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On-line learning for shortest-path search

■ Conventional IDA* uses a cost bound parameter

■ Simple bound setting can fail on trivial problems

■ Learn a model of search space and adjust the bound online

Learning search space structure to control algorithms on-line
works for shortest-path search, too!
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Tree Search: Optimization Heuristic Search: Planning

y = 2, x = {2, 5}, ...

x← 2 x← 5

loc = 〈1, 2〉

left right up down

■ Nodes:
partial assignment

■ Edges: assign values

■ Nodes: world states

■ Edges: actions
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Tree Search: Optimization Heuristic Search: Planning

y = 2, x = {2, 5}, ...

x← 2 x← 5

loc = 〈1, 2〉

left right up down

■ Find minimum cost
assignment

■ Find cheapest plan that
achieves goal
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Tree Search: Optimization Heuristic Search: Planning

y = 2, x = {2, 5}, ...

x← 2 x← 5

loc = 〈1, 2〉

left right up down

■ Bounded depth

■ Depth-first
branch-and-bound

■ Unbounded depth

■ How do we bound the
search?
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Tree Search: Optimization Heuristic Search: Planning

y = 2, x = {2, 5}, ...

x← 2 x← 5

loc = 〈1, 2〉

left right up down

■ Nodes have lower bounds

■ Incumbent provides upper
bound for pruning

■ Artificial upper bound to
limit the tree

■ Increase bound when search
fails
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■ Compute a lower bound at each node: f

■ Use depth-first search and an upper bound to limit the tree

■ Raise the bound and restart when the search fails
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■ Compute a lower bound at each node: f

■ Use depth-first search and an upper bound to limit the tree

■ Raise the bound and restart when the search fails

How do we set the bound?
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If the new bound yields exponential growth then the re-expansion
overhead is small
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Real valued costs tend to have sub-exponential growth
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How Do We Set The Bound?

■ If the bound is set too low there is too much re-expansion
overhead (original IDA*)

■ If the bound is set too high then the tree becomes
intractably large
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How Do We Set The Bound?

■ If the bound is set too low there is too much re-expansion
overhead (original IDA*)

■ If the bound is set too high then the tree becomes
intractably large

Answer: learn a model of the space on-line
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Goal: Try to select an f bound for the next iteration that
doubles the number of nodes
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■ Histogram of f values of pruned nodes

◆ These nodes are candidates for the next iteration
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Goal: Try to select an f bound for the next iteration that
doubles the number of nodes

■ Histogram of f values of pruned nodes

◆ These nodes are candidates for the next iteration

■ Find a bound using this histogram



Two Problems with IDA*CR

Introduction

Previous Work

■ IDA*CR
■ Problems

Online Learning

Empirical Evaluation

Ethan Burns (UNH) Iterative-deepening Search with On-line Tree Size Prediction – 11 / 30

1. What if there are too few pruned nodes?
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1. What if there are too few pruned nodes?

2. What if there are too many new nodes?
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1. What if there are too few pruned nodes?

2. What if there are too many new nodes?

This simple model only looks ahead one layer
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■ Incremental: allows for extrapolation
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■ Learn how costs change during previous iterations of search

■ Incremental: allows for extrapolation

■ Between iterations, use the model to build a histogram

■ f(i+ 1) = f(i) + ∆f

See the paper for extensive details
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■ Learn how costs change during previous iterations of search

■ Incremental: allows for extrapolation

■ Between iterations, use the model to build a histogram

■ f(i+ 1) = f(i) + ∆f

See the paper for extensive details

The model is flexible:

■ Can predict a bound to give a desired number of nodes

■ Can predict a number of nodes within a given bound
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■ A classic planning benchmark

■ Easy to implement

■ Models constrained logistics

■ Exponential growth: IDA* performs well
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Goal: Double growth between iterations
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All algorithms give correct behavior but differ in overhead
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■ New action cost: each move costs
√
t, for each tile t

■ Real-value edge costs

■ Non-exponential growth: IDA* performs poorly
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The new model predicts accurately, the simple one does not
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■ Find and cleanup pieces of dirt in a maze

■ TSP combined with maze navigation

■ Non-exponential growth: IDA* performs poorly

■ Very few pruned successors: simple model performs poorly
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Too few successors so the simple model fails
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1 20 100

■ Each node has 3 children with costs 1, 20 and 100

■ Solution is at depth 22

■ Solution is path is random 1 and 20 cost branches

■ Non-exponential growth: IDA* performs poorly

■ Lots of cheap actions: simple model performs poorly
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Tree search for Planning

■ Infinite tree: requires a cost bound

■ How do we set the bound?

New incremental model:

■ Works with real-value costs

■ Can be trained on-line

IDA*IM:

■ Uses the incremental model to choose bounds

■ Performs well on all domains tested

On-line learning to control search applies to shortest-path
search, too!
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Tell your students to apply to grad school in CS at UNH!

■ friendly faculty

■ funding

■ individual attention

■ beautiful campus

■ easy access to Boston

■ strong in AI, infoviz,
networking
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The model can be used off-line too: estimate node expansions to
solve a problem

■ Previous technique is off-line only

■ Previous technique works with integer costs only

When restricted to integer costs, how does our new approach
compare?
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Predict the number of nodes visited
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■ Learn how costs change during previous iterations of search

■ Incremental: allows for extrapolation
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■ Learn how costs change during previous iterations of search

■ Incremental: allows for extrapolation

■ Between iterations, use the model to build a histogram

■ f(i+ 1) = f(i) + ∆f

See the paper for extensive details
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■ Learn how costs change during previous iterations of search

■ Incremental: allows for extrapolation

■ Between iterations, use the model to build a histogram

■ f(i+ 1) = f(i) + ∆f

See the paper for extensive details

The model is flexible:

■ Can predict a bound to give a desired number of nodes

■ Can predict a number of nodes within a given bound
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Learn how f tends to change from parent to child

■ Use a histogram to track distribution of ∆f
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Between iterations, estimate f distribution in the search space

■ Beginning from the initial node’s f value

■ Extrapolate f values of successors using the ∆f distrobution
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