Finding Acceptable Solutions Faster Using Inadmissible Information

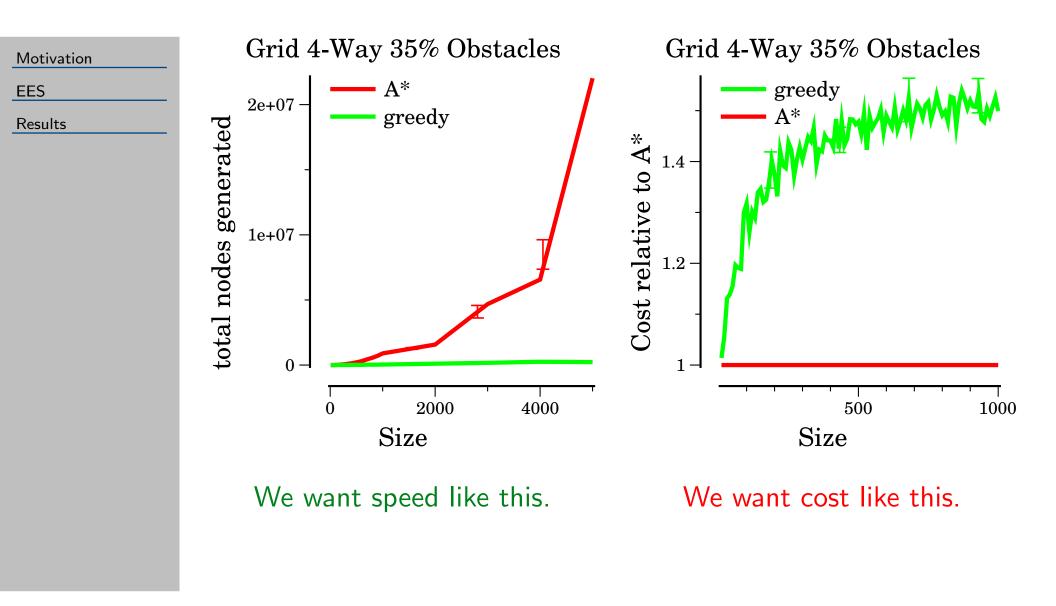
Jordan Thayer & Wheeler Ruml UNIVERSITY of NEW HAMPSHIRE

Supported by DARPA CSSG program (grant HR0011-09-1-0021) and NSF (grant IIS-0812141)

Jordan Thayer (UNH)

Bounded Suboptimal Search - 1 / 18

Bounded Suboptimal Heuristic Search



Bounded Suboptimal Heuristic Search

Motivation	
EES	
Results	

- Guarantee the solution is within a factor w of optimal. Solution is w-admissible
- Find solutions as quickly as you can within the bound.

Bounded Suboptimal Heuristic Search

Motivation	
FFS	

Results

- Guarantee the solution is within a factor w of optimal. Solution is w-admissible
- Find solutions as quickly as you can within the bound.
- Weighted A* Pohl, 1970
- Dynamically Weighted A* Pohl, 1973
- $\blacksquare A_{\epsilon}^*$ Pearl, 1982
- A_{ϵ} Ghallad & Allard, 1983

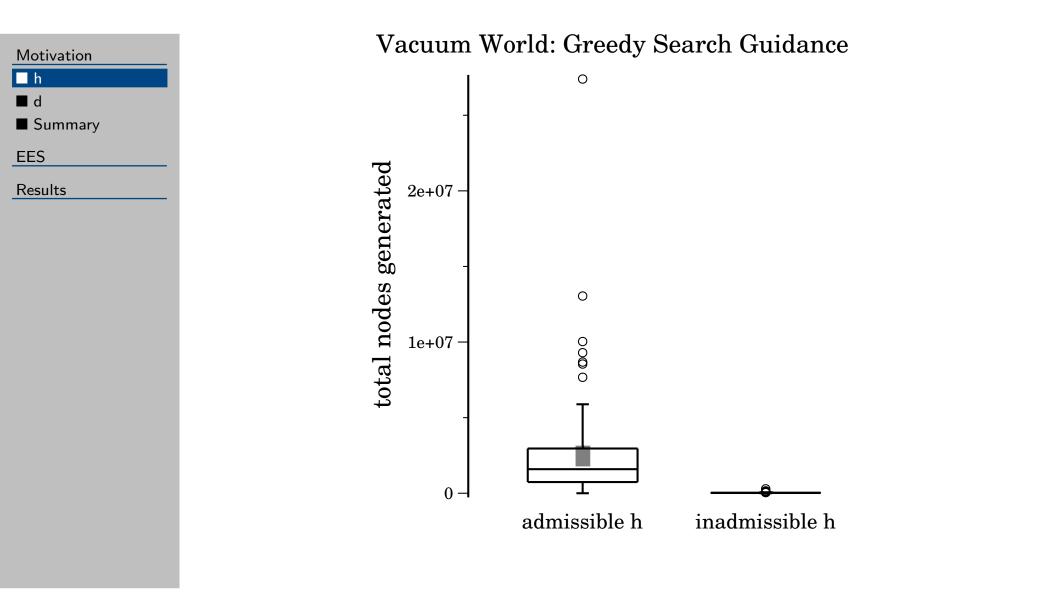
- AlphA* Reese, 1999
- Clamped Adaptive
 Thayer, Ruml, & Bitton
 2008
- Optimistic Search
 Thayer & Ruml, 2008
- Revised Dynamically wA* Thayer & Ruml, 2009

Outline

Motivation	
EES	
Results	

- Introduce Two Oportunities to Improve Bounded Suboptimal Search
 - Using Inadmissible Heuristics
 - Paying attention to differences in cost and distance
- Present EES, Which Exploits Them
- Show Selected Results

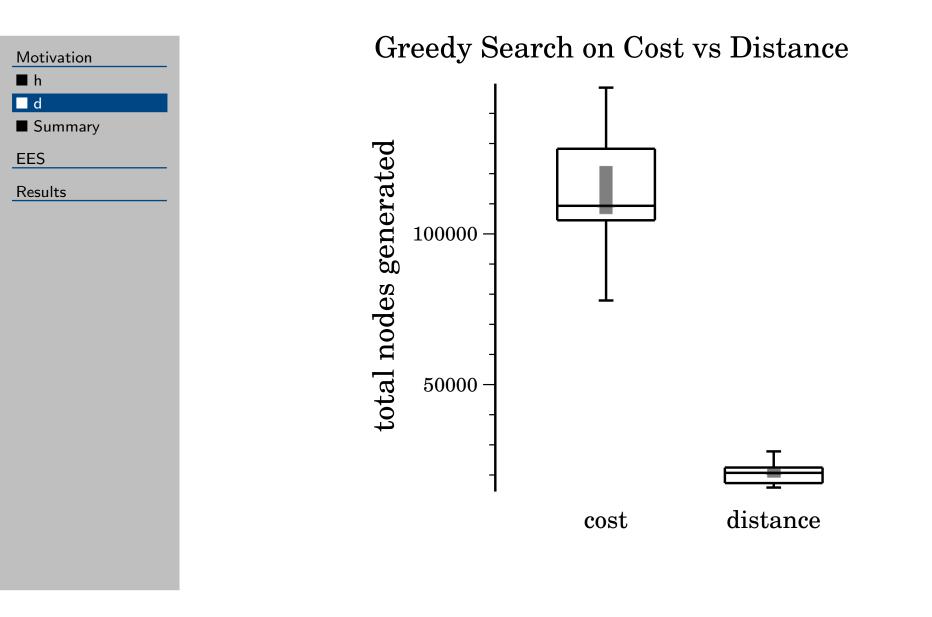
Inadmissible Estimates Outperform Admissible Estimates



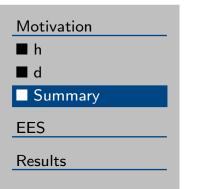
Jordan Thayer (UNH)

Bounded Suboptimal Search - 5 / 18

Cost And Distance Are Different



Jordan Thayer (UNH)



■ Inadmissible estimates of cost provide better guidance.

■ Search on distance is faster than search on cost.

We're Ignoring Useful Information

Motivation	
■ h	
■ d	
Summary	
EES	
Results	

- Inadmissible estimates of cost provide better guidance.
 We can't use these without sacrificing bounds.
- Search on distance is faster than search on cost.
 Previous algorithms haven't effectively harnessed d.

We're Ignoring Useful Information

Motivation
■ h
■ d
Summary
EES

Results

- Inadmissible estimates of cost provide better guidance.
 We can't use these without sacrificing bounds.
- Search on distance is faster than search on cost.
 Previous algorithms haven't effectively harnessed d.

EES

uses inadmissible estimates for guidance, admissible estimates for bounding

takes advantage of cost and distance estimates without brittle behavior of previous approaches

EES

Nodes

Expansion Order

■ Summary

Results

Given:

- h An admissible estimate of cost to go
- \widehat{h} A potentially inadmissible estimate of cost to go

 \widehat{d} - A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$

EES

Nodes

Expansion Order

■ Summary

Results

Given:

- h An admissible estimate of cost to go \widehat{h} A potentially inadmissible estimate of cost to go \widehat{d} A potentially inadmissible estimate of distance to go $\widehat{f}(n)=g(n)+\widehat{h}(n)$
 - f_{min} = node with least f $best_{\widehat{f}}$ = node with best estimated cost $best_{\widehat{d}}$ = w-admissible node nearest to goal

EES

Nodes

Expansion Order

■ Summary

Results

Given:

 $\stackrel{h}{\widehat{h}}$ - An admissible estimate of cost to go $\stackrel{\frown}{\widehat{h}}$ - A potentially inadmissible estimate of cost to go

 \widehat{d} - A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$

$f_{min} =$	node with	least f
-------------	-----------	-----------

$$= \operatorname{argmin}_{n \in open} f(n) = g(n) + h(n)$$

$$best_{\widehat{f}}$$
 = node with best estimated cost

$$best_{\widehat{d}} = w$$
-admissible node nearest to goal

EES

Nodes

Expansion Order

■ Summary

Results

Given:

h - An admissible estimate of cost to go \widehat{h} - A potentially inadmissible estimate of cost to go \widehat{d} - A potentially inadmissible estimate of distance to go $\widehat{f}(n)=g(n)+\widehat{h}(n)$

$f_{min} =$	node with least f	
-------------	---------------------	--

$$= \operatorname{argmin}_{n \in open} f(n) = g(n) + h(n)$$

$$best_{\widehat{f}}$$
 = node with best estimated cost

$$= \operatorname{argmin}_{n \in open} \widehat{f}(n) = g(n) + \widehat{h}(n)$$

$$best_{\widehat{d}} = w$$
-admissible node nearest to goal

EES

Nodes

Expansion Order

■ Summary

Results

Given:

h - An admissible estimate of cost to go \widehat{h} - A potentially inadmissible estimate of cost to go \widehat{d} - A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$

$f_{min} =$	node with least f	
-------------	---------------------	--

$$= \operatorname{argmin}_{n \in open} f(n) = g(n) + h(n)$$

$$best_{\widehat{f}}$$
 = node with best estimated cost

$$= \operatorname{argmin}_{n \in open} \widehat{f}(n) = g(n) + \widehat{h}(n)$$

 $best_{\widehat{d}} = w$ -admissible node nearest to goal

$$= \underset{n \in open \land \widehat{f}(n) \le w \cdot \widehat{f}(best_{\widehat{f}})}{\operatorname{argmin}} \widehat{d}(n)$$

Motivation	Gi
EES	h -
■ Nodes	\widehat{h} .
Expansion Order	
Summary	d -
Results	

iven:

- An admissible estimate of cost to go
- A potentially inadmissible estimate of cost to go
- d A potentially inadmissible estimate of distance to go

$$f_{min}$$
 = node with least f
 $best_{\widehat{f}}$ = node with best estimated cost
 $best_{\widehat{d}}$ = w -admissible node nearest to goal

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if it is within the bound} \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \end{cases}$$

Motivation	G
EES	h
■ Nodes	\widehat{h}
Expansion Order	
■ Summary	d
Results	

Given:

- An admissible estimate of cost to go
- A potentially inadmissible estimate of cost to go
- d A potentially inadmissible estimate of distance to go

$$f_{min}$$
 = node with least f
 $best_{\widehat{f}}$ = node with best estimated cost
 $best_{\widehat{d}}$ = w -admissible node nearest to goal

 $selectNode = \begin{cases} best_{\widehat{d}} & \text{if it is within the bound} \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \end{cases}$

Of all the nodes within the bound, expand the one closest to a goal.

Jordan Thayer (UNH)

Motivation	Giv
EES	h -
■ Nodes	\widehat{h} -
Expansion Order	\sim
■ Summary	d -
Results	

iven:

- An admissible estimate of cost to go
- A potentially inadmissible estimate of cost to go
- d A potentially inadmissible estimate of distance to go

$$f_{min}$$
 = node with least f
 $best_{\widehat{f}}$ = node with best estimated cost
 $best_{\widehat{d}}$ = w -admissible node nearest to goal

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if it is within the bound} \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \end{cases}$$

Ensures $best_{\widehat{d}}$ is a high quality node.

Jordan Thayer (UNH)

Motivation	Giv
EES	h -
■ Nodes	\widehat{h} -
Expansion Order	
■ Summary	<i>d</i> -
Results	

iven:

- An admissible estimate of cost to go
- A potentially inadmissible estimate of cost to go
- d A potentially inadmissible estimate of distance to go

$$f_{min}$$
 = node with least f
 $best_{\widehat{f}}$ = node with best estimated cost
 $best_{\widehat{d}}$ = w -admissible node nearest to goal

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if it is within the bound} \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \end{cases}$$

Provides the suboptimality bounds.

EES

- Nodes
- Expansion Order
- Summary

Results

Given:

- h An admissible estimate of cost to go \widehat{h} A potentially inadmissible estimate of cost to go \widehat{d} A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$
 - f_{min} = node with least f $best_{\widehat{f}}$ = node with best estimated cost $best_{\widehat{d}}$ = w-admissible node nearest to goal

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if it is within the bound} \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \end{cases}$$

EES

- Nodes
- Expansion Order
- Summary

Results

Given:

- h An admissible estimate of cost to go \widehat{h} - A potentially inadmissible estimate of cost to go \widehat{d} - A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$
 - $f_{min} = \text{node with least } f$ $best_{\widehat{f}} = \text{node with best estimated cost}$ $best_{\widehat{d}} = w$ -admissible node nearest to goal

 $selectNode = \begin{cases} \begin{array}{c} best_{\widehat{d}} & \text{if it is within the bound} \\ & \text{if } \widehat{f}(best_{\widehat{d}}) \leq w \cdot f(f_{min}) \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \end{array}$

Jordan Thayer (UNH)

EES

- Nodes
- Expansion Order
- Summary

Results

Given:

- h An admissible estimate of cost to go \widehat{h} A potentially inadmissible estimate of cost to go \widehat{d} A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$
 - $f_{min} =$ node with least f $best_{\widehat{f}} =$ node with best estimated cost $best_{\widehat{d}} = w$ -admissible node nearest to goal

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if } \widehat{f}(best_{\widehat{d}}) \leq w \cdot f(f_{min}) \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ & \text{if } \widehat{f}(best_{\widehat{f}}) \leq w \cdot f(f_{min}) \\ f_{min} & \text{otherwise} \end{cases}$$

Jordan Thayer (UNH)

EES

- Nodes
- Expansion Order
- Summary

Results

Given:

- h An admissible estimate of cost to go \widehat{h} - A potentially inadmissible estimate of cost to go \widehat{d} - A potentially inadmissible estimate of distance to go $\widehat{f}(n) = g(n) + \widehat{h}(n)$
 - $f_{min} =$ node with least f $best_{\widehat{f}} =$ node with best estimated cost $best_{\widehat{d}} = w$ -admissible node nearest to goal

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if it is within the bound} \\ best_{\widehat{f}} & \text{if it is within the bound, but } best_{\widehat{d}} \text{ isn't} \\ f_{min} & \text{otherwise} \\ & \text{if } \widehat{f}(best_{\widehat{f}}) > w \cdot f(f_{min}) \\ & \wedge \widehat{f}(best_{\widehat{d}}) > w \cdot f(f_{min}) \end{cases}$$

Summary

Motivation
EES
■ Nodes
Expansion Order
Summary
Results

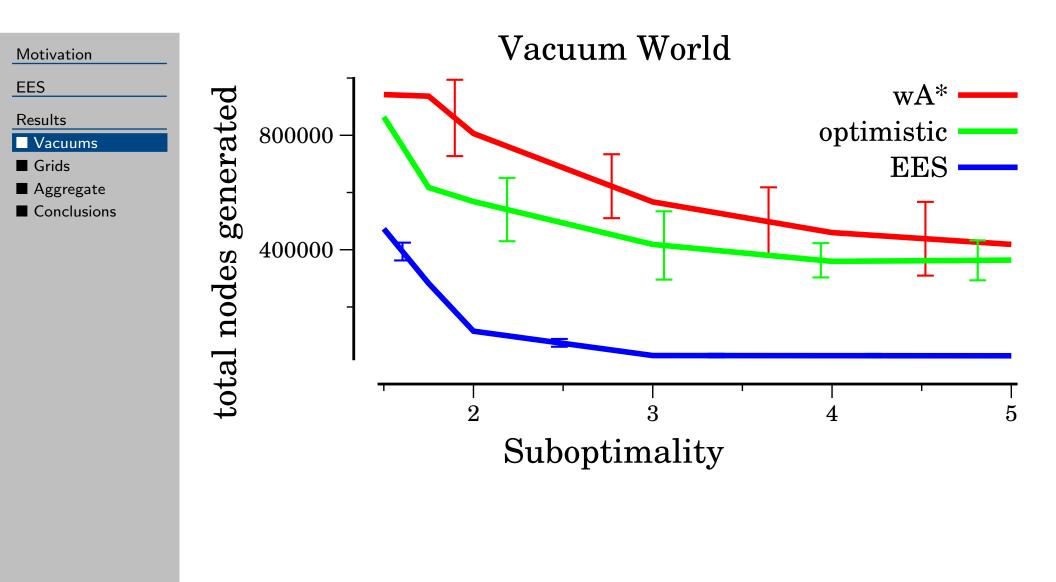
- Inadmissible estimates of cost provide better guidance.
 We can't use these without sacrificing bounds.
- We can estimate the cost and the distance of a solution.
 Algorithms that use this information perform poorly.

Summary

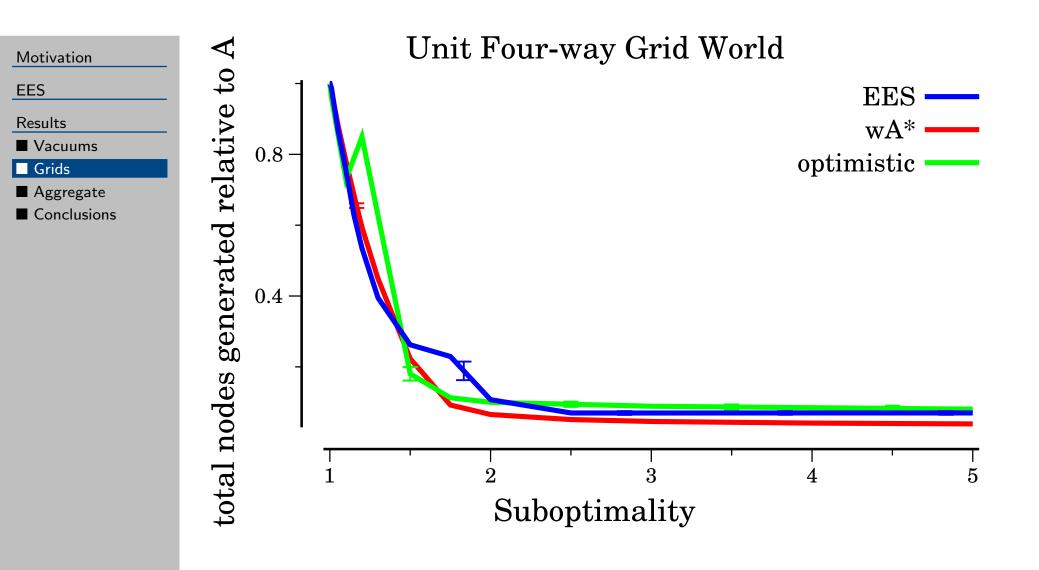
Motivation
EES
Nodes
Expansion Order
Summary
Results

- Inadmissible estimates of cost provide better guidance.
 EES can use these without sacrificing quality bounds.
- We can estimate the cost and the distance of a solution. EES avoids the pitfalls of previous approaches.

Vacuums: Inadmissible Heuristics



Grids



Performance In Aggregate: CPU Relative to EES

Motivation	Bound	1.5	1.75	2.	3.	4.	5.
EES	optimistic	1.6	1.5	1.6	2.1	2.4	2.1
Results	wA*	4.1	3.4	2.8	3.7	3.4	2.4
■ Vacuums ■ Grids	skeptical	2.6	4.7	4.9	5.1	11.4	13
 Aggregate Conclusions 	A_{ϵ}^{*}	50	44	28	1.8	1.1	0.6
	Clamped	8.3	10	11	67	85	85
	AlphA*	120	140	180	280	300	310
	rdwA*	370	310	240	100	84	120
	A_ϵ	910	850	680	620	590	610

Numbers are average slowdown per domain,

averaged across eight domains:

TSP (two variants), Grid Navigation (two variants), Dynamic Robot Path Planning, Vacuum Planning, Sliding Tiles Problem

General Performance: Nodes Generated Relative to EES

lotivation	Bound	1.5	1.75	2.	3.	4.	5.
ES	optimistic	3.1	2.4	2.5	3.3	3.4	3.2
esults	wA*	6.6	5.5	4.5	5.5	5.0	4.0
Vacuums Grids	skeptical	3.2	3.0	2.8	3.8	11	15
Aggregate Conclusions	A^*_ϵ	58	44	17	1.8	1.1	0.8
Conclusions	Clamped	6.8	5.6	7.1	76	95	97
	AlphA*	1.2	1.5	2.2	4.4	5.6	5.7
	rdwA*	180	170	150	86	78	160
	A_{ϵ}	1500	1400	1100	990	910	970

Numbers are average increase in nodes generated per domain, averaged across eight domains:

TSP (two variants), Grid Navigation (two variants), Dynamic Robot Path Planning, Vacuum Planning, Sliding Tiles Problem

Mc

EE

Re:

General Performance: Algorithm Rankings (CPU)

Motivation		1^{st}	2^{nd}	3^{rd}	4^{th}	$>$ 4 th
EES	EES	2	3	3	0	0
Results	Optimistic	3	1	2	1	1
■ Vacuums■ Grids	Skeptical	1	3	1	0	3
Aggregate	A_{ϵ}^{*}	2	0	1	1	4
Conclusions	wÅ*	0	1	1	4	2
	A_ϵ	0	0	0	0	8
	AlphA*	0	0	0	0	8
	Clamped	0	0	0	0	8
	rdwA*	0	0	0	0	8

Rankings by CPU time consumed

Average Performance: Algorithm Rankings (Nodes)

Motivation		1 st	2^{nd}	3^{rd}	4^{th}	$> 4^{th}$
EES	EES	5	3	0	0	0
Results	Optimistic	1	0	4	1	2
■ Vacuums■ Grids	Skeptical	0	2	3	1	2
AggregateConclusions	A_{ϵ}^{*}	2	1	0	1	4
	wÅ*	2	0	0	3	3
	A_ϵ	0	0	0	0	8
	AlphA*	0	0	0	0	8
	Clamped	0	0	0	0	8
	rdwA*	0	0	0	0	8

Rankings by nodes generated

Conclusions

Motivation
EES
Results
Vacuums
■ Grids
Aggregate
Conclusions

- We can finally use inadmissible heuristics.
- We can benefit from using cost and distance information.
- EES provides

robust behavior on a wide range of benchmarks. state of the art performance in several domains.

EES

Results

Additional Slides

Bounds

Robots

Bounding

Additional Slides

Jordan Thayer (UNH)

Motivation	

Results

Additional Slides

Bounds

Robots

Bounding

$$\begin{array}{l} \mbox{Assume:} \\ \widehat{f}(n) \geq f(n) \mbox{ and } \widehat{h}(goal) = 0 \\ f(n) = \widehat{f}(n) = g(n) \end{array} \\ selectNode = \left\{ \begin{array}{l} best_{\widehat{d}} & \mbox{if } \widehat{f}(best_{\widehat{d}}) \leq w \cdot f(f_{min}) \\ best_{\widehat{f}} & \mbox{if } \widehat{f}(best_{\widehat{f}}) \leq w \cdot f(f_{min}) \\ f_{min} & \mbox{otherwise} \end{array} \right.$$

Motivation	Assume:
EES	$f(n) \ge f(n)$
Results	f(n) = j
Additional Slides	
Bounds	
Robots	
Bounding	se
	C /
	$w \cdot f(o_I)$

sume:

$$m) \ge f(n) \text{ and } \hat{h}(goal) = 0$$

$$m) = \hat{f}(n) = g(n)$$

$$selectNode = \begin{cases} best_{\hat{d}} & \text{if } \hat{f}(best_{\hat{d}}) \le w \cdot f(f_{min}) \\ best_{\hat{f}} & \text{if } \hat{f}(best_{\hat{f}}) \le w \cdot f(f_{min}) \\ f_{min} & \text{otherwise} \end{cases}$$

$$v \cdot f(opt) \ge w \cdot f(f_{min}) \\ w \cdot f(f_{min}) \ge \hat{d}(best_{\hat{d}}) \\ \hat{f}(best_{\hat{d}}) \ge f(best_{\hat{d}}) \end{cases}$$

 $\begin{array}{ll}f(best_{\widehat{d}}) \geq & f(best_{\widehat{d}}) \\ & f(best_{\widehat{d}}) \geq & g(best_{\widehat{d}}) \end{array}$

Motivation	Assume:
EES	$\widehat{f}(n) \ge f(n)$
Results	$f(n) = \widehat{f}(n)$
Additional Slides	
BoundsRobotsBounding	select.
	$w \cdot f(opt) \ge$

sume:

$$n) \geq f(n) \text{ and } \hat{h}(goal) = 0$$

$$n) = \hat{f}(n) = g(n)$$

$$selectNode = \begin{cases} best_{\hat{d}} & \text{if } \hat{f}(best_{\hat{d}}) \leq w \cdot f(f_{min}) \\ best_{\hat{f}} & \text{if } \hat{f}(best_{\hat{f}}) \leq w \cdot f(f_{min}) \\ f_{min} & \text{otherwise} \end{cases}$$

$$r \cdot f(opt) \geq w \cdot f(f_{min}) \\ w \cdot f(f_{min}) \geq \hat{f}(best_{\hat{f}}) \\ \hat{f}(best_{\hat{f}}) \geq f(best_{\hat{f}}) \end{cases}$$

 $f(best_{\widehat{f}}) \ge g(best_{\widehat{f}})$

M	otivation	

Results

Additional Slides

Bounds

Robots

Bounding

Assume:

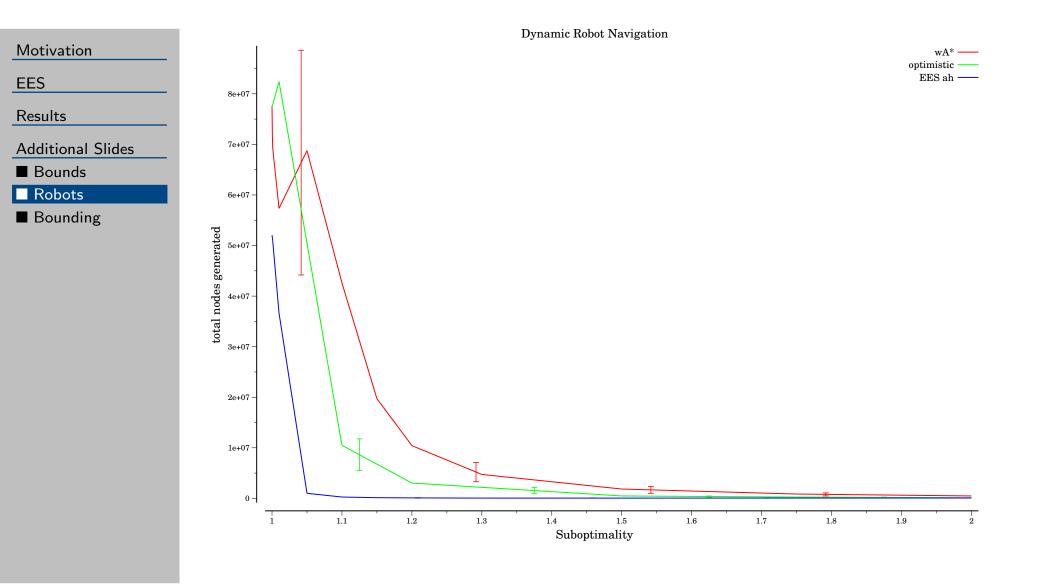
$$\widehat{f}(n) \ge f(n) \text{ and } \widehat{h}(goal) = 0$$

$$f(n) = \widehat{f}(n) = g(n)$$

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if } \widehat{f}(best_{\widehat{d}}) \le w \cdot f(f_{min}) \\ best_{\widehat{f}} & \text{if } \widehat{f}(best_{\widehat{f}}) \le w \cdot f(f_{min}) \\ f_{min} & \text{otherwise} \end{cases}$$

$$w \cdot f(opt) \ge w \cdot f(f_{min})$$

Robot Navigation: Inadmissible Heuristics



Jordan Thayer (UNH)

Bounded Suboptimal Search – 21 / 18

Strict vs. Loose Approaches to Quality Bounds

Motivation
EES
Results
Additional Slides
Bounds
Robots
Bounding

Loose: Optimistic Search

■ Run weighted A^* with weight $(bound - 1) \cdot 2 + 1$

Expand node with lowest f value after a solution is found.
 Continue until w · f_{min} > f(sol)
 This 'clean up' guarantees solution quality.

Strict: EES

$$selectNode = \begin{cases} best_{\widehat{d}} & \text{if } \widehat{f}(best_{\widehat{d}}) \leq w \cdot f(f_{min}) \\ best_{\widehat{f}} & \text{if } \widehat{f}(best_{\widehat{f}}) \leq w \cdot f(f_{min}) \\ f_{min} & \text{otherwise} \end{cases}$$

Jordan Thayer (UNH)