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■ autonomy

◆ exploration
◆ transportation
◆ manufacturing
◆ autonomic systems

■ decision support

◆ operations
management

◆ personal health
◆ eldercare
◆ education
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Given:

■ current state of the world
■ models of available actions

preconditions, effects, costs

■ desired state of the world (partially specified?)

Find:

■ cheapest plan
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Given:

■ start state: an explicit node
■ expand function:

lazily generate children and their costs
■ goal test: predicate on nodes

Find:

■ cheapest path to a goal node

current
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Given:

■ start state: an explicit node
■ expand function:

lazily generate children and their costs
■ goal test: predicate on nodes

Find:

■ cheapest path to a goal node

root = 0
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(S. LaValle)
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1. Uniform Cost Search (Dijkstra, 1959)

2. A* Search (Hart, Nilsson, and Raphael, 1968)

3. Explicit Estimation Search (Thayer and Ruml, 2011)
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Explore nodes in increasing order of cost-so-far (g(n)):

open ← ordered list containing the initial state
Loop

If open is empty, return failure
Node ← pop cheapest node off open

If Node is a goal, return it (or path to it)
Children ← Expand(Node).
Merge Children into open, keeping sorted by g(n).
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h(n) ≤ c*(n,goal)

'admissible'
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f(n) = g(n) + h(n)
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Cost should include both cost-so-far and cost-to-go:

g(n) = cost incurred so far
h(n) = lower bound on cost to goal
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open ← ordered list containing the initial state
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Cost should include both cost-so-far and cost-to-go:

g(n) = cost incurred so far
h(n) = lower bound on cost to goal
f(n) = g(n) + h(n)

open ← ordered list containing the initial state
Loop

If open is empty, return failure
Node ← pop cheapest node off open

If Node is a goal, return it (or path to it)
Children ← Expand(Node)
Merge Children into open, keeping sorted by f(n)

finds optimal solution if heuristic is admissible
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f(n) is a lower bound on cost of plan through n
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f(n) = g(n) + h(n)

g(n) is actual cost-so-far, so
when h(n) is a lower bound on cost-to-go,
f(n) is a lower bound on cost of plan through n

lowest f(n) on frontier gives lower bound for entire problem!

bestf = argmin
n∈open

f(n)
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A* takes exponential memory

Can sometimes be fixed: see ‘iterative deepening’

A* takes exponential time

Helmert and Röger, “How Good is Almost Perfect?” AAAI-08

We must trade cost for time.
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optimal: minimize solution cost
must expand all with f(n) < f∗(opt)

greedy: minimize solving time

anytime: incrementally converge to optimal

bounded suboptimal: minimize time subject to relative cost
bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

utility function: maximize utility function of cost and time
eg, goal achievement time =

plan makespan + search time
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optimal: minimize solution cost
must expand all with f(n) < f∗(opt)

greedy: minimize solving time

anytime: incrementally converge to optimal

bounded suboptimal: minimize time subject to relative cost
bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

utility function: maximize utility function of cost and time
eg, goal achievement time =

plan makespan + search time
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■ unbiased estimates can be more informed than lower bounds
■ nearest goal is the easiest to find
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■ unbiased estimates can be more informed than lower bounds
■ nearest goal is the easiest to find

minimize solving time subject to cost ≤ w·optimal:

pursue nearest goal estimated to lie within bound

need more information than just lower bound on cost (h(n))!
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the traditional optimal A* lower bound
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1. h: a lower bound on cost-to-go
f(n) = g(n) + h(n)
the traditional optimal A* lower bound

2. ĥ: an estimate of cost-to-go
unbiased estimates can be more informed
f̂(n) = g(n) + ĥ(n)
(Thayer and Ruml, ICAPS-11)

3. d̂: an estimate of distance-to-go
nearest goal is the easiest to find
(Pearl and Kim, IEEE PAMI 1982,
Thayer et al, ICAPS-09)

pursue nearest goal estimated to lie within bound
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bestf : open node giving lower bound on cost

argmin
n∈open

f(n)

best
f̂
: open node giving estimated optimal cost

argmin
n∈open

f̂(n)

pursue nearest goal estimated to lie within bound

best
d̂
: estimated w-suboptimal node with minimum d̂

argmin
n∈open∧f̂(n)≤w·f̂(best

f̂
)

d̂(n)
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bestf : open node giving lower bound on cost
best

f̂
: open node giving estimated optimal cost

best
d̂
: estimated w-suboptimal node with minimum d̂

node to expand next:

1. pursue the nearest goal estimated to lie within the bound
2.
3.

in other words:

1. best
d̂

2.
3.
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bestf : open node giving lower bound on cost
best

f̂
: open node giving estimated optimal cost

best
d̂
: estimated w-suboptimal node with minimum d̂

node to expand next:

1. pursue the nearest goal estimated to lie within the bound
2.
3.

in other words:

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2.
3.
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bestf : open node giving lower bound on cost
best

f̂
: open node giving estimated optimal cost

best
d̂
: estimated w-suboptimal node with minimum d̂

node to expand next:

1. pursue the nearest goal estimated to lie within the bound
2. pursue the estimated optimal solution
3.

in other words:

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

3.
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bestf : open node giving lower bound on cost
best

f̂
: open node giving estimated optimal cost

best
d̂
: estimated w-suboptimal node with minimum d̂

node to expand next:

1. pursue the nearest goal estimated to lie within the bound
2. pursue the estimated optimal solution
3. raise the lower bound on optimal solution cost

in other words:

1. if f̂(best
d̂
) ≤ w · f(bestf ) then best

d̂

2. else if f̂(best
f̂
) ≤ w · f(bestf ) then best

f̂

3. else bestf

see paper for further justification. Note: no magic numbers!
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how does f̂(n) ≤ w · f(bestf ) ensure the suboptimality bound?
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how does f̂(n) ≤ w · f(bestf ) ensure the suboptimality bound?

f(n) ≤ f̂(n) f(n) is a lower bound for n

f̂(n) ≤ w · f(bestf ) expansion criterion
w · f(bestf ) ≤ w · f∗(opt) because f(bestf ) is a lower

bound for the entire problem

f(n) ≤ w · f∗(opt) suboptimality bound
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bounded suboptimal search:
minimize time subject to

relative cost bound (factor of optimal)
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Dock Robot
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Vacuum World
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Heavy Vacuum World

Suboptimality
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■ what are the problem settings?

◆ guarantees beyond optimal search
◆ eg, bounded suboptimal search
◆ utility-based optimization

■ what are the sources of information?

◆ where do inadmissible heuristics come from?
◆ estimates instead of lower bounds
◆ distance in addition to cost

■ how to exploit and combine information?

◆ new generation of suboptimal algorithms
◆ meta-reasoning
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world model

planner

search

agent

world

actions

sensing
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