Master's Thesis: Heuristic Search Under a Deadline

Austin Dionne

Department of Computer Science austin.dionne at gmail.com Introduction

Related Work

DAS

Conclusion

DDT

Thanks to:

- Wheeler Ruml (Advisor)
- Jordan T. Thayer (Collaborator)
- NSF (grant IIS-0812141)
- DARPA CSSG program (grant N10AP20029)

Introduction

Heuristic Search

Problem Def.

Thesis Statement

■ Contributions

Related Work

DAS

Conclusion

DDT

Introduction

Search Is Awesome!

Introduction

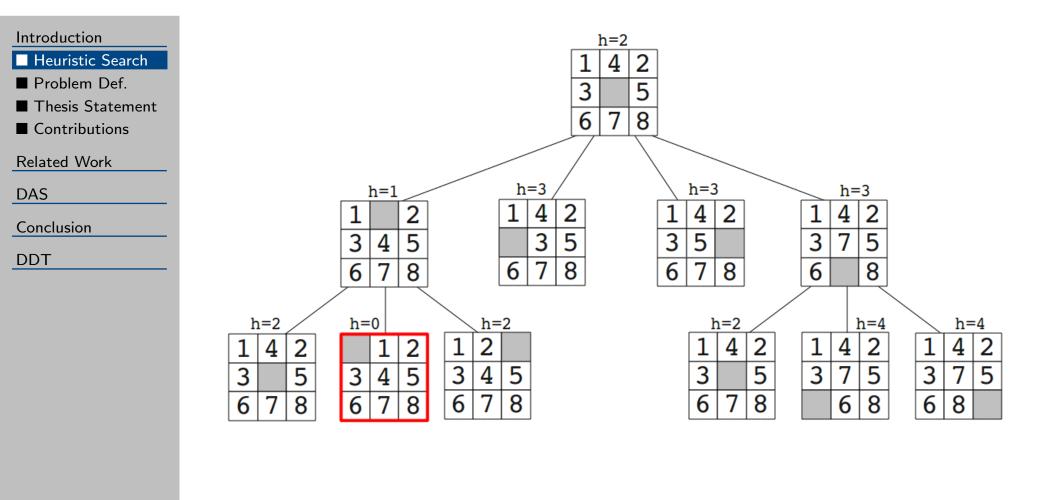
- Heuristic Search
- Problem Def.
- Thesis Statement
- Contributions

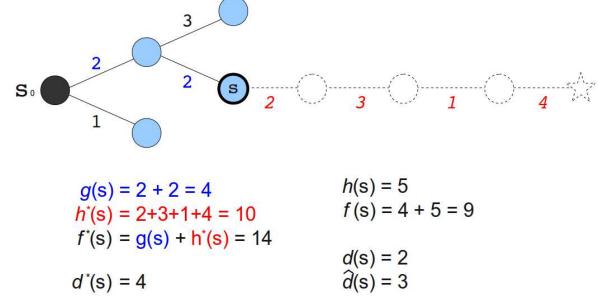
Related Work

DAS

Conclusion

DDT




Heuristic Search Under Deadlines – 4 / 56

Heuristic Search

Heuristic Search (Continued)

Introduction Introduction Heuristic Search Problem Def. Thesis Statement Contributions Related Work DAS Conclusion DDT	s_0 : starting state $expand(s)$: returns list of child states (s_c, c) goal(s): returns true if s is a goal state, false otherwise $g(s)$: cost accumulated so far on path from s_0 to s $h^*(s)$: cost of cheapest solution under s $f^*(s) = g(s) + h^*(s)$: estimated cost of best solution under s $d^*(s)$: number of steps to cheapest solution under s h(s), f(s), d(s): heuristic estimators of true values $\widehat{d}(s)$: unbiased estimator of d^*
	2

Austin Dionne

Heuristic Search Under Deadlines - 6 / 56

Introduction

- Heuristic Search
- Problem Def.
- Thesis Statement
- Contributions

Related Work

DAS

Conclusion

DDT

Given a problem and a **limited amount of computation time**, find the **best solution possible** before the deadline.

- Problem which often occurs in practice
- The current "best" methods do not directly consider the presence of a deadline and waste effort.
- The current "best" methods require off-line tuning for optimal performance.

Introd	uction
muou	uction

- Heuristic Search
- Problem Def.
- Thesis Statement
- Contributions
- Related Work
 DAS
 Conclusion
 DDT

My thesis is that a deadline-cognizant approach which attempts to expend all available search effort towards a single final solution has the potential for outperforming these methods without off-line optimization.

Contributions

Introduction

Heuristic Search
Problem Def.
Thesis Statement

Contributions
Related Work
DAS
Conclusion

DDT

In this thesis we have proposed:

- Corrected single-step error model for $\widehat{d}(s)$ and $\widehat{h}(s)$
- Deadline Aware Search (DAS) which can outperform current approaches
- Extended single-step error model for calculating d* and h* distributions on-line
- Deadline Decision Theoretic Search (DDT) which is a more flexible and theoretically based algorithm that holds some promise

Introduction

Related Work

■ Related Work

 $\blacksquare Related Work$

(Continued)

■ Related Work (Continued)

■ Current Approach

Our Motivation

Recap

DAS

Conclusion

DDT

Related Work

Heuristic Search Under Deadlines – 10 / 56

Introduction	W
Related Work	
Related Work	
Related Work	
(Continued)	
Related Work	
(Continued)	
Current Approach	
Our Motivation	
■ Recap	
DAS	
Construction	

Conclusion

DDT

le are not the first to attempt to solve this problem...

- Time Constrained Search (*Hiraishi*, *Ohwada*, *and* Mizoguchi 1998)
- Contract Search (Aine, Chakrabarti, and Kumar 2010)

Neither of these methods work well in practice!

Introduction			
Related Work			
Related Work			
Related Work			
(Continued)			
Related Work			
(Continued)			
Current Approach			
Our Motivation			

Recap

```
DAS
```

```
Conclusion
```

```
DDT
```

Problem with Time Constrained Search:

- Parameters abound! (ϵ_{upper} , ϵ_{lower} , Δw)
- Important questions without answers:
 - ◆ When (if ever) should we resort open list?
 - Is a hysteresis necessary for changes in w?

I could not implement a version of this algorithm that worked well!

Introduction		
Related Work		
Related Work		
Related Work		
(Continued)		
Related Work		
(Continued)		
Current Approach		
Our Motivation		
Recap		
DAS		
Conclusion		
DDT		

Problem with Contract Search:

- Not really applicable to domains with goals at a wide range of depths (tiles/gridworld/robots)
- Takes substantial off-line effort to prepare the algorithm for a particular domain and deadline

Jordan Thayer implemented this algorithm and it does not work well!

Introduction

Related Work

- Related Work
- Related Work
- (Continued)
- Related Work (Continued)
- Current Approach
- Our Motivation
- Recap

DAS

Conclusion

DDT

- Anytime Search
 - Search for a suboptimal initial solution relatively quickly
 - Continue searching, finding sequence of improved solutions over time
 - Eventually converge to optimal

Problems:

- 1. Wasted effort in finding sequence of mostly unused solutions
- 2. Based on bounded suboptimal search, which requires parameter settings
 - May not have time for off-line tuning
 - For some domains different deadlines require different settings

Our Motivation

Introduction		
Related Work		
Related Work		
Related Work		
(Continued)		
Related Work		
(Continued)		
Current Approach		
Our Motivation		
Recap		
DAS		
Conclusion		

Conclusion

DDT

Our desired deadline-aware approach should:

- Consider the time remaining in ordering state expansion
- Perform consistently well across a full range deadlines (fractions of a second to minutes)
- Be parameterless and general
- Not require significant off-line computation

Recap

Introduction

Related Work

Related Work

Related Work

(Continued)

■ Related Work (Continued)

Current Approach

Our Motivation

Recap

DAS

```
Conclusion
```

DDT

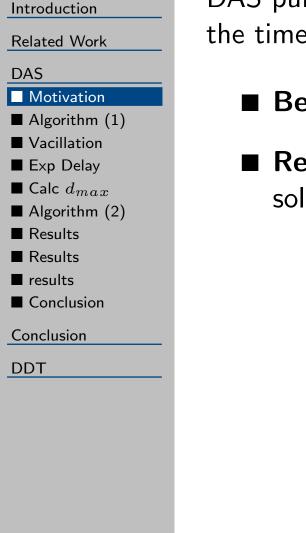
- Search under deadlines is a difficult and important problem
- Previously proposed approaches don't work
- Currently used approaches are unsatisfying
- We propose an algorithm (DAS) which can outperform these methods without the use of off-line tuning

Introduction

Related Work

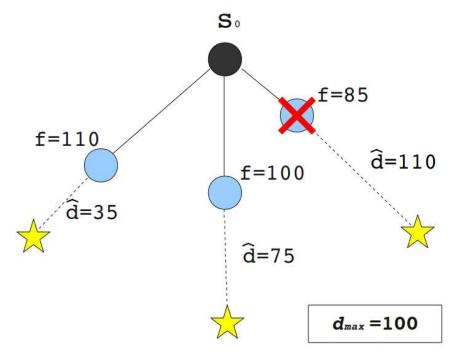
DAS

- Motivation
- Algorithm (1)
- Vacillation
- Exp Delay
- \blacksquare Calc d_{max}
- Algorithm (2)
- Results
- Results
- results
- Conclusion

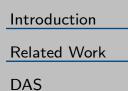

Conclusion

DDT

Deadline Aware Search (DAS)


Heuristic Search Under Deadlines – 17 / 56

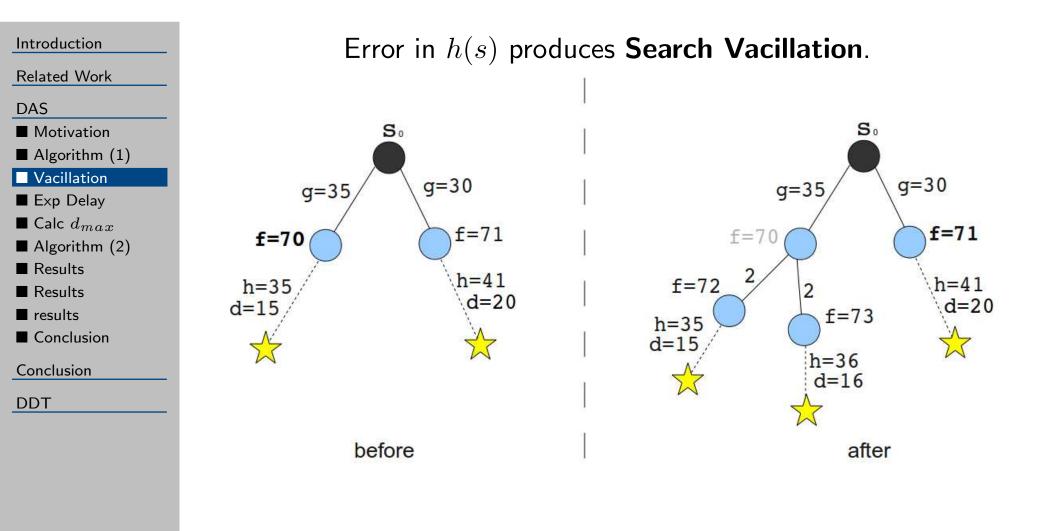
Motivation



DAS pursues the **best** solution path which is **reachable** within the time remaining in the search.

- **Best** is defined as minimal f(s)
- **Reachability** is a function of an estimate distance to a solution $\widehat{d}(s)$ and the current behavior of the search

Austin Dionne


- Motivation
- Algorithm (1)
- Vacillation
- Exp Delay
- \blacksquare Calc d_{max}
- Algorithm (2)
- Results
- Results
- results
- Conclusion
- Conclusion

DDT

While there is time remaining before the deadline:

- Calculate maximum allowable distance d_{max}
- **\blacksquare** Select node *n* from open list with minimal f(n)
- If $\widehat{d}(n) \leq d_{max}$ (solution is reachable)
 - Expand n, add children to open list
- Otherwise (solution is unreachable)
 - \blacklozenge Add n to pruned list

Search Vacillation

Expansion Delay

Related Work

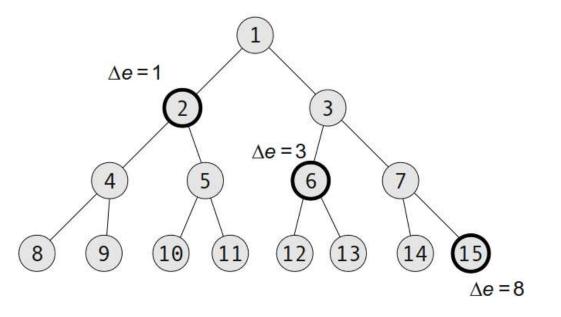
Introduction

DAS

- Motivation
- Algorithm (1)
- Vacillation

Exp Delay

- \blacksquare Calc d_{max}
- Algorithm (2)
- Results
- Results
- results
- Conclusion


Conclusion

DDT

Maintain a running expansion counter during search.

At state expansion, define expansion delay as:

 $\Delta e = ($ current exp counter) - (exp counter at generation)

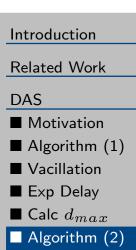
Austin Dionne

Expansion Delay

Introduction Related Work DAS Motivation Algorithm (1) Vacillation Exp Delay Calc dmax Algorithm (2) Results

- Results
- results
- Conclusion

Conclusion


DDT

Use mean expansion delay $\overline{\Delta e}$ to calculate d_{max} :

$$d_{max} = \frac{(\text{expansions remaining})}{\overline{\Delta e}}$$

 d_{max} estimates the expected number of steps that will be explored down any particular path in the search space.

(1)

- Results
- Results
- results
- Conclusion
- Conclusion

DDT

While there is time remaining before the deadline:

- \blacksquare Calculate maximum allowable distance d_{max}
- **\blacksquare** Select node *n* from open list with minimal f(n)
- If $\widehat{d}(n) \leq d_{max}$ (solution is reachable)
 - Expand n, add children to open list
- Otherwise (solution is unreachable)
 - \blacklozenge Add n to pruned list
 - If open list is empty
 - Recover a set of nodes from pruned list with "reachable" solutions
 - Reset estimate of d_{max}

DAS: High-Level Algorithm: Search Recovery

Introduction	Start again with a set of n	odes with "reachable" solutions:
Related Work DAS ■ Motivation	Estimated exp	pansions remaining: 150
 Algorithm (1) Vacillation Exp Delay 	Pruned List: f(n) d͡(n)	
 Calc d_{max} Algorithm (2) Results 	1. 14 14 2. 24 20 3. 25 22	Sum of $\widehat{d}(n) \le \exp remaining$
ResultsresultsConclusion	4. 25 30 5. 40 40	14+20+22+30+40 = 126 ≤ 150
Conclusion DDT	6. 41 34 7. 48 42 8. 55 50	
	9. 66 56 10. 70 67	
	i i	

Recap

Related Work

- DAS
- Motivation
- Algorithm (1)
- Vacillation
- Exp Delay
- \blacksquare Calc d_{max}
- Algorithm (2)
- Results
- Results
- results
- Conclusion
- Conclusion

DDT

- Search under deadlines is a difficult and important problem
- Previously proposed approaches don't work
- Currently used approaches are unsatisfying
- We propose an algorithm (DAS) which can outperform these methods without the use of off-line tuning
 - ♦ Uses expansion delay to measure search vacillation
 - Estimates a "reachable" solution distance and prunes nodes

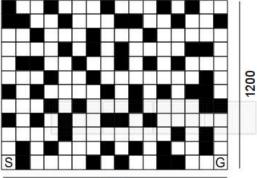
Empirical Evaluation: Domains

Introduction

Related Work

DAS

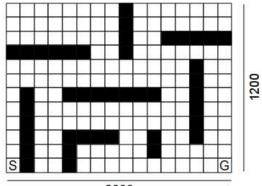
- Motivation
- Algorithm (1)
- Vacillation
- Exp Delay
- \blacksquare Calc d_{max}
- Algorithm (2)
- Results
- Results
- results
- Conclusion


Conclusion

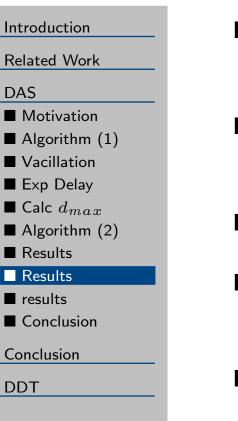
DDT

15-Puzzle

- 2 Models:
- Unit-Cost
- Inverse Weighted
- 2 Models:

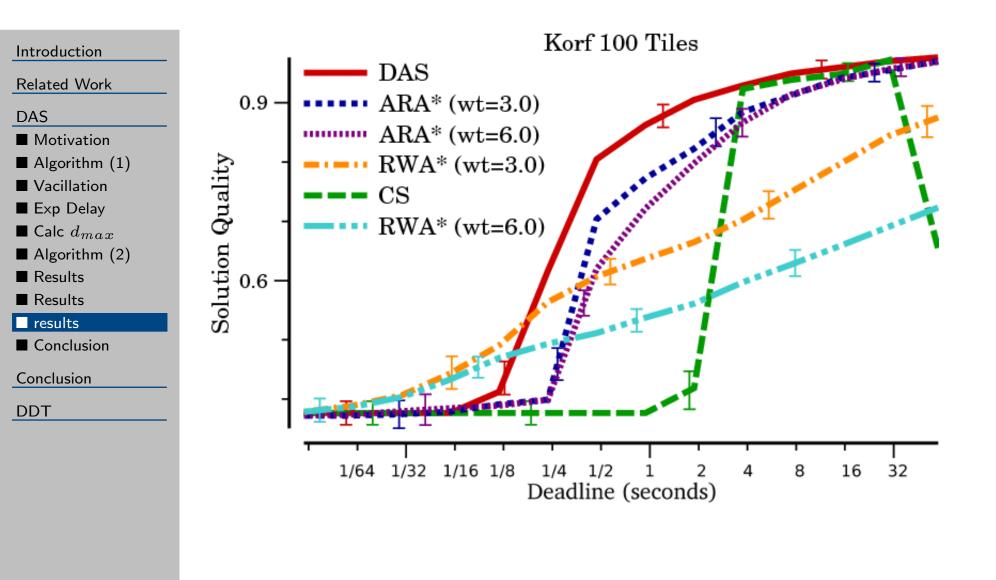

Gridworld

2000


- Uniformly Distributed Random Obstacles (p=0.35)
- Unit-Cost
- Life-Cost

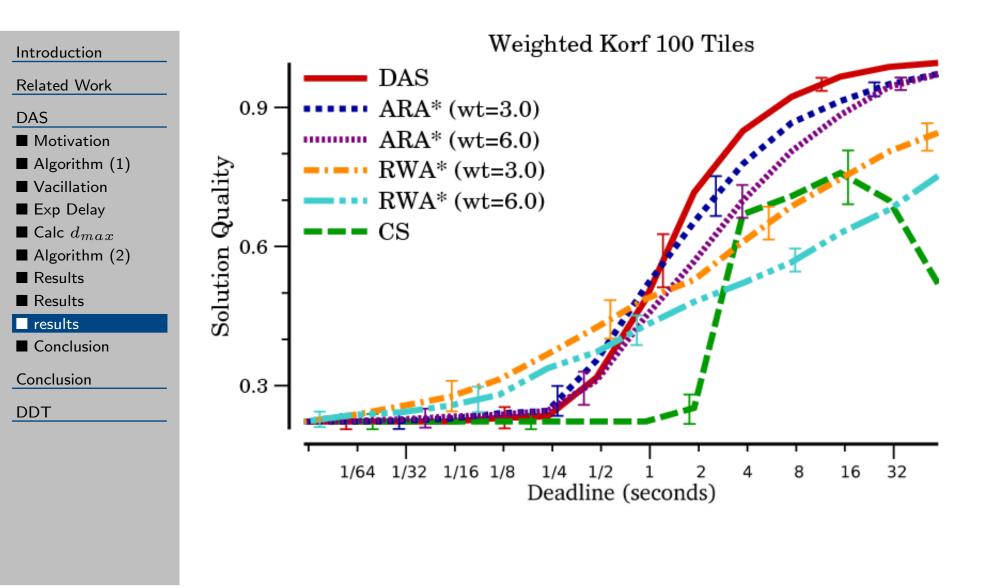
Dynamic Robot

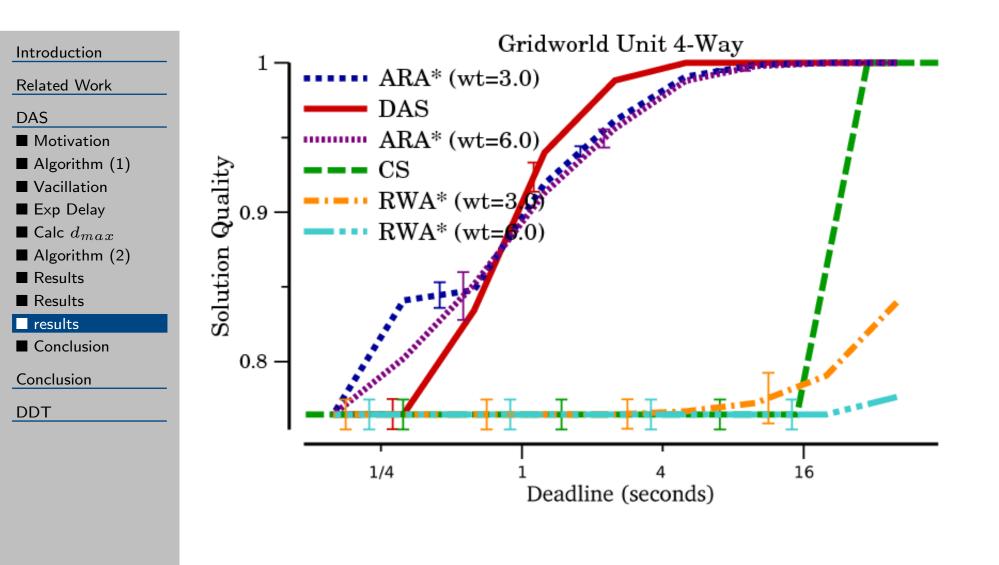
2000


75 Randomly Placed Lines Circular Robot Heading & Velocity

- All algorithms run "Speedier" first to obtain incumbent solution
- Anytime algorithms tested with variety of settings: 1.2, 1.5, 3.0, 6.0, 10.0 (top two performing are displayed)
- Show results for: ARA*, RWA*, CS, DAS
- Deadlines are on a log scale (fractions of second up to minutes)
- Algorithms compared by solution quality

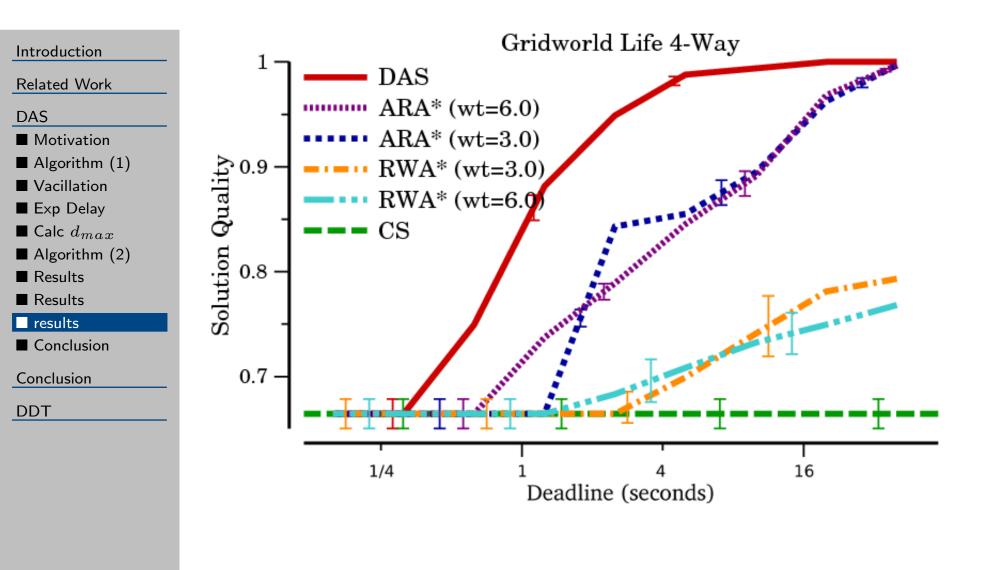
solution quality = (best solution cost) / (achieved cost)


Results: 15-Puzzle


Austin Dionne

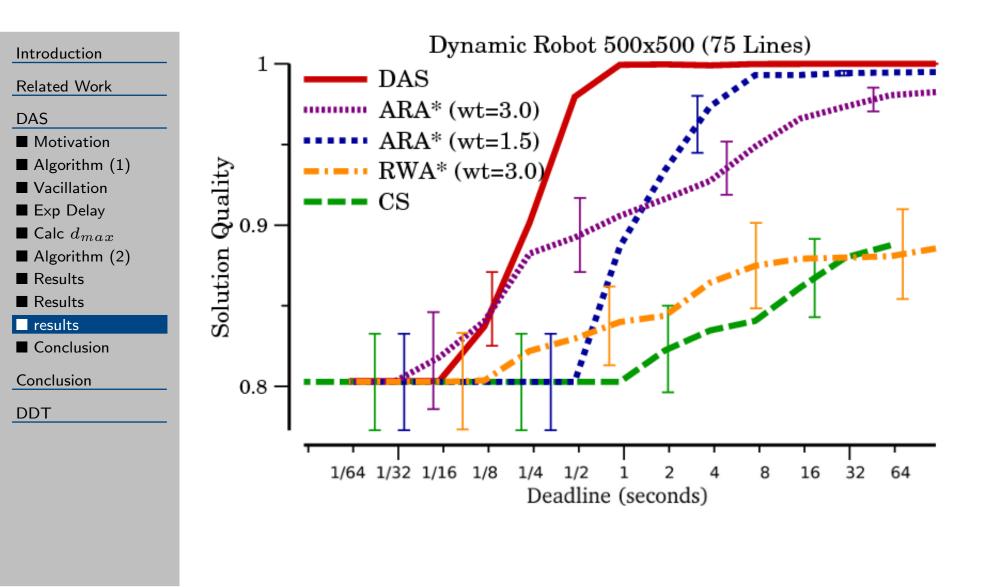
Heuristic Search Under Deadlines - 28 / 56

Results: Weighted 15-Puzzle


Results: 4-Way 2000x1200 Unit-Cost Gridworld (p=0.35)

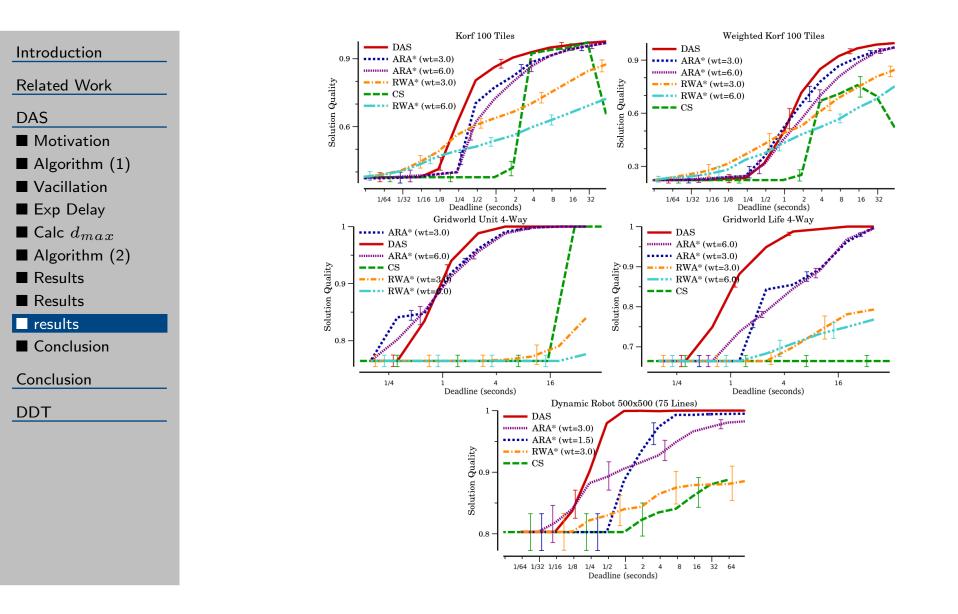
Austin Dionne

Heuristic Search Under Deadlines - 30 / 56


Results: 4-Way 2000x1200 Life-Cost Gridworld (p=0.35)

Austin Dionne

Heuristic Search Under Deadlines – 31 / 56


Results: Dynamic Robot Navigation

Austin Dionne

Heuristic Search Under Deadlines – 32 / 56

Results: Overall

DAS Conclusion

Introd	uction
muou	uction

- Related Work
- DAS
- Motivation
- Algorithm (1)
- Vacillation
- Exp Delay
- \blacksquare Calc d_{max}
- Algorithm (2)
- Results
- Results
- results
- Conclusion
- Conclusion
- DDT

- Parameterless
- Returns optimal solutions for sufficiently large deadlines
- Competitive with or outperforms ARA* for variety of domains

DAS illustrates that an improved deadline-aware approach can be constructed!

Related Work

DAS

Conclusion

■ Thesis Recap

Contributions

DDT

Conclusion

Thesis Recap

Introduction

Related Work

DAS

Conclusion

Thesis Recap

Contributions

DDT

- Search under deadlines is a difficult and important problem
- Previously proposed approaches don't work
- Currently used approaches are unsatisfying

My thesis is that a deadline-cognizant approach which attempts to expend all available search effort towards a single final solution has the potential for outperforming these methods without off-line optimization.

Contributions

Introduction	
Related Work	
DAS	

Conclusion

Thesis Recap

Contributions

DDT

In this thesis we have proposed:

- Corrected single-step error model for $\widehat{d}(s)$ and $\widehat{h}(s)$
- Deadline Aware Search (DAS) which can outperform current approaches
- Extended single-step error model for calculating d* and h* distributions on-line
- Deadline Decision Theoretic Search (DDT) which is a more flexible and theoretically based algorithm that holds some promise

DAS illustrates that improvement is possible!

Related Work

DAS

Conclusion

Back-up Slides

■ DAS Pseudo-Code ■ $\hat{d}(s)$

DDT

Back-up Slides

Austin Dionne

Heuristic Search Under Deadlines – 19 / 56

DAS Pseudo-Code

Introduction	Deadline Aware Search(starting state, deadline)
Related Work	1. open \leftarrow {starting state}
DAS	2. pruned \leftarrow {}
Conclusion	3. incumbent \leftarrow NULL
Back-up Slides	4. while <i>(time) < (deadline)</i> and <i>open</i> is non-empty
DAS Pseudo-Code	5. $d_{max} \leftarrow calculate_d_max()$
$\blacksquare \hat{d}(s)$	6. $s \leftarrow \text{remove state from open with minimal } f(s)$
DDT	7. if s is a goal and is better than <i>incumbent</i>
	8. $incumbent \leftarrow s$
	9. else if $\widehat{d}(s) < d_{max}$
	10. for each child s' of state s
	11. add s' to open
	12. else
	13. add <i>s</i> to <i>pruned</i>
	14. if <i>open</i> is empty
	16. <i>recover_pruned_states(open, pruned)</i>
	17. return <i>incumbent</i>

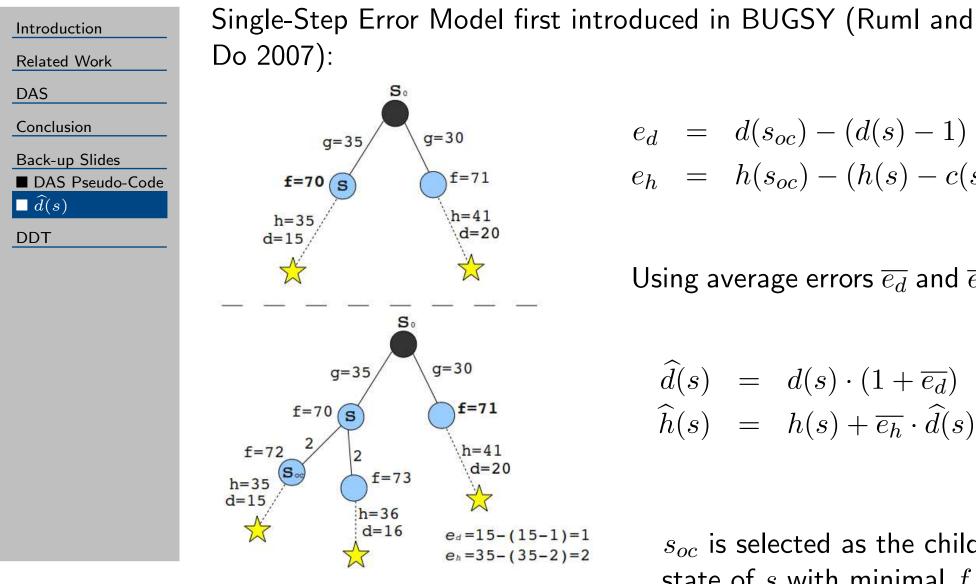
DAS Pseudo-Code (Continued)

Introduction

Related Work

DAS

Conclusion

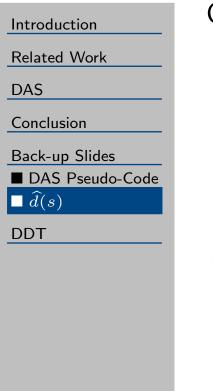

Back-up Slides DAS Pseudo-Code $\widehat{d}(s)$

DDT

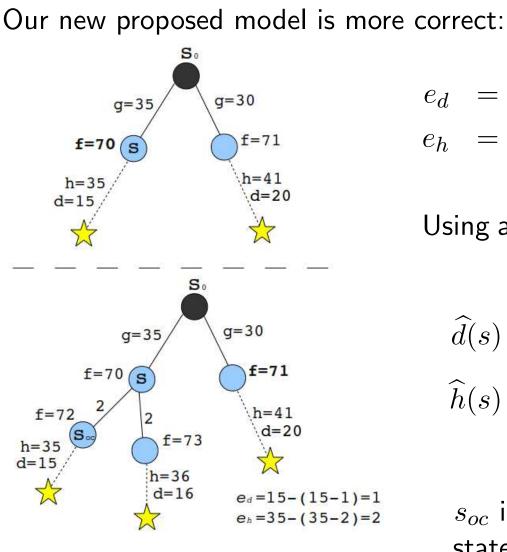
Recover Pruned States(*open, pruned*) 18. $exp \leftarrow estimated expansions remaining$ 19. while exp > 0 and *pruned* is non-empty loop 20. $s \leftarrow$ remove state from *pruned* with minimal f(s)21. add s to *open* 23. $exp = exp - \hat{d}(s)$

Intention is to replace only a "reachable" set of nodes.

Correcting d(s): **Single-Step Error Model**


$$e_d = d(s_{oc}) - (d(s) - 1)$$

 $e_h = h(s_{oc}) - (h(s) - c(s, s_{oc}))$


Using average errors $\overline{e_d}$ and $\overline{e_h}$:

$$\widehat{d}(s) = d(s) \cdot (1 + \overline{e_d}) \widehat{h}(s) = h(s) + \overline{e_h} \cdot \widehat{d}(s)$$

 s_{oc} is selected as the child state of s with minimal f

Correcting d(s): Single-Step Error Model (Continued)

$$e_d = d(s_{oc}) - (d(s) - 1)$$

 $e_h = h(s_{oc}) - (h(s) - c(s, s_{oc}))$

Using average errors $\overline{e_d}$ and $\overline{e_h}$:

$$\widehat{d}(s) = \frac{d(s)}{1 - \overline{e_d}}$$
$$\widehat{h}(s) = h(s) + \overline{e_h} \cdot \widehat{d}(s)$$

 s_{oc} is selected as the child state of s with minimal f**excluding the parent of** s

Heuristic Search Under Deadlines – 23 / 56

Austin Dionne

Related Work

DAS

Conclusion

Back-up Slides DAS Pseudo-Code $\hat{d}(s)$ DDT Performs dynamically weighted search on $f'(s) = g(s) + h(s) \cdot w$

Deadline denoted as T

■ Time elapsed denoted as t

• Define $D = h(s_0)$

- Define "desired average velocity" as V = D/T
- Define "effective velocity" as $v = (D h_{min})/t$
- If $v > V + \epsilon_{upper}$, increase w by Δw
- If $v < V \epsilon_{lower}$, decrease w by Δw

Contract Search

Introduction
Related Work
DAS
Conclusion
Back-up Slides
■ DAS Pseudo-Code
$\square \ \widehat{d}(s)$
DDT

Performs beam-like search, limiting the number of expansions done at each level of the search tree.

- Off-line computation of k(depth) for each level of search tree
- Authors propose models for estimating optimal k(depth) using dynamic programming
- Once k(depth) expansions are made a particular level, that level is disabled

Problems:

- Not applicable to domains where solutions may reside at a wide range of depths
- It takes substantial off-line effort to compute k(depth)

Related Work

DAS

Conclusion

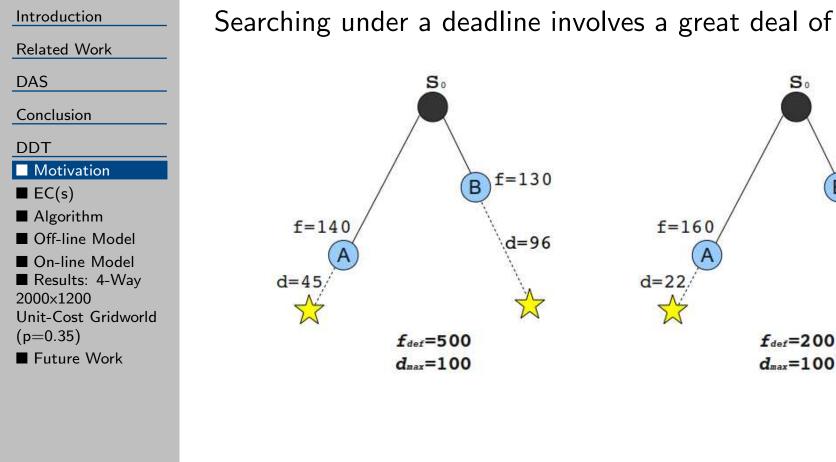
DDT

Motivation

■ EC(s)

- Algorithm
- Off-line Model
- On-line Model
- Results: 4-Way

2000×1200


Unit-Cost Gridworld

(p=0.35)

■ Future Work

Deadline Decision Theoretic Search (DDT)

Motivation

Searching under a deadline involves a great deal of **uncertainty**.

Austin Dionne

Heuristic Search Under Deadlines – 27 / 56

f=34

d=101

B

Expected Solution Cost EC(s)

Introduction

Related Work

DAS

Conclusion

DDT

Motivation

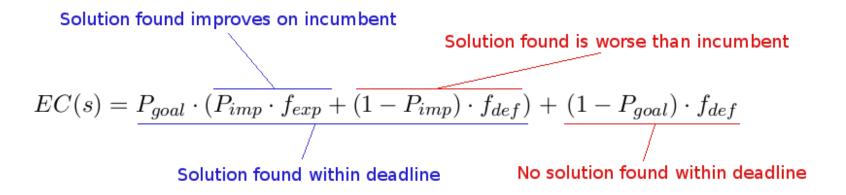
 \square EC(s)

Algorithm

Off-line Model

On-line Model

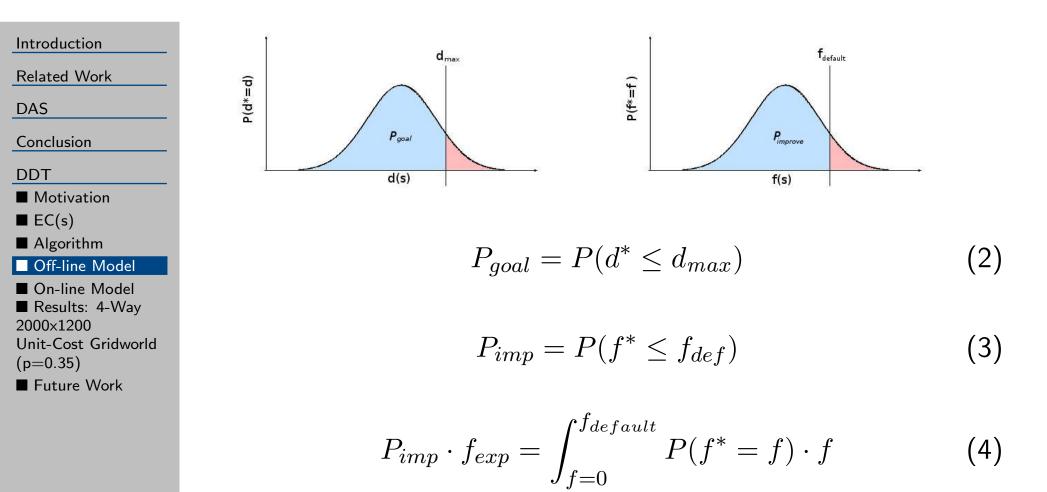
Results: 4-Way


2000×1200

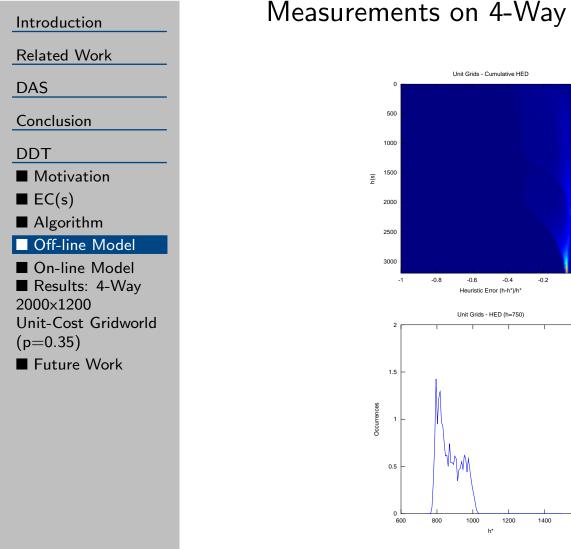
Unit-Cost Gridworld

(p=0.35)

■ Future Work


 f_{def} : cost of default/incumbent solution f_{exp} : expected value of $f^*(s)$ (if better than incumbent) P_{goal} : probability of finding solution under s before deadline P_{imp} : probability that cost of new solution found under simproves on incumbent

Algorithm


Introduction Related Work DAS Conclusion DDT Motivation EC(s) Algorithm Off-line Model On-line Model Results: 4-Way 2000×1200 Unit-Cost Gridworld (p=0.35) Future Work	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	14. return <i>incumbent</i>

Off-line Model

Austin Dionne

Heuristic Search Under Deadlines – 30 / 56

Measurements on 4-Way 2000x1200 Unit-Cost Gridworld

0.8

0.6 Occurrences

0.4

0.2

0

2.5

2

1.5

0.5

1400 1600 1800 2000

2200 2400

2600

2800 3000

Occurrences

150

200

250

h*

Unit Grids - HED (h=1500)

300

350

400

Unit Grids - HED (h=200)

Currently assume h^* and d^* are independent.

1600

Austin Dionne

On-line Model

Introduction

Related Work

DAS

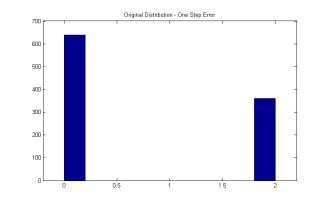
Conclusion

DDT

Motivation

 \blacksquare EC(s)

- Algorithm
- Off-line Model


On-line Model

■ Results: 4-Way 2000×1200 Unit-Cost Gridworld (p=0.35)

Future Work

Extends one-step error model to support calculation of heuristic distribution functions.

Assume one-step errors are independant identically distributed random variables. See figure for one-step errors in 4-Way Unit-Cost Gridworld.

Then mean one step errors along individual paths are normally distributed according to the Central Limit Theorem with mean and variance:

$$\mu_{\bar{\epsilon}_d} = \mu_{\epsilon_d}$$
(5)
$$\sigma_{\bar{\epsilon}_d}^2 = \frac{\sigma_{\epsilon_d}^2 \cdot (1 - \mu_{\epsilon_d})}{d(s)}$$
(6)

Heuristic Search Under Deadlines - 32 / 56

Austin Dionne

Related Work

DAS

Conclusion

DDT

- Motivation
- EC(s)
- Algorithm
- Off-line Model

On-line Model
 Results: 4-Way
 2000×1200
 Unit-Cost Gridworld

(p=0.35)

■ Future Work

Using Equations from slide 17 and the assumption that $\overline{\epsilon}_d$ and $\overline{\epsilon}_h$ are normally distributed, we can calculate the CDF for $d^*(s)$:

$$cdf_{d^*}(x) = \frac{1}{2} \cdot \left(1 + \text{ERF}\left(\frac{\left(\frac{x - d(s)}{x} - \mu_{\epsilon}\right)}{\left(\sqrt{2 \cdot \frac{\sigma_{\epsilon}^2 \cdot (1 - \mu_{\epsilon})}{d(s)}}\right)}\right) \right)$$
(7)

For a given value of d^* we can assume f^* is normally distributed with mean and variance:

$$\mu_{f^*} = g(s) + h(s) + \mu_{\epsilon_h} \cdot d^*(s)$$
 (8)

$$\sigma_{f^*}^2 = \sigma_{\epsilon_h}^2 \cdot (d^*(s)) \tag{9}$$

Details can be found in thesis document.

Heuristic Search Under Deadlines - 33 / 56

Related Work

DAS

Conclusion

DDT

- Motivation
- \blacksquare EC(s)
- Algorithm
- Off-line Model
- On-line Model

■ Results: 4-Way 2000×1200 Unit-Cost Gridworld

(p=0.35)

■ Future Work

Using CDF for d^* and Gaussian PDF for calculating $P(f^* = f | d^* = d)$ we can calculate EC(s) as follows:

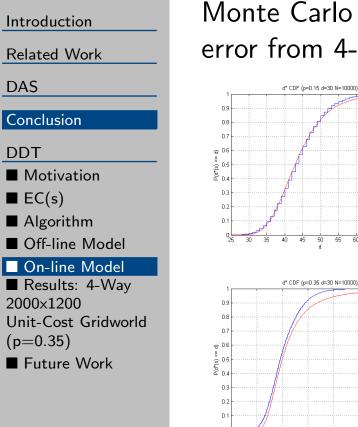
$$P_{imp} = P(f^* \le f_{default} | d^* = d)$$

$$EC(s|d^* = d) = \left(\int_{f=0}^{f_{default}} P(f^* = f | d^* = d) \cdot f \right) + (1 - P_{imp}) \cdot f_{def}$$

$$EC(s) = \left(\int_{d=0}^{d_{max}} EC(s|d^* = d) \right) + (1 - P_{goal}) \cdot f_{def}$$

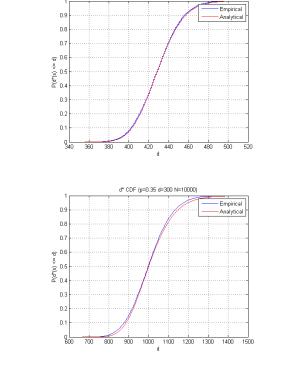
- Empirical

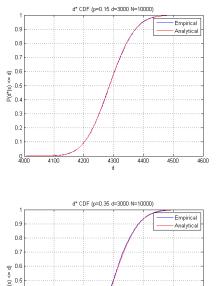
Analytical


Empirical

-Analytical

60 65 70 75


150 200 250 300 350


100

Monte Carlo analysis performed on $d^*(s)$ model using heuristic error from 4-Way Unit-Cost Gridworld.

d* CDF (p=0.15 d=300 N=10000)

Model of $d^*(s)$ is accurate unless $\overline{\epsilon}_d$

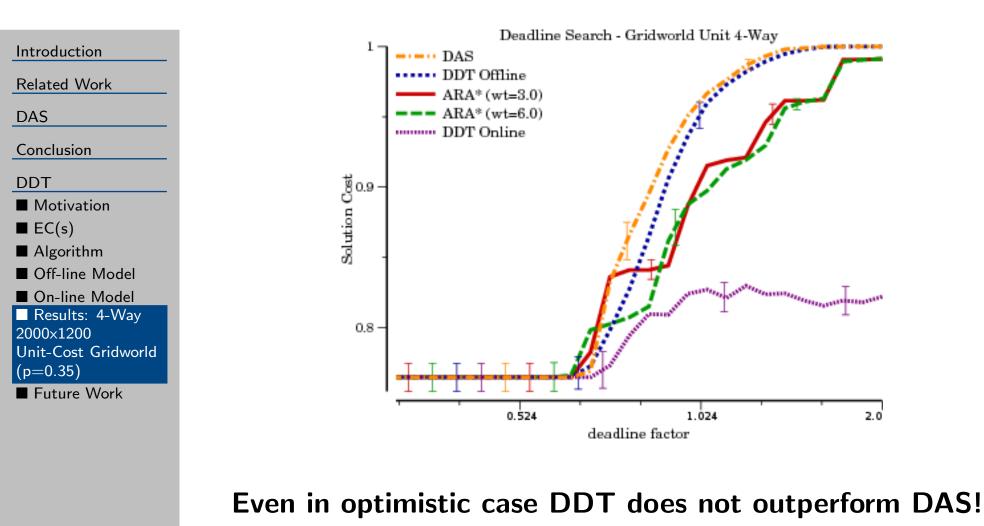
÷ 14

Π:

0.2

0.85

0.9


0.95

1.05

1.1

1.15 x 10⁴

Results: 4-Way 2000x1200 Unit-Cost Gridworld (p=0.35)

Future Work

Introduction

Related Work

DAS

Conclusion

DDT

- Motivation
- EC(s)
- Algorithm
- Off-line Model
- On-line Model
- Results: 4-Way
- 2000×1200
- Unit-Cost Gridworld
- (p=0.35)
- Future Work

- \blacksquare More empirical evaluation of DAS and DDT
- Evaluate other methods of calculating $\widehat{d}(s)$ for DAS
- \blacksquare Evaluate other methods of calculating d_{max} for DAS/DDT
- Evaluate accuracy of probabilistic one-step error model
- Modify Real-Time search to apply to Contract Search