Training

■ IDA*_{IM}

The Model

- Learn how costs change during previous iterations of search
 Incremental: allows for extrapolation
- Between iterations, use the model to build a histogram
 f(i+1) = f(i) + \Delta f

See the paper for extensive details

Introduction

- Previous Work
- Online Learning
- **Empirical Evaluation**

Additional Slides
Off-line Training

- IDA*_{IM}
- The Model

- Learn how costs change during previous iterations of search Incremental: allows for extrapolation
- Between iterations, use the model to build a histogram
 f(i+1) = f(i) + \Delta f

See the paper for extensive details

The model is flexible:

- Can predict a bound to give a desired number of nodes
- Can predict a number of nodes within a given bound
| Introduction |
|----------------------|
| Previous Work |
| Online Learning |
| Empirical Evaluation |
| Additional Slides |
| ■ Off-line Training |
| ■ IDA* _{IM} |

The Model

Introduction
Previous Work
Online Learning
Empirical Evaluation

Additional Slides

Off-line Training

■ IDA*IM

The Model

Between iterations, estimate f distribution in the search space

- Beginning from the initial node's f value
- Extrapolate f values of successors using the Δf distrobution

Previous Work

Online Learning

Empirical Evaluation

Additional Slides

■ Off-line Training

■ IDA*IM

The Model

Between iterations, estimate f distribution in the search space

Beginning from the initial node's f value

Extrapolate f values of successors using the Δf distrobution $\overset{\rm f=10}{\bigcirc}$

|--|

Previous Work

Online Learning

Empirical Evaluation

Additional Slides

■ Off-line Training

■ IDA*IM

The Model

Between iterations, estimate f distribution in the search space

- Beginning from the initial node's f value
- Extrapolate f values of successors using the Δf distrobution $\int_{f=10}^{f=10} \int_{sum f=10}^{sum f=10}$

Between iterations, estimate f distribution in the search space Beginning from the initial node's f value

Extrapolate f values of successors using the Δf distrobution $\int_{\text{delta } f=0}^{f=10} \sup_{\text{sum } f=0}^{f=10} \int_{\text{f=10}}^{f=10} \int_{\text{f=10}$

Empirical Evaluation

Additional Slides

■ Off-line Training

■ IDA*IM

The Model

Between iterations, estimate f distribution in the search space Beginning from the initial node's f value

Extrapolate f values of successors using the Δf distrobution $\int_{delta f=}^{f=10} \int_{delta f=0}^{sum f=0} \int_{delta f=0}$

sum f=

Between iterations, estimate f distribution in the search space Beginning from the initial node's f value

Extrapolate f values of successors using the Δf distrobution $f=10 \quad \text{sum } f=$ $delta f = \int_{f=1}^{f=10} \int_{f=1}^{f=10} \int_{f=1}^{f=10} \int_{f=1}^{f=10} \int_{f=1}^{f=10} \int_{f=1}^{f=10} \int_{f=10}^{f=10} \int$

Ethan Burns (UNH)

Between iterations, estimate f distribution in the search space Beginning from the initial node's f value

Extrapolate f values of successors using the Δf distrobution f=10 sum f= sum f= sum f=

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction – 30 / 30