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■ motivation

■ building inadmissible heuristics during search

observing error

correcting for error

■ performance of learned heuristics

suboptimal search - greedy best-first search

bounded suboptimal search - skeptical search
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goal: work out of the box on single instances

■ avoid offline training

■ avoid domain specific features

■ rely on data easily available in any best-first search

boost any suboptimal search
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f(p) should equal f(bc)

f∗(p) = f∗(bc)

g(p) + h∗(p) = g(bc) + h∗(bc)

h∗(p) = h∗(bc) + c(p, bc)

h(p) = h(bc) + c(p, bc)− ǫh

ǫh = h(bc) + c(p, bc)− h(p)

ĥ(n) = h(n) + ǭh · d(n)

ĥ(n) = h(n) + ǭh · d̂(n)
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■ a parent and its best child should have same f

■ every expansion provides information – use it!

■ single step error can be measured during search

and we can use those corrections during that search
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■ motivation

■ building inadmissible heuristics during search

■ performance of learned heuristics

suboptimal – greedy best-first search

bounded suboptimal – skeptical search
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■ motivation

■ building inadmissible heuristics during search

■ performance of learned heuristics

suboptimal – greedy best-first search

bounded suboptimal – skeptical search
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given a suboptimality bound w,
find a solution within the bound as quickly as possible

use optimistic framework (Thayer and Ruml, ICAPS-08):

1. run weighted A∗ with an inadmissible heuristic

f ′(n) = g(n) + w · ĥ(n)

2. after a solution is found expand node with lowest f value

continue until w · f(bestf ) ≥ f(sol)

this ’clean up’ guarantees solution quality

(no ad hoc optimism parameter!)
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■ accuracy less important than relative ordering

■ instance specific learning truly beneficial

■ distance estimates very helpful

for non-unit cost problems

■ skeptical proof of bounded suboptimality
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■ we can learn inadmissible heuristics

these improve search guidance, make search go fast

■ we can learn them online, during search

no dependence on domain specific information

no offline training

can learn instance specific correction

■ skeptical search

removes parameter of optimistic search

state of the art performance
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Tell your students to apply to grad school in CS at UNH!

■ friendly faculty

■ funding

■ individual attention

■ beautiful campus

■ low cost of living

■ easy access to Boston,
White Mountains

■ strong in AI, infoviz,
networking, systems,
bioinformatics
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