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On-line learning for shortest-path search

Conventional IDA* uses a cost bound parameter
Simple bound setting can fail on trivial problems

Learn a model of search space and adjust the bound online

Learning search space structure to control algorithms on-line
works for shortest-path search, too!
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Tree Search Versus Shortest Path Search
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y=2,z={2,5},...

x +— 2 xr < 5

Nodes:
partial assignment

Edges: assign values

Heuristic Search: Planning

loc = (1, 2)

m Nodes: world states

m Edges: actions
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Tree Search: Optimization

y=2,z={2,5},...

Heuristic Search: Planning

loc = (1, 2)

Nodes have lower bounds

Incumbent provides upper
bound for pruning

m Artificial upper bound to

limit the tree

m |Increase bound when search

fails
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Compute a lower bound at each node: f
Use depth-first search and an upper bound to limit the tree

Raise the bound and restart when the search fails

How do we set the bound?
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IDA* Growth

e If the new bound yields exponential growth then the re-expansion
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m Search

m |IDA*

m IDA* Problems
m Real Values

® The Problem

Previous Work

Online Learning

Empirical Evaluation

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



IDA* Growth

Introduction

m Take Away
m Search
m [DA*

m |IDA* Growth

m IDA* Problems
m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion
overhead is small

f<100

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



IDA* Growth

Introduction

m Take Away
m Search
m [DA*

m |IDA* Growth

m IDA* Problems
m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion
overhead is small

f<100
f<110 O

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



IDA* Growth

Introduction

m Take Away
m Search
m [DA*

m |IDA* Growth

m IDA* Problems
m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion
overhead is small

f<100

f<110 O
f<120000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



IDA* Growth

Introduction

m Take Away
m Search
m [DA*

m |IDA* Growth

m IDA* Problems
m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields exponential growth then the re-expansion
overhead is small

f<100

f<110 O
f<120000
f<1300000000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



IDA* Growth

e If the new bound yields exponential growth then the re-expansion
m Take Away overhead is small

m Search
m |IDA*

m IDA* Problems f< 10 O

m Real Values
m The Problem

Previous Work f < 1 1 O O

Online Learning

Empirical Evaluation f < 12 O O O O
f<130000000O0

f<140000000000000000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



IDA* Growth

e If the new bound yields exponential growth then the re-expansion
m Take Away overhead is small

m Search
m |IDA*

m |IDA* Growth
m IDA* Problems f< 10

m Real Values
m The Problem

P o™

f< 114300
\.' \.'

Previous Work

Online Learning

o™ ~

- ~»
fa 1200300 |
1 L L L
\.' \.' \.' \.'

Empirical Evaluation

f<BbOOOOOOdbOOdbdé

f<140000000000000000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 5 / 30



Problems with IDA¥*

e If the new bound yields little growth then the re-expansion
m Take Away overhead dominates

m Search

m |IDA*

m IDA* Growth
m Real Values
® The Problem

Previous Work

Online Learning

Empirical Evaluation

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Problems with IDA¥*

Introduction

m Take Away
m Search

m |IDA*

m IDA* Growth

m IDA* Problems

m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields little growth then the re-expansion
overhead dominates

f<100

Ethan Burns (UNH)

Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Problems with IDA¥*

Introduction

m Take Away
m Search

m |IDA*

m IDA* Growth

m IDA* Problems

m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields little growth then the re-expansion
overhead dominates

f<100
f<110000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Problems with IDA¥*

Introduction

m Take Away
m Search

m |IDA*

m IDA* Growth

m IDA* Problems

m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields little growth then the re-expansion
overhead dominates

f<100

f<11000O0
f<120000000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Problems with IDA¥*

Introduction

m Take Away
m Search

m |IDA*

m IDA* Growth

m IDA* Problems

m Real Values
m The Problem

Previous Work

Online Learning

Empirical Evaluation

If the new bound yields little growth then the re-expansion
overhead dominates

f<100

f<11000O0
f<120000000
f<130000000000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Problems with IDA¥*

e If the new bound yields little growth then the re-expansion
m Take Away overhead dominates

m Search
m |IDA*
m IDA* Growth

f<100

m Real Values
m The Problem

Previous Work f < 1 1 O O O O
o cmen. [ < 120000000
f<130000000000

f<140000000000000

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Problems with IDA¥*

e If the new bound yields little growth then the re-expansion
m Take Away overhead dominates

m Search

m |IDA*

m IDA* Growth

f< 1000
m Real Values =
® The Problem

Previous Work

Online Learning

,.\ ,h‘ ,h‘ ,h‘ P

f< 12030 ndnenenh

w«? Yo Ve Yae Ve ML oo ¢ I
f<130000000000000000000C
f<140000000000000

Empirical Evaluation

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 6 / 30



Real Valued Costs

Real valued costs tend to have sub-exponential growth
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How Do We Set The Bound?

If the bound is set too low there is too much re-expansion
overhead (original IDA¥*)

If the bound is set too high then the tree becomes
intractably large

Answer: learn a model of the space on-line
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IDA* with Controlled Re-expansion (IDA*.g, Sarkar et al., 1991)

Goal: Try to select an f bound for the next iteration that
doubles the number of nodes
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Two Problems with IDA*_,
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2. What if there are too many new nodes?

Next Bound

This simple model only looks ahead one layer
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Online Learning

IDA* with Online Learning
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IDA*,,: New Approach for Setting IDA* Bounds

m Learn how costs change during previous iterations of search
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m Between iterations, use the model to build a histogram
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See the paper for extensive details
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Learn how costs change during previous iterations of search

Incremental: allows for extrapolation

Between iterations, use the model to build a histogram

fli+1)=fl)+Af

See the paper for extensive details

The model is flexible:
Can predict a bound to give a desired number of nodes

Can predict a number of nodes within a given bound
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Sliding Tile Puzzle
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m Sliding Tile

m Sqgrt Puzzle
® Vacuum Maze

m Uniform Tree
m Conclusion

m A classic planning benchmark
m Easy to implement
m  Models constrained logistics

m Exponential growth: IDA* performs well
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Controlling IDA* Search: On-line learning

Goal: Double growth between iterations

Introduction

Previous Work

Online Learning

12 100
Empirical Evaluation . New model —
- Simple model ~--
m Sqrt Puzzle _§ No mode] ====-:
] Va?uum Maze 5 y=2
[ ] Umform. Tree - =
m Conclusion 4; g
S 67 S 90
o0 0]
o IS
8
o)
(eb]
S
O_ | ! ! ! ! | ! ! ! ! | ! 80_ | ! | ! |
0 _ 5 10 0 10000 20000
iteration number CPU time

All algorithms give correct behavior but differ in overhead
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The new model predicts accurately, the simple one does not

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 18 / 30



Vacuum Maze
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m Sliding Tile
m Sqrt Puzzle

B Vacuum Maze

m Uniform Tree

m Conclusion

m  Find and cleanup pieces of dirt in a maze
m  [SP combined with maze navigation
m  Non-exponential growth: IDA* performs poorly

m  Very few pruned successors: simple model performs poorly
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Controlling IDA* Search: On-line learning
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Too few successors so the simple model fails
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Synthetic Uniform Tree
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® Vacuum Maze

m

m Conclusion

1 20 100

@)

Each node has 3 children with costs 1, 20 and 100
Solution is at depth 22

Solution is path is random 1 and 20 cost branches
Non-exponential growth: IDA* performs poorly

Lots of cheap actions: simple model performs poorly
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Previous Work
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Too many successors, the simple model fails

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction — 22 / 30



Conclusion

Tree search for Planning

Introduction

m Infinite tree: requires a cost bound

Previous Work

Online Learning

m How do we set the bound?

Empirical Evaluation

m Sliding Tile New incremental model:
m Sqrt Puzzle
= Vacuum Maze m  Works with real-value costs

m Uniform Tree

. .
m Can be trained on-line

IDA*,:

m Uses the incremental model to choose bounds

m Performs well on all domains tested

On-line learning to control search applies to shortest-path
search, too!
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The University of New Hampshire

Tell your students to apply to grad school in CS at UNH!

Introduction

Previous Work

m friendly faculty

Online Learning

Empirical Evaluation
m Sliding Tile

m Sqgrt Puzzle

® Vacuum Maze

m funding

m individual attention

m Uniform Tree

'
m Conclusion m  beautiful campus

m easy access to Boston

m strong in Al, infoviz,
networking
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Additional Slides

Additional Slides
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Off-line Training

. The model can be used off-line too: estimate node expansions to
Previous Work solve a problem

Online Learning

m  Previous technique is off-line only

Empirical Evaluation

Additional Slides m  Previous technique works with integer costs only

m Off-line Training

| | |DA*|M
m The Model

When restricted to integer costs, how does our new approach
compare?
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Predicting Algorithm Behavior: Off-line Training

Introduction

Previous Work

Online Learning

Empirical Evaluation

Additional Slides
[} |DA*|M
B The Model

Predict the number of nodes visited
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IDA*,,: New Approach for Setting IDA* Bounds

m Learn how costs change during previous iterations of search

Introduction

Previous Work

m |ncremental: allows for extrapolation

Online Learning

Empirical Evaluation

Additional Slides
m Off-line Training

| | |DA*|M

m The Model
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IDA*,,: New Approach for Setting IDA* Bounds

m Learn how costs change during previous iterations of search

Introduction

Previous Work

m |ncremental: allows for extrapolation

Online Learning

Empirical Evaluation

Adg;tFiT_"a'i“d_e? m Between iterations, use the model to build a histogram
[ -line Training

- -

m The deI u f(Z + 1) — f(Z) + Af

See the paper for extensive details
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IDA*,,: New Approach for Setting IDA* Bounds

m Learn how costs change during previous iterations of search

Introduction

Previous Work

m |ncremental: allows for extrapolation

Online Learning

Empirical Evaluation

AdgiftFiT_na'i“C{e? m Between iterations, use the model to build a histogram
[ -line Training

- -

m The deI u f(Z + 1) — f(z) + Af

See the paper for extensive details

The model is flexible:
m Can predict a bound to give a desired number of nodes

m Can predict a number of nodes within a given bound
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A High-level Description of the Model

Learn how f tends to change from parent to child

Introduction

Previous Work m Use a histogram to track distribution of A f

Online Learning

Empirical Evaluation

Additional Slides
m Off-line Training
] |DA*|M

m The Model
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A High-level Description of the Model

Between iterations, estimate f distribution in the search space

Introduction

Previous Work m  Beginning from the initial node’s f value

Online Learning

Empirical Evaluation W Extrapolate f values of successors using the A f distrobution
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