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■ Guarantee the solution is within a factor w of optimal.

Solution is w-admissible

■ Find solutions as quickly as you can within the bound.
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■ Guarantee the solution is within a factor w of optimal.

Solution is w-admissible

■ Find solutions as quickly as you can within the bound.

■ Weighted A*
Pohl, 1970

■ Dynamically Weighted A*
Pohl, 1973

■ A∗

ǫ

Pearl, 1982

■ Aǫ

Ghallad & Allard, 1983

■ AlphA*
Reese, 1999

■ Clamped Adaptive
Thayer, Ruml, & Bitton
2008

■ Optimistic Search
Thayer & Ruml, 2008

■ Revised Dynamically wA*
Thayer & Ruml, 2009
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■ Introduce Two Oportunities to Improve Bounded
Suboptimal Search

Using Inadmissible Heuristics

Paying attention to differences in cost and distance

■ Present EES, Which Exploits Them

■ Show Selected Results
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Vacuum World: Greedy Search Guidance
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Greedy Search on Cost vs Distance
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■ Inadmissible estimates of cost provide better guidance.

■ Search on distance is faster than search on cost.
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■ Inadmissible estimates of cost provide better guidance.

We can’t use these without sacrificing bounds.

■ Search on distance is faster than search on cost.

Previous algorithms haven’t effectively harnessed d.
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■ Inadmissible estimates of cost provide better guidance.

We can’t use these without sacrificing bounds.

■ Search on distance is faster than search on cost.

Previous algorithms haven’t effectively harnessed d.

■ EES

uses inadmissible estimates for guidance,
admissible estimates for bounding

takes advantage of cost and distance estimates
without brittle behavior of previous approaches
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go
f̂(n) = g(n) + ĥ(n)
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go
f̂(n) = g(n) + ĥ(n)

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go
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= argmin
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f(n) = g(n) + h(n)

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal



Explicit Estimation Search

Motivation

EES

■ Nodes

■ Expansion Order

■ Summary

Results

Jordan Thayer (UNH) Bounded Suboptimal Search – 8 / 18

Given:
h - An admissible estimate of cost to go
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go
f̂(n) = g(n) + ĥ(n)

fmin = node with least f

= argmin
n∈open

f(n) = g(n) + h(n)

best
f̂

= node with best estimated cost

= argmin
n∈open

f̂(n) = g(n) + ĥ(n)

best
d̂

= w-admissible node nearest to goal

= argmin
n∈open∧f̂(n)≤w·f̂(best

f̂
)

d̂(n)



Why This Expansion Order?

Motivation

EES

■ Nodes

■ Expansion Order

■ Summary

Results

Jordan Thayer (UNH) Bounded Suboptimal Search – 9 / 18

Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal

selectNode =





best
d̂

if it is within the bound
best

f̂
if it is within the bound, but best

d̂
isn’t

fmin otherwise
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal

selectNode =





best
d̂

if it is within the bound
best

f̂
if it is within the bound, but best

d̂
isn’t

fmin otherwise

Of all the nodes within the bound,
expand the one closest to a goal.
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal

selectNode =





best
d̂

if it is within the bound
best

f̂
if it is within the bound, but best

d̂
isn’t

fmin otherwise

Ensures best
d̂
is a high quality node.
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal

selectNode =





best
d̂

if it is within the bound
best

f̂
if it is within the bound, but best

d̂
isn’t

fmin otherwise

Provides the suboptimality bounds.
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Given:
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go
f̂(n) = g(n) + ĥ(n)

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal

selectNode =
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d̂
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d̂
) ≤ w · f(fmin)
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d̂
isn’t

fmin otherwise
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Given:
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Given:
h - An admissible estimate of cost to go
ĥ - A potentially inadmissible estimate of cost to go
d̂ - A potentially inadmissible estimate of distance to go
f̂(n) = g(n) + ĥ(n)

fmin = node with least f

best
f̂

= node with best estimated cost

best
d̂

= w-admissible node nearest to goal

selectNode =





best
d̂

if it is within the bound
best

f̂
if it is within the bound, but best

d̂
isn’t

fmin otherwise

if f̂(best
f̂
) > w · f(fmin)

∧f̂(best
d̂
) > w · f(fmin)
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■ Inadmissible estimates of cost provide better guidance.

We can’t use these without sacrificing bounds.

■ We can estimate the cost and the distance of a solution.

Algorithms that use this information perform poorly.
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■ Inadmissible estimates of cost provide better guidance.

EES can use these without sacrificing quality bounds.

■ We can estimate the cost and the distance of a solution.

EES avoids the pitfalls of previous approaches.
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Unit Four-way Grid World
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Bound 1.5 1.75 2. 3. 4. 5.

optimistic 1.6 1.5 1.6 2.1 2.4 2.1
wA* 4.1 3.4 2.8 3.7 3.4 2.4
skeptical 2.6 4.7 4.9 5.1 11.4 13
A∗

ǫ 50 44 28 1.8 1.1 0.6
Clamped 8.3 10 11 67 85 85
AlphA* 120 140 180 280 300 310
rdwA* 370 310 240 100 84 120
Aǫ 910 850 680 620 590 610

Numbers are average slowdown per domain,
averaged across eight domains:
TSP (two variants), Grid Navigation (two variants), Dynamic
Robot Path Planning, Vacuum Planning, Sliding Tiles Problem
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Bound 1.5 1.75 2. 3. 4. 5.

optimistic 3.1 2.4 2.5 3.3 3.4 3.2
wA* 6.6 5.5 4.5 5.5 5.0 4.0
skeptical 3.2 3.0 2.8 3.8 11 15
A∗

ǫ 58 44 17 1.8 1.1 0.8
Clamped 6.8 5.6 7.1 76 95 97
AlphA* 1.2 1.5 2.2 4.4 5.6 5.7
rdwA* 180 170 150 86 78 160
Aǫ 1500 1400 1100 990 910 970

Numbers are average increase in nodes generated per domain,
averaged across eight domains:
TSP (two variants), Grid Navigation (two variants), Dynamic
Robot Path Planning, Vacuum Planning, Sliding Tiles Problem



General Performance: Algorithm Rankings (CPU)

Motivation

EES

Results

■ Vacuums

■ Grids

■ Aggregate

■ Conclusions

Jordan Thayer (UNH) Bounded Suboptimal Search – 16 / 18

1st 2nd 3rd 4th > 4th

EES 2 3 3 0 0
Optimistic 3 1 2 1 1
Skeptical 1 3 1 0 3
A∗

ǫ 2 0 1 1 4
wA* 0 1 1 4 2
Aǫ 0 0 0 0 8
AlphA* 0 0 0 0 8
Clamped 0 0 0 0 8
rdwA* 0 0 0 0 8

Rankings by CPU time consumed
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1st 2nd 3rd 4th > 4th

EES 5 3 0 0 0
Optimistic 1 0 4 1 2
Skeptical 0 2 3 1 2
A∗

ǫ 2 1 0 1 4
wA* 2 0 0 3 3
Aǫ 0 0 0 0 8
AlphA* 0 0 0 0 8
Clamped 0 0 0 0 8
rdwA* 0 0 0 0 8

Rankings by nodes generated
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■ We can finally use inadmissible heuristics.

■ We can benefit from using cost and distance information.

■ EES provides

robust behavior on a wide range of benchmarks.

state of the art performance in several domains.
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Assume:
f̂(n) ≥ f(n) and ĥ(goal) = 0
f(n) = f̂(n) = g(n)

selectNode =





best
d̂

if f̂(best
d̂
) ≤ w · f(fmin)

best
f̂

if f̂(best
f̂
) ≤ w · f(fmin)

fmin otherwise
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Assume:
f̂(n) ≥ f(n) and ĥ(goal) = 0
f(n) = f̂(n) = g(n)

selectNode =





best
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if f̂(best
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best
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if f̂(best
f̂
) ≤ w · f(fmin)

fmin otherwise

w · f(opt) ≥ w · f(fmin)

w · f(fmin) ≥ d̂(best
d̂
)
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) ≥ f(best
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)
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d̂
) ≥ g(best

d̂
)
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Assume:
f̂(n) ≥ f(n) and ĥ(goal) = 0
f(n) = f̂(n) = g(n)

selectNode =





best
d̂

if f̂(best
d̂
) ≤ w · f(fmin)

best
f̂

if f̂(best
f̂
) ≤ w · f(fmin)

fmin otherwise

w · f(opt) ≥ w · f(fmin)



Robot Navigation: Inadmissible Heuristics

Motivation

EES

Results

Additional Slides

■ Bounds

■ Robots

■ Bounding

Jordan Thayer (UNH) Bounded Suboptimal Search – 21 / 18

Dynamic Robot Navigation

Suboptimality
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Loose: Optimistic Search

■ Run weighted A∗ with weight (bound− 1) · 2 + 1

■ Expand node with lowest f value after a solution is found.

Continue until w · fmin > f(sol)

This ’clean up’ guarantees solution quality.

Strict: EES

selectNode =





best
d̂

if f̂(best
d̂
) ≤ w · f(fmin)

best
f̂

if f̂(best
f̂
) ≤ w · f(fmin)

fmin otherwise
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